
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Regional greenhouse gas emissions from cultivation of winter wheat and winter rapeseed for biofuels in Denmark

Abstract Biofuels from bioenergy crops may substitute a significant part of fossil fuels in the transport sector where, e.g., the European Union has set a target of using 10% renewable energy by 2020. Savings of greenhouse gas emissions by biofuels vary according to cropping systems and are influenced by such regional factors as soil conditions, climate and input of agrochemicals. Here we analysed at a regional scale the greenhouse gas (GHG) emissions associated with cultivation of winter wheat for bioethanol and winter rapeseed for rapeseed methyl ester (RME) under Danish conditions. Emitted CO2 equivalents (CO2eq) were quantified from the footprints of CO2, CH4 and N2O associated with cultivation and the emissions were allocated between biofuel energy and co-products. Greenhouse gas emission at the national level (Denmark) was estimated to 22.1 g CO2eq MJ−1 ethanol for winter wheat and 26.0 g CO2eq MJ−1 RME for winter rapeseed. Results at the regional level (level 2 according to the Nomenclature of Terr...
- Aarhus University Denmark
carbon footprint, greenhouse gas emissions, Nitrous Oxide, cropping systems, biofuels, land-use change
carbon footprint, greenhouse gas emissions, Nitrous Oxide, cropping systems, biofuels, land-use change
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
