- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC Authors: Karki, Sandhya; Elsgaard, Lars; Kandel, Tanka Prasad; Lærke, Poul Erik;pmid: 25647790
Empirical greenhouse gas (GHG) flux estimates from diverse peatlands are required in order to derive emission factors for managed peatlands. This study on a drained fen peatland quantified the annual GHG balance (Carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4), and C exported in crop yield) from spring barley (SB) and reed canary grass (RCG) using static opaque chambers for GHG flux measurements and biomass yield for indirectly estimating gross primary production (GPP). Estimates of ecosystem respiration (ER) and GPP were compared with more advanced but costly and labor-intensive dynamic chamber studies. Annual GHG balance for the two cropping systems was 4.0 ± 0.7 and 8.1 ± 0.2 Mg CO2-Ceq ha(-1) from SB and RCG, respectively (mean ± standard error, n = 3). Annual CH4 emissions were negligible (<0.006 Mg CO2-Ceq ha(-1)), and N2O emissions contributed only 4-13 % of the full GHG balance (0.5 and 0.3 Mg CO2-Ceq ha(-1) for SB and RCG, respectively). The statistical significance of low CH4 and N2O fluxes was evaluated by a simulation procedure which showed that most of CH4 fluxes were within the range that could arise from random variation associated with actual zero-flux situations. ER measured by static chamber and dynamic chamber methods was similar, particularly when using nonlinear regression techniques for flux calculations. A comparison of GPP derived from aboveground biomass and from measuring net ecosystem exchange (NEE) showed that GPP estimation from biomass might be useful, or serve as validation, for more advanced flux measurement methods. In conclusion, combining static opaque chambers for measuring ER of CO2 and CH4 and N2O fluxes with biomass yield for GPP estimation worked well in the drained fen peatland cropped to SB and RCG and presented a valid alternative to estimating the full GHG balance by dynamic chambers.
PURE Aarhus Universi... arrow_drop_down Environmental Monitoring and AssessmentArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10661-014-4259-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert PURE Aarhus Universi... arrow_drop_down Environmental Monitoring and AssessmentArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10661-014-4259-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Henrik Thers; Diego Abalos; Peter Dörsch; Lars Elsgaard;pmid: 32251883
Nitrous oxide (N2O) emission from winter oilseed rape (WOSR) cultivation may compromise the sustainability of oilseed rape biodiesel. Typically, greenhouse gas budgets of WOSR cultivation assume an N2O emission factor (EF) of 1% of the N added in fertilizer and crop residues. Management options to reduce direct soil emissions of N2O include the application of biochar, but efficacy and mechanisms of N2O suppression are elusive. We measured N2O emissions in a WOSR field trial on a sandy loam soil in Denmark over 402 days in 2017-2018, comparing biochar applications from two feedstocks (wheat straw and pig manure fibers), two application rates (1.5 and 15 Mg ha-1) and field ageing of up to three years. Further, a controlled incubation experiment was performed to examine the effect of biochar dose and ageing on N2O production and consumption by denitrification. Biochar treatments had no significant effects on cumulative N2O emissions (1.71-2.78 kg N ha-1 yr-1). Likewise, no significant effects were found on crop yield, yield-scaled N2O emission, soil mineral N content, gravimetric soil moisture or pH. The fertilizer induced EF was 0.51% which is well below the IPCC Tier 1 EF of 1%. High doses of fresh, but not field-aged biochar suppressed N2O production under anoxic conditions ex situ, suggesting that biochar with sufficient liming capacity could mitigate N2O emissions from denitrification also under field conditions. Yet, rates of up to 15 Mg ha-1 flash pyrolysis biochar in the current in situ study, which comprised a pronounced summer drought, showed no significant N2O mitigation. This highlights the need for selecting dedicated biochars and doses and test them in multi-year studies to conclude on their N2O mitigating effect. Yet, in relation to sustainability of WOSR cultivation for biodiesel, the current study suggests that C sequestration by biochar is not compromised by increased N2O emissions.
PURE Aarhus Universi... arrow_drop_down The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.138140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert PURE Aarhus Universi... arrow_drop_down The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.138140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Spain, Netherlands, SpainPublisher:Wiley Funded by:EC | InBPSOC, EC | BIODESERTEC| InBPSOC ,EC| BIODESERTChen, Ji; van Groenigen, Kees J.; Hungate, Bruce A.; Terrer, César; van Groenigen, Jan‐Willem; Maestre, Fernando T.; Ying, Samantha C.; Luo, Yiqi; Jørgensen, Uffe; Sinsabaugh, Robert L.; Olesen, Jørgen E.; Elsgaard, Lars;doi: 10.1111/gcb.15218
pmid: 32529708
AbstractIncreased human‐derived nitrogen (N) deposition to terrestrial ecosystems has resulted in widespread phosphorus (P) limitation of net primary productivity. However, it remains unclear if and how N‐induced P limitation varies over time. Soil extracellular phosphatases catalyze the hydrolysis of P from soil organic matter, an important adaptive mechanism for ecosystems to cope with N‐induced P limitation. Here we show, using a meta‐analysis of 140 studies and 668 observations worldwide, that N stimulation of soil phosphatase activity diminishes over time. Whereas short‐term N loading (≤5 years) significantly increased soil phosphatase activity by 28%, long‐term N loading had no significant effect. Nitrogen loading did not affect soil available P and total P content in either short‐ or long‐term studies. Together, these results suggest that N‐induced P limitation in ecosystems is alleviated in the long‐term through the initial stimulation of soil phosphatase activity, thereby securing P supply to support plant growth. Our results suggest that increases in terrestrial carbon uptake due to ongoing anthropogenic N loading may be greater than previously thought.
Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2020Data sources: Repositorio Institucional de la Universidad de AlicanteGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15218&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 167 citations 167 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2020Data sources: Repositorio Institucional de la Universidad de AlicanteGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15218&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Sweden, FinlandPublisher:Springer Science and Business Media LLC Alena Holzknecht; Örjan Berglund; Magnus Land; Jacynthe Dessureault-Rompré; Lars Elsgaard; Kristiina Lång;Abstract Background Cultivated peatlands are widespread in temperate and boreal climate zones. For example, in Europe about 15% of the pristine peatland area have been lost through drainage for agricultural use. When drained, these organic soils are a significant source of greenhouse gas (GHG) emissions. To reach climate goals, the agricultural sector must reduce its GHG emissions, and one measure that has been discussed is changing land use from cropland to ley production or perennial green fallow. This management change leads to lower reported emissions, at least when using the IPCC default emission factors (EF) for croplands and grasslands on organic soils (IPCC 2014). However, there was a limited background dataset available for developing the EFs, and other variables than management affect the comparison of the land use options when the data originates from varying sites and years. Thus, the implications for future policies remain uncertain. This protocol describes the methodology to conduct a systematic review to answer the question of whether ley production or perennial green fallow can be suggested as a valid alternative to annual cropping to decrease GHG emissions on organic soils in temperate and boreal climate. Methods Publications will be searched in different databases and bibliographies of relevant review articles. The comprehensiveness of the search will be tested through a list of benchmark articles identified by the protocol development team. The screening will be performed at title and abstract level and at full text level, including repeatability tests. Eligible populations are organic agricultural soils in temperate and boreal climate regions. Interventions are grasslands without tillage for at least 3 years, and comparators are annual cropping systems within the same study as the intervention. The outcome must be gas fluxes of either carbon dioxide (CO2), nitrous oxide (N2O), or methane (CH4), or any combination of these gases. Studies will go through critical appraisal, checking for internal and external validity, and finally data extraction. If possible, a meta-analysis about the climate impact of perennial green fallow compared to annual cropping on organic soils will be performed.
SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-023-00310-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-023-00310-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Wiley Finn Pilgaard Vinther; Søren Bent Torp; U.C. Brinch; L. Fredslund; Carsten S. Jacobsen; Bo V. Iversen; Lars Elsgaard;doi: 10.2134/jeq2006.0201
pmid: 18689732
Pesticides applied to agricultural soils are subject to environmental concerns because leaching to groundwater reservoirs and aquatic habitats may occur. Knowledge of field variation of pesticide‐related parameters is required to evaluate the vulnerability of pesticide leaching. The mineralization and sorption of the pesticides glyphosate and metribuzin and the pesticide degradation product triazinamin in a field were measured and compared with the field‐scale variation of geochemical and microbiological parameters. We focused on the soil parameters clay and organic carbon (C) content and on soil respiratory and enzymatic processes and microbial biomass. These parameters were measured in soil samples taken at two depths (Ap and Bs horizon) in 51 sampling points from a 4‐ha agricultural fine sandy soil field. The results indicated that the spatial variation of the soil parameters, and in particular the content of organic C, had a major influence on the variability of the microbial parameters and on sorption and pesticide mineralization in the soil. For glyphosate, with a co‐metabolic pathway for degradation, the mineralization was increased in soils with high microbial activity. The spatial variability, expressed as the CV, was about five times higher in the Bs horizon than in the Ap horizon, and the local‐scale variation within 100 m2 areas were two to three times lower than the field‐scale variation within the entire field of about 4 ha.
Journal of Environme... arrow_drop_down Journal of Environmental QualityArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2134/jeq2006.0201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental QualityArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2134/jeq2006.0201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Informa UK Limited Elsgaard, Lars; Olesen, Jørgen E; Hermansen, John Erik; Kristensen, Inge Toft; Børgesen, Christen Duus;Abstract Biofuels from bioenergy crops may substitute a significant part of fossil fuels in the transport sector where, e.g., the European Union has set a target of using 10% renewable energy by 2020. Savings of greenhouse gas emissions by biofuels vary according to cropping systems and are influenced by such regional factors as soil conditions, climate and input of agrochemicals. Here we analysed at a regional scale the greenhouse gas (GHG) emissions associated with cultivation of winter wheat for bioethanol and winter rapeseed for rapeseed methyl ester (RME) under Danish conditions. Emitted CO2 equivalents (CO2eq) were quantified from the footprints of CO2, CH4 and N2O associated with cultivation and the emissions were allocated between biofuel energy and co-products. Greenhouse gas emission at the national level (Denmark) was estimated to 22.1 g CO2eq MJ−1 ethanol for winter wheat and 26.0 g CO2eq MJ−1 RME for winter rapeseed. Results at the regional level (level 2 according to the Nomenclature of Terr...
Acta Agriculturae Sc... arrow_drop_down Acta Agriculturae Scandinavica Section B - Soil & Plant ScienceArticle . 2013 . Peer-reviewedData sources: CrossrefActa Agriculturae Scandinavica Section B - Soil & Plant ScienceJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09064710.2012.751451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Acta Agriculturae Sc... arrow_drop_down Acta Agriculturae Scandinavica Section B - Soil & Plant ScienceArticle . 2013 . Peer-reviewedData sources: CrossrefActa Agriculturae Scandinavica Section B - Soil & Plant ScienceJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09064710.2012.751451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Kandel, Tanka; Lærke, Poul Erik; Hoffmann, Carl Christian; Elsgaard, Lars;Abstract Drained riparian wetlands have been rewetted and restored in recent decades to remove nutrients, increase biodiversity, and mitigate soil carbon dioxide (CO2) emissions. Yet, few studies have documented the long-term effects of rewetting on complete greenhouse gas (GHG) balances including emissions of CO2, methane (CH4), and nitrous oxide (N2O). Here, we report the complete annual GHG balance of an extensively managed riparian wetland, dominated by creeping bentgrass (Agrostis stolonifera), 12 years after rewetting. Net ecosystem exchange (NEE) of CO2 was measured by transparent closed chambers, and fluxes were partitioned into gross primary production (GPP) and ecosystem respiration (ER) for modelling and extrapolation to annual emissions based on photosynthetically active radiation, ratio vegetation index and temperature. Fluxes of CH4 and N2O were monitored with opaque chambers. Groundwater table (GWT) was close to soil surface for most of the growing period, whereas the site was inundated during winter. Biomass was cut in late summer (8.5 Mg dry weight ha−1), but left on-site according to current management in the area. Annual ER (1360 g CO2-C m−2) exceeded GPP (–1140 g CO2-C m−2), and the ecosystem was a net source of CO2 with NEE of 220 g CO2-C m−2 yr−1. However, fluxes of CH4 (53 g CH4 m−2 yr−1) dominated the annual GHG balance with 405 g CO2-Ceq m−2 yr−1 which contributed 60% to the total GHG balance. Fluxes of N2O were primarily found at times of changing GWT with annual emission of 0.7 g N2O m−2 (50 g CO2-Ceq m−2) equal to 7% of the complete GHG balance. With proper management, rewetting and restoration of wetlands is expected to eventually resume the carbon sink function of natural wetlands, but this was not found in the present study as net fluxes of both CO2 and CH4 were positive. This was mainly attributed to on-site deposition of biomass which apparently stimulated both CO2 and CH4 emissions and partly reduced GPP by acting as a mulch layer. Future studies should focus on managements that increase CO2 uptake and biomass yield, and at the same time reduce CH4 emissions; such managements should avoid on-site deposition of aboveground biomass at rewetted sites.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoleng.2017.12.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoleng.2017.12.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 DenmarkPublisher:Elsevier BV Funded by:EC | EJP SOILEC| EJP SOILZhang, Hui-Min; Liang, Zhi; Li, Yong; Chen, Zhao-Xiong; Zhang, Jin-Bo; Cai, Zu-Cong; Elsgaard, Lars; Cheng, Yi; Jan van Groenigen, Kees; Abalos, Diego;Acidic soils cover about 30% of the world's land. Liming is a management practice applied worldwide to reduce the negative effects of acidification on soil fertility and plant growth. Liming also affects the biotic and abiotic soil properties controlling the production and consumption of the greenhouse gases (GHGs) carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4). Although our understanding of how liming regulates net GHG emissions is increasing, the impact of liming on soil biological drivers of GHG emissions has not been quantitatively synthesized. Here we conducted a global meta-analysis using 1474 paired observations from 124 studies to explore the responses of GHG emissions to liming, with a focus on soil biological factors. We show that the N2O mitigation capacity of liming could be linked to (i) increases in bacterial abundance of N2O reductase genes (NosZ) and decreases in fungi:bacteria ratio, both contributing to a lower N2O:N2 product ratio of denitrification; and (ii) reductions in soil mineral nitrogen (N) via stimulation of plant N uptake. The limited evidence available indicates that liming reduced CH4 emissions and the abundance of methanogens, but it had no effect on CH4 uptake and abundance of methanotrophs. Liming-induced increases in soil CO2 emissions can be explained by higher heterotrophic and/or autotrophic respiration. The strong coupling between liming effects on GHG emissions and on soil microbial communities involved in GHG production and consumption can be used to identify strategies to reduce GHGs in response to liming, and to improve process-based models for better predictions of soil GHG emissions.
Agriculture Ecosyste... arrow_drop_down Agriculture Ecosystems & EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefAgriculture Ecosystems & EnvironmentArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agee.2022.108182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 10 Powered bymore_vert Agriculture Ecosyste... arrow_drop_down Agriculture Ecosystems & EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefAgriculture Ecosystems & EnvironmentArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agee.2022.108182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 DenmarkPublisher:Wiley Authors: Henrik Thers; Søren O. Petersen; Lars Elsgaard;doi: 10.1111/gcbb.12642
AbstractDirect field emissions of nitrous oxide (N2O) may determine whether biodiesel from oilseed rape (Brassica napus L.) fulfills the EU requirement of at least 50% reduction of greenhouse gas emissions as compared to fossil diesel. However, only few studies have documented fertilizer N emission factors (EF) and mitigation options for N2O emissions from oilseed rape cropping systems. We conducted a field experiment with three N levels (0, 171, and 217 kg/ha), where the N fertilizer was applied as ammonium sulfate nitrate with or without the nitrification inhibitor 3,4‐dimethylpyrazole phosphate (DMPP). N2O fluxes were measured using static chambers technique and soil samples were analyzed for water and mineral N content during a monitoring period of 368 days. The DMPP treatments showed a significantly increased level of ammonium () for up to 18 weeks after spring fertilization as compared to the treatments without DMPP. However, this difference did not result in a corresponding decrease in soil content, and no differences in cumulative N2O emissions were found between any fertilized treatments with or without DMPP (mean, 1.26 kg N2O‐N ha−1 year−1). More field experiments are needed to clarify whether DMPP‐coated mineral fertilizers could mitigate N2O emissions under different weather conditions, for example, under conditions where fertilization events concurred with rainfall events increasing water‐filled pore space to the assumed 60% threshold for denitrification. Emission factors for mineral N fertilizer were 0.28%–0.36% with a mean of 0.32% across the fertilized treatments. These data concur with recent European studies suggesting that the EF for mineral N fertilizers in oilseed rape cropping systems may typically be lower than the default IPCC value of 1%. Further studies are needed to consolidate an EF for oilseed rape under temperate conditions, which will be determining for the sustainability of Northern European oilseed rape cultivation for biodiesel.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12642&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12642&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 DenmarkPublisher:Elsevier BV Audet, Joachim; Jéglot, Arnaud; Elsgaard, Lars; Maagaard, Astrid Ledet; Sørensen, Sebastian Reinhold; Zak, Dominik; Hoffmann, Carl Christian;Abstract Woodchip bioreactors are increasingly used as tools to mitigate nitrogen (N) pollution from agricultural drainage water. They consist of a basin filled with woodchip material through which N contaminated drainage water can flow. During the water transport through the filter matrix, oxygen is rapidly depleted and denitrification removes a fraction of the nitrate N present in the water. However, the N removal efficiency of the bioreactors varies significantly both across systems and seasonally. Furthermore, denitrification can also produce nitrous oxide, which is a potent greenhouse gas. Here, we investigated how variation in hydraulic residence time influenced N removal efficiency and nitrous oxide emissions at eight woodchip bioreactors of different flow designs, monitored for 2–4 years. We also characterised the relative abundance of genes involved in the N cycle at three of the bioreactors using metagenomics. Our results showed that total N removal was 17–73% of the yearly incoming N and that it was influenced by hydraulic residence time and water temperature. Nitrous oxide emissions were variable among the different bioreactors and were higher when the hydraulic residence time was less than 60 h. However, the yearly nitrous oxide release did not exceed 2.4% of the nitrate removal (on N atom basis) and the mean among the bioreactors was 0.6%. Although there were marked differences in nitrate removal and nitrous oxide emissions, there were no clear differences in the relative abundance of N-cycling genes among and within three tested bioreactors. Yet, denitrification genes greatly outnumbered genes related to dissimilatory nitrate reduction to ammonium. Overall, our study showed that all eight bioreactors were effective in removing N from agricultural drainage water and that nitrous oxide emissions were low, especially at hydraulic residence times of 60 h or more.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoleng.2021.106328&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoleng.2021.106328&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC Authors: Karki, Sandhya; Elsgaard, Lars; Kandel, Tanka Prasad; Lærke, Poul Erik;pmid: 25647790
Empirical greenhouse gas (GHG) flux estimates from diverse peatlands are required in order to derive emission factors for managed peatlands. This study on a drained fen peatland quantified the annual GHG balance (Carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4), and C exported in crop yield) from spring barley (SB) and reed canary grass (RCG) using static opaque chambers for GHG flux measurements and biomass yield for indirectly estimating gross primary production (GPP). Estimates of ecosystem respiration (ER) and GPP were compared with more advanced but costly and labor-intensive dynamic chamber studies. Annual GHG balance for the two cropping systems was 4.0 ± 0.7 and 8.1 ± 0.2 Mg CO2-Ceq ha(-1) from SB and RCG, respectively (mean ± standard error, n = 3). Annual CH4 emissions were negligible (<0.006 Mg CO2-Ceq ha(-1)), and N2O emissions contributed only 4-13 % of the full GHG balance (0.5 and 0.3 Mg CO2-Ceq ha(-1) for SB and RCG, respectively). The statistical significance of low CH4 and N2O fluxes was evaluated by a simulation procedure which showed that most of CH4 fluxes were within the range that could arise from random variation associated with actual zero-flux situations. ER measured by static chamber and dynamic chamber methods was similar, particularly when using nonlinear regression techniques for flux calculations. A comparison of GPP derived from aboveground biomass and from measuring net ecosystem exchange (NEE) showed that GPP estimation from biomass might be useful, or serve as validation, for more advanced flux measurement methods. In conclusion, combining static opaque chambers for measuring ER of CO2 and CH4 and N2O fluxes with biomass yield for GPP estimation worked well in the drained fen peatland cropped to SB and RCG and presented a valid alternative to estimating the full GHG balance by dynamic chambers.
PURE Aarhus Universi... arrow_drop_down Environmental Monitoring and AssessmentArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10661-014-4259-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert PURE Aarhus Universi... arrow_drop_down Environmental Monitoring and AssessmentArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10661-014-4259-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Henrik Thers; Diego Abalos; Peter Dörsch; Lars Elsgaard;pmid: 32251883
Nitrous oxide (N2O) emission from winter oilseed rape (WOSR) cultivation may compromise the sustainability of oilseed rape biodiesel. Typically, greenhouse gas budgets of WOSR cultivation assume an N2O emission factor (EF) of 1% of the N added in fertilizer and crop residues. Management options to reduce direct soil emissions of N2O include the application of biochar, but efficacy and mechanisms of N2O suppression are elusive. We measured N2O emissions in a WOSR field trial on a sandy loam soil in Denmark over 402 days in 2017-2018, comparing biochar applications from two feedstocks (wheat straw and pig manure fibers), two application rates (1.5 and 15 Mg ha-1) and field ageing of up to three years. Further, a controlled incubation experiment was performed to examine the effect of biochar dose and ageing on N2O production and consumption by denitrification. Biochar treatments had no significant effects on cumulative N2O emissions (1.71-2.78 kg N ha-1 yr-1). Likewise, no significant effects were found on crop yield, yield-scaled N2O emission, soil mineral N content, gravimetric soil moisture or pH. The fertilizer induced EF was 0.51% which is well below the IPCC Tier 1 EF of 1%. High doses of fresh, but not field-aged biochar suppressed N2O production under anoxic conditions ex situ, suggesting that biochar with sufficient liming capacity could mitigate N2O emissions from denitrification also under field conditions. Yet, rates of up to 15 Mg ha-1 flash pyrolysis biochar in the current in situ study, which comprised a pronounced summer drought, showed no significant N2O mitigation. This highlights the need for selecting dedicated biochars and doses and test them in multi-year studies to conclude on their N2O mitigating effect. Yet, in relation to sustainability of WOSR cultivation for biodiesel, the current study suggests that C sequestration by biochar is not compromised by increased N2O emissions.
PURE Aarhus Universi... arrow_drop_down The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.138140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert PURE Aarhus Universi... arrow_drop_down The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.138140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Spain, Netherlands, SpainPublisher:Wiley Funded by:EC | InBPSOC, EC | BIODESERTEC| InBPSOC ,EC| BIODESERTChen, Ji; van Groenigen, Kees J.; Hungate, Bruce A.; Terrer, César; van Groenigen, Jan‐Willem; Maestre, Fernando T.; Ying, Samantha C.; Luo, Yiqi; Jørgensen, Uffe; Sinsabaugh, Robert L.; Olesen, Jørgen E.; Elsgaard, Lars;doi: 10.1111/gcb.15218
pmid: 32529708
AbstractIncreased human‐derived nitrogen (N) deposition to terrestrial ecosystems has resulted in widespread phosphorus (P) limitation of net primary productivity. However, it remains unclear if and how N‐induced P limitation varies over time. Soil extracellular phosphatases catalyze the hydrolysis of P from soil organic matter, an important adaptive mechanism for ecosystems to cope with N‐induced P limitation. Here we show, using a meta‐analysis of 140 studies and 668 observations worldwide, that N stimulation of soil phosphatase activity diminishes over time. Whereas short‐term N loading (≤5 years) significantly increased soil phosphatase activity by 28%, long‐term N loading had no significant effect. Nitrogen loading did not affect soil available P and total P content in either short‐ or long‐term studies. Together, these results suggest that N‐induced P limitation in ecosystems is alleviated in the long‐term through the initial stimulation of soil phosphatase activity, thereby securing P supply to support plant growth. Our results suggest that increases in terrestrial carbon uptake due to ongoing anthropogenic N loading may be greater than previously thought.
Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2020Data sources: Repositorio Institucional de la Universidad de AlicanteGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15218&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 167 citations 167 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2020Data sources: Repositorio Institucional de la Universidad de AlicanteGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15218&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Sweden, FinlandPublisher:Springer Science and Business Media LLC Alena Holzknecht; Örjan Berglund; Magnus Land; Jacynthe Dessureault-Rompré; Lars Elsgaard; Kristiina Lång;Abstract Background Cultivated peatlands are widespread in temperate and boreal climate zones. For example, in Europe about 15% of the pristine peatland area have been lost through drainage for agricultural use. When drained, these organic soils are a significant source of greenhouse gas (GHG) emissions. To reach climate goals, the agricultural sector must reduce its GHG emissions, and one measure that has been discussed is changing land use from cropland to ley production or perennial green fallow. This management change leads to lower reported emissions, at least when using the IPCC default emission factors (EF) for croplands and grasslands on organic soils (IPCC 2014). However, there was a limited background dataset available for developing the EFs, and other variables than management affect the comparison of the land use options when the data originates from varying sites and years. Thus, the implications for future policies remain uncertain. This protocol describes the methodology to conduct a systematic review to answer the question of whether ley production or perennial green fallow can be suggested as a valid alternative to annual cropping to decrease GHG emissions on organic soils in temperate and boreal climate. Methods Publications will be searched in different databases and bibliographies of relevant review articles. The comprehensiveness of the search will be tested through a list of benchmark articles identified by the protocol development team. The screening will be performed at title and abstract level and at full text level, including repeatability tests. Eligible populations are organic agricultural soils in temperate and boreal climate regions. Interventions are grasslands without tillage for at least 3 years, and comparators are annual cropping systems within the same study as the intervention. The outcome must be gas fluxes of either carbon dioxide (CO2), nitrous oxide (N2O), or methane (CH4), or any combination of these gases. Studies will go through critical appraisal, checking for internal and external validity, and finally data extraction. If possible, a meta-analysis about the climate impact of perennial green fallow compared to annual cropping on organic soils will be performed.
SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-023-00310-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-023-00310-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Wiley Finn Pilgaard Vinther; Søren Bent Torp; U.C. Brinch; L. Fredslund; Carsten S. Jacobsen; Bo V. Iversen; Lars Elsgaard;doi: 10.2134/jeq2006.0201
pmid: 18689732
Pesticides applied to agricultural soils are subject to environmental concerns because leaching to groundwater reservoirs and aquatic habitats may occur. Knowledge of field variation of pesticide‐related parameters is required to evaluate the vulnerability of pesticide leaching. The mineralization and sorption of the pesticides glyphosate and metribuzin and the pesticide degradation product triazinamin in a field were measured and compared with the field‐scale variation of geochemical and microbiological parameters. We focused on the soil parameters clay and organic carbon (C) content and on soil respiratory and enzymatic processes and microbial biomass. These parameters were measured in soil samples taken at two depths (Ap and Bs horizon) in 51 sampling points from a 4‐ha agricultural fine sandy soil field. The results indicated that the spatial variation of the soil parameters, and in particular the content of organic C, had a major influence on the variability of the microbial parameters and on sorption and pesticide mineralization in the soil. For glyphosate, with a co‐metabolic pathway for degradation, the mineralization was increased in soils with high microbial activity. The spatial variability, expressed as the CV, was about five times higher in the Bs horizon than in the Ap horizon, and the local‐scale variation within 100 m2 areas were two to three times lower than the field‐scale variation within the entire field of about 4 ha.
Journal of Environme... arrow_drop_down Journal of Environmental QualityArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2134/jeq2006.0201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental QualityArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2134/jeq2006.0201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Informa UK Limited Elsgaard, Lars; Olesen, Jørgen E; Hermansen, John Erik; Kristensen, Inge Toft; Børgesen, Christen Duus;Abstract Biofuels from bioenergy crops may substitute a significant part of fossil fuels in the transport sector where, e.g., the European Union has set a target of using 10% renewable energy by 2020. Savings of greenhouse gas emissions by biofuels vary according to cropping systems and are influenced by such regional factors as soil conditions, climate and input of agrochemicals. Here we analysed at a regional scale the greenhouse gas (GHG) emissions associated with cultivation of winter wheat for bioethanol and winter rapeseed for rapeseed methyl ester (RME) under Danish conditions. Emitted CO2 equivalents (CO2eq) were quantified from the footprints of CO2, CH4 and N2O associated with cultivation and the emissions were allocated between biofuel energy and co-products. Greenhouse gas emission at the national level (Denmark) was estimated to 22.1 g CO2eq MJ−1 ethanol for winter wheat and 26.0 g CO2eq MJ−1 RME for winter rapeseed. Results at the regional level (level 2 according to the Nomenclature of Terr...
Acta Agriculturae Sc... arrow_drop_down Acta Agriculturae Scandinavica Section B - Soil & Plant ScienceArticle . 2013 . Peer-reviewedData sources: CrossrefActa Agriculturae Scandinavica Section B - Soil & Plant ScienceJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09064710.2012.751451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Acta Agriculturae Sc... arrow_drop_down Acta Agriculturae Scandinavica Section B - Soil & Plant ScienceArticle . 2013 . Peer-reviewedData sources: CrossrefActa Agriculturae Scandinavica Section B - Soil & Plant ScienceJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/09064710.2012.751451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Kandel, Tanka; Lærke, Poul Erik; Hoffmann, Carl Christian; Elsgaard, Lars;Abstract Drained riparian wetlands have been rewetted and restored in recent decades to remove nutrients, increase biodiversity, and mitigate soil carbon dioxide (CO2) emissions. Yet, few studies have documented the long-term effects of rewetting on complete greenhouse gas (GHG) balances including emissions of CO2, methane (CH4), and nitrous oxide (N2O). Here, we report the complete annual GHG balance of an extensively managed riparian wetland, dominated by creeping bentgrass (Agrostis stolonifera), 12 years after rewetting. Net ecosystem exchange (NEE) of CO2 was measured by transparent closed chambers, and fluxes were partitioned into gross primary production (GPP) and ecosystem respiration (ER) for modelling and extrapolation to annual emissions based on photosynthetically active radiation, ratio vegetation index and temperature. Fluxes of CH4 and N2O were monitored with opaque chambers. Groundwater table (GWT) was close to soil surface for most of the growing period, whereas the site was inundated during winter. Biomass was cut in late summer (8.5 Mg dry weight ha−1), but left on-site according to current management in the area. Annual ER (1360 g CO2-C m−2) exceeded GPP (–1140 g CO2-C m−2), and the ecosystem was a net source of CO2 with NEE of 220 g CO2-C m−2 yr−1. However, fluxes of CH4 (53 g CH4 m−2 yr−1) dominated the annual GHG balance with 405 g CO2-Ceq m−2 yr−1 which contributed 60% to the total GHG balance. Fluxes of N2O were primarily found at times of changing GWT with annual emission of 0.7 g N2O m−2 (50 g CO2-Ceq m−2) equal to 7% of the complete GHG balance. With proper management, rewetting and restoration of wetlands is expected to eventually resume the carbon sink function of natural wetlands, but this was not found in the present study as net fluxes of both CO2 and CH4 were positive. This was mainly attributed to on-site deposition of biomass which apparently stimulated both CO2 and CH4 emissions and partly reduced GPP by acting as a mulch layer. Future studies should focus on managements that increase CO2 uptake and biomass yield, and at the same time reduce CH4 emissions; such managements should avoid on-site deposition of aboveground biomass at rewetted sites.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoleng.2017.12.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoleng.2017.12.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 DenmarkPublisher:Elsevier BV Funded by:EC | EJP SOILEC| EJP SOILZhang, Hui-Min; Liang, Zhi; Li, Yong; Chen, Zhao-Xiong; Zhang, Jin-Bo; Cai, Zu-Cong; Elsgaard, Lars; Cheng, Yi; Jan van Groenigen, Kees; Abalos, Diego;Acidic soils cover about 30% of the world's land. Liming is a management practice applied worldwide to reduce the negative effects of acidification on soil fertility and plant growth. Liming also affects the biotic and abiotic soil properties controlling the production and consumption of the greenhouse gases (GHGs) carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4). Although our understanding of how liming regulates net GHG emissions is increasing, the impact of liming on soil biological drivers of GHG emissions has not been quantitatively synthesized. Here we conducted a global meta-analysis using 1474 paired observations from 124 studies to explore the responses of GHG emissions to liming, with a focus on soil biological factors. We show that the N2O mitigation capacity of liming could be linked to (i) increases in bacterial abundance of N2O reductase genes (NosZ) and decreases in fungi:bacteria ratio, both contributing to a lower N2O:N2 product ratio of denitrification; and (ii) reductions in soil mineral nitrogen (N) via stimulation of plant N uptake. The limited evidence available indicates that liming reduced CH4 emissions and the abundance of methanogens, but it had no effect on CH4 uptake and abundance of methanotrophs. Liming-induced increases in soil CO2 emissions can be explained by higher heterotrophic and/or autotrophic respiration. The strong coupling between liming effects on GHG emissions and on soil microbial communities involved in GHG production and consumption can be used to identify strategies to reduce GHGs in response to liming, and to improve process-based models for better predictions of soil GHG emissions.
Agriculture Ecosyste... arrow_drop_down Agriculture Ecosystems & EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefAgriculture Ecosystems & EnvironmentArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agee.2022.108182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 10 Powered bymore_vert Agriculture Ecosyste... arrow_drop_down Agriculture Ecosystems & EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefAgriculture Ecosystems & EnvironmentArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agee.2022.108182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 DenmarkPublisher:Wiley Authors: Henrik Thers; Søren O. Petersen; Lars Elsgaard;doi: 10.1111/gcbb.12642
AbstractDirect field emissions of nitrous oxide (N2O) may determine whether biodiesel from oilseed rape (Brassica napus L.) fulfills the EU requirement of at least 50% reduction of greenhouse gas emissions as compared to fossil diesel. However, only few studies have documented fertilizer N emission factors (EF) and mitigation options for N2O emissions from oilseed rape cropping systems. We conducted a field experiment with three N levels (0, 171, and 217 kg/ha), where the N fertilizer was applied as ammonium sulfate nitrate with or without the nitrification inhibitor 3,4‐dimethylpyrazole phosphate (DMPP). N2O fluxes were measured using static chambers technique and soil samples were analyzed for water and mineral N content during a monitoring period of 368 days. The DMPP treatments showed a significantly increased level of ammonium () for up to 18 weeks after spring fertilization as compared to the treatments without DMPP. However, this difference did not result in a corresponding decrease in soil content, and no differences in cumulative N2O emissions were found between any fertilized treatments with or without DMPP (mean, 1.26 kg N2O‐N ha−1 year−1). More field experiments are needed to clarify whether DMPP‐coated mineral fertilizers could mitigate N2O emissions under different weather conditions, for example, under conditions where fertilization events concurred with rainfall events increasing water‐filled pore space to the assumed 60% threshold for denitrification. Emission factors for mineral N fertilizer were 0.28%–0.36% with a mean of 0.32% across the fertilized treatments. These data concur with recent European studies suggesting that the EF for mineral N fertilizers in oilseed rape cropping systems may typically be lower than the default IPCC value of 1%. Further studies are needed to consolidate an EF for oilseed rape under temperate conditions, which will be determining for the sustainability of Northern European oilseed rape cultivation for biodiesel.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12642&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12642&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 DenmarkPublisher:Elsevier BV Audet, Joachim; Jéglot, Arnaud; Elsgaard, Lars; Maagaard, Astrid Ledet; Sørensen, Sebastian Reinhold; Zak, Dominik; Hoffmann, Carl Christian;Abstract Woodchip bioreactors are increasingly used as tools to mitigate nitrogen (N) pollution from agricultural drainage water. They consist of a basin filled with woodchip material through which N contaminated drainage water can flow. During the water transport through the filter matrix, oxygen is rapidly depleted and denitrification removes a fraction of the nitrate N present in the water. However, the N removal efficiency of the bioreactors varies significantly both across systems and seasonally. Furthermore, denitrification can also produce nitrous oxide, which is a potent greenhouse gas. Here, we investigated how variation in hydraulic residence time influenced N removal efficiency and nitrous oxide emissions at eight woodchip bioreactors of different flow designs, monitored for 2–4 years. We also characterised the relative abundance of genes involved in the N cycle at three of the bioreactors using metagenomics. Our results showed that total N removal was 17–73% of the yearly incoming N and that it was influenced by hydraulic residence time and water temperature. Nitrous oxide emissions were variable among the different bioreactors and were higher when the hydraulic residence time was less than 60 h. However, the yearly nitrous oxide release did not exceed 2.4% of the nitrate removal (on N atom basis) and the mean among the bioreactors was 0.6%. Although there were marked differences in nitrate removal and nitrous oxide emissions, there were no clear differences in the relative abundance of N-cycling genes among and within three tested bioreactors. Yet, denitrification genes greatly outnumbered genes related to dissimilatory nitrate reduction to ammonium. Overall, our study showed that all eight bioreactors were effective in removing N from agricultural drainage water and that nitrous oxide emissions were low, especially at hydraulic residence times of 60 h or more.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoleng.2021.106328&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoleng.2021.106328&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu