- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Meng Li; Haoxiang Zhuo; Qihang Jing; Yang Gu; Zhou Liao; Kuan Wang; Jiangtao Hu; Dongsheng Geng; Xueliang Sun; Biwei Xiao;doi: 10.1002/cey2.546
AbstractSodium‐ion batteries (NIBs) have become an ideal alternative to lithium‐ion batteries in the field of electrochemical energy storage due to their abundant raw materials and cost‐effectiveness. With the progress of human society, the requirements for energy storage systems in extreme environments, such as deep‐sea exploration, aerospace missions, and tunnel operations, have become more stringent. The comprehensive performance of NIBs at low temperatures (LTs) has also become an important consideration. Under LT conditions, challenges such as increased viscosity of electrolyte, abnormal growth of solid electrolyte interface, and poor contact between collector and electrode materials emerge. The aforementioned issues hinder the diffusion kinetics of sodium ions (Na+) at the electrode/electrolyte interface and cause rapid degradation of battery performance. Consequently, the optimization of electrolyte composition and cathode/anode materials becomes an effective approach to improve LT performance. This review discusses the conduction behavior and limiting factors of Na+ in both solid electrodes and liquid electrolytes at LT. Furthermore, it systematically reviews the recent research progress of LT NIBs from three aspects: cathode materials, anode materials, and electrolyte components. This review aims to provide a valuable reference for developing high‐performance LT NIBs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.546&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.546&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Royal Society of Chemistry (RSC) Yougui Chen; Shanna Knights; Siyu Ye; Ruying Li; Ying Chen; Dongsheng Geng; Xueliang Sun; Yongliang Li;doi: 10.1039/c0ee00326c
Nitrogen-doped graphene as a metal-free catalyst for oxygen reduction was synthesized by heat-treatment of graphene using ammonia. It was found that the optimum temperature was 900 °C. The resulting catalyst had a very high oxygen reduction reaction (ORR) activity through a four-electron transfer process in oxygen-saturated 0.1 M KOH. Most importantly, the electrocatalytic activity and durability of this material are comparable or better than the commercial Pt/C (loading: 4.85 µgPt cm−2). XPS characterization of these catalysts was tested to identify the active N species for ORR.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c0ee00326c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1K citations 1,147 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c0ee00326c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Royal Society of Chemistry (RSC) Guoxian Liang; Songlan Yang; Tsun-Kong Sham; Yun Miu Yiu; Jiajun Wang; Xueliang Sun; Dongniu Wang; Lijia Liu;doi: 10.1039/c2ee03445j
LiFePO4 has been a promising cathode material for rechargeable lithium ion batteries. Different secondary or impurity phases, forming during either synthesis or subsequent redox process under normal operating conditions, can have a significant impact on the performance of the electrode. The exploration of the electronic and chemical structures of impurity phases is crucial to understand such influence. We have embarked on a series of synchrotron-based X-ray absorption near-edge structure (XANES) spectroscopy studies for the element speciation in various impurity phase materials relevant to LiFePO4 for Li ion batteries. In the present report, soft-X-ray XANES spectra of Li K-edge, P L2,3-edge, O K-edge and Fe L2,3-edge have been obtained for LiFePO4 in crystalline, disordered and amorphous forms and some possible “impurities”, including LiPO3, Li4P2O7, Li3PO4, Fe3(PO4)2, FePO4, and Fe2O3. The results indicate that each element from different pure reference compounds exhibits unique spectral features in terms of energy position, shape and intensity of the resonances in its XANES. In addition, inverse partial fluorescence yield (IPFY) reveals the surface vs. bulk property of the specimens. Therefore, the spectral data provided here can be used as standards in the future for phase composition analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee03445j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu122 citations 122 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee03445j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Royal Society of Chemistry (RSC) Funded by:NSERCNSERCXueliang Sun; Ruying Li; Yue Chen; Payam Kaghazchi; Ning Zhao; Xiangxin Guo; Hanyu Huo; Hanyu Huo; Robert Mücke; João Gustavo Pereira da Silva; Jing Luo;doi: 10.1039/c9ee01903k
A mixed conductive garnet/Li interface consisting of electronic conductive nanoparticles embedded in an ionic conductive network is constructed for dendrite-free solid garnet batteries.
Juelich Shared Elect... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ee01903k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 295 citations 295 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ee01903k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Xueliang Sun; Chongmin Wang; Pengfei Yan; Pengfei Yan; Ji-Guang Zhang; Biqiong Wang; Xiaopeng Cheng; Jian Liu; Jianming Zheng; Yuefei Zhang;A critical challenge for the commercialization of layer-structured nickel-rich lithium transition metal oxide cathodes for battery applications is their capacity and voltage fading, which originate from the disintegration and lattice phase transition of the cathode particles. The general approach of cathode particle surface modification could partially alleviate the degradation associated with surface processes, but it still fails to resolve this critical barrier. Here, we report that infusing the grain boundaries of cathode secondary particles with a solid electrolyte dramatically enhances the capacity retention and voltage stability of the cathode. We find that the solid electrolyte infused in the boundaries not only acts as a fast channel for lithium-ion transport, it also, more importantly, prevents penetration of the liquid electrolyte into the boundaries, and consequently eliminates the detrimental factors, which include cathode–liquid electrolyte interfacial reactions, intergranular cracking and layered-to-spinel phase transformation. This grain-boundary engineering approach provides design ideas for advanced cathodes for batteries. The development of Ni-rich layered lithium transition metal oxides is plagued by their voltage and capacity fading on battery cycling. Here, the authors demonstrate an effective approach to treat these problems by infusing a solid electrolyte into the grain boundaries of the secondary particles of these layered materials.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-018-0191-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu701 citations 701 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-018-0191-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Royal Society of Chemistry (RSC) Authors: Xueliang Sun; Jiajun Wang;doi: 10.1039/c4ee04016c
This review highlights the remaining challenges for LiFePO4in lithium-ion batteries and future olivine cathodes in Na-ion batteries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4ee04016c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu434 citations 434 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4ee04016c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Wiley Funded by:NSERCNSERCJunjie Li; Lei Zhang; Kieran Doyle‐Davis; Ruying Li; Xueliang Sun;doi: 10.1002/cey2.74
AbstractOwing to the rapidly increasing consumption of fossil fuels, finding clean and reliable new energy sources is of the utmost importance. Thus, developing highly efficient and low‐cost catalysts for electrochemical reactions in energy conversion devices is crucial. Single‐atom catalysts (SACs) with maximum metal atom utilization efficiency and superior catalytic performance have attracted significant attention, especially for electrochemical reactions. However, because of the highly unsaturated coordination environment, the stability of SACs can be a challenge for practical applications. In this review, we will summarize the strategies to increase the stability of SACs and synthesizing stable SACs, as well as the application of SACs in electrochemical reactions. Finally, we offer a perspective on the development of advanced SACs through rational design and a deeper understanding of SACs with the help of in situ or operando techniques in electrochemical reactions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.74&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 49 citations 49 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.74&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Royal Society of Chemistry (RSC) Funded by:NSERCNSERCChanghong Wang; Shuo Wang; Xudong Liu; Yanlong Wu; Ruizhi Yu; Hui Duan; Jung Tae Kim; Huan Huang; Jiantao Wang; Yifei Mo; Xueliang Sun;doi: 10.1039/d3ee01119d
Achieving a balance between lithium ion and vacant site contents plays a crucial role in obtaining optimal ionic conductivity in halide electrolytes, especially with a hexagonal close packing (hcp) anion framework.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2023 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee01119d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2023 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee01119d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Royal Society of Chemistry (RSC) Fangyuan Cheng; Jun Hu; Wen Zhang; Baiyu Guo; Peng Yu; Xueliang Sun; Jian Peng;doi: 10.1039/d5ee00725a
The solvation binding between the ether–Na+ is weaker than that of the ester and Na+, promoting a faster desolvation of Na+. This advantage positions ether a competitive candidate for enhancing the kinetic performance of SIBs.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d5ee00725a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d5ee00725a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Frontiers Media SA Funded by:NSERCNSERCAuthors: Xia Li; Xueliang Sun;Li-S batteries have been considered as next generation Li batteries due to their high theoretical energy density. Over the past few years, researchers have made significant efforts in breaking through critical bottlenecks which impede the commercialization of Li-S batteries. Beginning with a basic introduction to Li-S systems and their associated mechanism, this review will highlight the application of one specific carbon family, nitrogen-doped carbon materials in sulfur based cathodes. These materials will include nitrogen doped porous carbon, carbon nanotubes, nanofibers and graphene. The article will conclude with a summary of recent research efforts in this field as well as the future prospects for the use of nitrogen-doped carbon materials in Li-S batteries.
Frontiers in Energy ... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2014.00049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Energy ... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2014.00049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Meng Li; Haoxiang Zhuo; Qihang Jing; Yang Gu; Zhou Liao; Kuan Wang; Jiangtao Hu; Dongsheng Geng; Xueliang Sun; Biwei Xiao;doi: 10.1002/cey2.546
AbstractSodium‐ion batteries (NIBs) have become an ideal alternative to lithium‐ion batteries in the field of electrochemical energy storage due to their abundant raw materials and cost‐effectiveness. With the progress of human society, the requirements for energy storage systems in extreme environments, such as deep‐sea exploration, aerospace missions, and tunnel operations, have become more stringent. The comprehensive performance of NIBs at low temperatures (LTs) has also become an important consideration. Under LT conditions, challenges such as increased viscosity of electrolyte, abnormal growth of solid electrolyte interface, and poor contact between collector and electrode materials emerge. The aforementioned issues hinder the diffusion kinetics of sodium ions (Na+) at the electrode/electrolyte interface and cause rapid degradation of battery performance. Consequently, the optimization of electrolyte composition and cathode/anode materials becomes an effective approach to improve LT performance. This review discusses the conduction behavior and limiting factors of Na+ in both solid electrodes and liquid electrolytes at LT. Furthermore, it systematically reviews the recent research progress of LT NIBs from three aspects: cathode materials, anode materials, and electrolyte components. This review aims to provide a valuable reference for developing high‐performance LT NIBs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.546&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.546&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Royal Society of Chemistry (RSC) Yougui Chen; Shanna Knights; Siyu Ye; Ruying Li; Ying Chen; Dongsheng Geng; Xueliang Sun; Yongliang Li;doi: 10.1039/c0ee00326c
Nitrogen-doped graphene as a metal-free catalyst for oxygen reduction was synthesized by heat-treatment of graphene using ammonia. It was found that the optimum temperature was 900 °C. The resulting catalyst had a very high oxygen reduction reaction (ORR) activity through a four-electron transfer process in oxygen-saturated 0.1 M KOH. Most importantly, the electrocatalytic activity and durability of this material are comparable or better than the commercial Pt/C (loading: 4.85 µgPt cm−2). XPS characterization of these catalysts was tested to identify the active N species for ORR.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c0ee00326c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1K citations 1,147 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c0ee00326c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Royal Society of Chemistry (RSC) Guoxian Liang; Songlan Yang; Tsun-Kong Sham; Yun Miu Yiu; Jiajun Wang; Xueliang Sun; Dongniu Wang; Lijia Liu;doi: 10.1039/c2ee03445j
LiFePO4 has been a promising cathode material for rechargeable lithium ion batteries. Different secondary or impurity phases, forming during either synthesis or subsequent redox process under normal operating conditions, can have a significant impact on the performance of the electrode. The exploration of the electronic and chemical structures of impurity phases is crucial to understand such influence. We have embarked on a series of synchrotron-based X-ray absorption near-edge structure (XANES) spectroscopy studies for the element speciation in various impurity phase materials relevant to LiFePO4 for Li ion batteries. In the present report, soft-X-ray XANES spectra of Li K-edge, P L2,3-edge, O K-edge and Fe L2,3-edge have been obtained for LiFePO4 in crystalline, disordered and amorphous forms and some possible “impurities”, including LiPO3, Li4P2O7, Li3PO4, Fe3(PO4)2, FePO4, and Fe2O3. The results indicate that each element from different pure reference compounds exhibits unique spectral features in terms of energy position, shape and intensity of the resonances in its XANES. In addition, inverse partial fluorescence yield (IPFY) reveals the surface vs. bulk property of the specimens. Therefore, the spectral data provided here can be used as standards in the future for phase composition analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee03445j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu122 citations 122 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c2ee03445j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Royal Society of Chemistry (RSC) Funded by:NSERCNSERCXueliang Sun; Ruying Li; Yue Chen; Payam Kaghazchi; Ning Zhao; Xiangxin Guo; Hanyu Huo; Hanyu Huo; Robert Mücke; João Gustavo Pereira da Silva; Jing Luo;doi: 10.1039/c9ee01903k
A mixed conductive garnet/Li interface consisting of electronic conductive nanoparticles embedded in an ionic conductive network is constructed for dendrite-free solid garnet batteries.
Juelich Shared Elect... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ee01903k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 295 citations 295 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ee01903k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Xueliang Sun; Chongmin Wang; Pengfei Yan; Pengfei Yan; Ji-Guang Zhang; Biqiong Wang; Xiaopeng Cheng; Jian Liu; Jianming Zheng; Yuefei Zhang;A critical challenge for the commercialization of layer-structured nickel-rich lithium transition metal oxide cathodes for battery applications is their capacity and voltage fading, which originate from the disintegration and lattice phase transition of the cathode particles. The general approach of cathode particle surface modification could partially alleviate the degradation associated with surface processes, but it still fails to resolve this critical barrier. Here, we report that infusing the grain boundaries of cathode secondary particles with a solid electrolyte dramatically enhances the capacity retention and voltage stability of the cathode. We find that the solid electrolyte infused in the boundaries not only acts as a fast channel for lithium-ion transport, it also, more importantly, prevents penetration of the liquid electrolyte into the boundaries, and consequently eliminates the detrimental factors, which include cathode–liquid electrolyte interfacial reactions, intergranular cracking and layered-to-spinel phase transformation. This grain-boundary engineering approach provides design ideas for advanced cathodes for batteries. The development of Ni-rich layered lithium transition metal oxides is plagued by their voltage and capacity fading on battery cycling. Here, the authors demonstrate an effective approach to treat these problems by infusing a solid electrolyte into the grain boundaries of the secondary particles of these layered materials.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-018-0191-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu701 citations 701 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-018-0191-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Royal Society of Chemistry (RSC) Authors: Xueliang Sun; Jiajun Wang;doi: 10.1039/c4ee04016c
This review highlights the remaining challenges for LiFePO4in lithium-ion batteries and future olivine cathodes in Na-ion batteries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4ee04016c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu434 citations 434 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c4ee04016c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Wiley Funded by:NSERCNSERCJunjie Li; Lei Zhang; Kieran Doyle‐Davis; Ruying Li; Xueliang Sun;doi: 10.1002/cey2.74
AbstractOwing to the rapidly increasing consumption of fossil fuels, finding clean and reliable new energy sources is of the utmost importance. Thus, developing highly efficient and low‐cost catalysts for electrochemical reactions in energy conversion devices is crucial. Single‐atom catalysts (SACs) with maximum metal atom utilization efficiency and superior catalytic performance have attracted significant attention, especially for electrochemical reactions. However, because of the highly unsaturated coordination environment, the stability of SACs can be a challenge for practical applications. In this review, we will summarize the strategies to increase the stability of SACs and synthesizing stable SACs, as well as the application of SACs in electrochemical reactions. Finally, we offer a perspective on the development of advanced SACs through rational design and a deeper understanding of SACs with the help of in situ or operando techniques in electrochemical reactions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.74&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 49 citations 49 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.74&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Royal Society of Chemistry (RSC) Funded by:NSERCNSERCChanghong Wang; Shuo Wang; Xudong Liu; Yanlong Wu; Ruizhi Yu; Hui Duan; Jung Tae Kim; Huan Huang; Jiantao Wang; Yifei Mo; Xueliang Sun;doi: 10.1039/d3ee01119d
Achieving a balance between lithium ion and vacant site contents plays a crucial role in obtaining optimal ionic conductivity in halide electrolytes, especially with a hexagonal close packing (hcp) anion framework.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2023 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee01119d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2023 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee01119d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Royal Society of Chemistry (RSC) Fangyuan Cheng; Jun Hu; Wen Zhang; Baiyu Guo; Peng Yu; Xueliang Sun; Jian Peng;doi: 10.1039/d5ee00725a
The solvation binding between the ether–Na+ is weaker than that of the ester and Na+, promoting a faster desolvation of Na+. This advantage positions ether a competitive candidate for enhancing the kinetic performance of SIBs.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d5ee00725a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d5ee00725a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Frontiers Media SA Funded by:NSERCNSERCAuthors: Xia Li; Xueliang Sun;Li-S batteries have been considered as next generation Li batteries due to their high theoretical energy density. Over the past few years, researchers have made significant efforts in breaking through critical bottlenecks which impede the commercialization of Li-S batteries. Beginning with a basic introduction to Li-S systems and their associated mechanism, this review will highlight the application of one specific carbon family, nitrogen-doped carbon materials in sulfur based cathodes. These materials will include nitrogen doped porous carbon, carbon nanotubes, nanofibers and graphene. The article will conclude with a summary of recent research efforts in this field as well as the future prospects for the use of nitrogen-doped carbon materials in Li-S batteries.
Frontiers in Energy ... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2014.00049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Energy ... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2014.00049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu