- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Changyong Jin; Yuedong Sun; Huaibin Wang; Yuejiu Zheng; Shuyu Wang; Xinyu Rui; Chengshan Xu; Xuning Feng; Hewu Wang; Minggao Ouyang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118760&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu86 citations 86 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118760&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Changyong Jin; Yuedong Sun; Huaibin Wang; Yuejiu Zheng; Shuyu Wang; Xinyu Rui; Chengshan Xu; Xuning Feng; Hewu Wang; Minggao Ouyang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118760&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu86 citations 86 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118760&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Cong Hou; Minggao Ouyang; Liangfei Xu; Hewu Wang;Abstract This paper proposes an optimal energy management strategy based on the approximate Pontryagin’s Minimum Principle (A-PMP) algorithm for parallel plug-in hybrid electric vehicles (HEVs). When the driving cycles are known in advance, the Pontryagin’s Minimum Principle (PMP) can help to achieve the best fuel economy, but real-time control has been unavailable due to the massive computational load required by instantaneous Hamiltonian optimization. After observing some regular patterns in numeric PMP results, we were inspired to apply a novel piecewise linear approximation strategy by specifying the turning point of the engine fuel rate for the Hamiltonian optimization. As a result, the instantaneous Hamiltonian optimization becomes convex. Considering the engine state, there are only five candidate solutions for the optimization. For the engine off state, only one of the available torque split ratios (TSR) is one of these five candidates. The other four TSR candidates are for the engine on state, including the TSR when the engine operates at the best efficiency point for the current speed, the TSR when the engine delivers all the required torque and two terminal TSRs. The optimal TSR is the one with the smallest Hamiltonian of the current engine state. The engine state with the smallest Hamiltonian will be requested for the next time step. The results show that the A-PMP strategy reduced fuel consumption by 6.96% compared with the conventional “All-Electric, Charge-Sustaining” (AE–CS) strategy. In addition, the A-PMP shortened the simulation time from 6 h to only 4 min, when compared with the numeric PMP method. Unlike other approximation methods, the proposed novel piecewise linear approximation caused no severe distortion to the engine map model. The engine state switching frequency is also reduced by 43.40% via both the filter and the corresponding engine on/off optimal control strategy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.11.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu261 citations 261 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.11.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Cong Hou; Minggao Ouyang; Liangfei Xu; Hewu Wang;Abstract This paper proposes an optimal energy management strategy based on the approximate Pontryagin’s Minimum Principle (A-PMP) algorithm for parallel plug-in hybrid electric vehicles (HEVs). When the driving cycles are known in advance, the Pontryagin’s Minimum Principle (PMP) can help to achieve the best fuel economy, but real-time control has been unavailable due to the massive computational load required by instantaneous Hamiltonian optimization. After observing some regular patterns in numeric PMP results, we were inspired to apply a novel piecewise linear approximation strategy by specifying the turning point of the engine fuel rate for the Hamiltonian optimization. As a result, the instantaneous Hamiltonian optimization becomes convex. Considering the engine state, there are only five candidate solutions for the optimization. For the engine off state, only one of the available torque split ratios (TSR) is one of these five candidates. The other four TSR candidates are for the engine on state, including the TSR when the engine operates at the best efficiency point for the current speed, the TSR when the engine delivers all the required torque and two terminal TSRs. The optimal TSR is the one with the smallest Hamiltonian of the current engine state. The engine state with the smallest Hamiltonian will be requested for the next time step. The results show that the A-PMP strategy reduced fuel consumption by 6.96% compared with the conventional “All-Electric, Charge-Sustaining” (AE–CS) strategy. In addition, the A-PMP shortened the simulation time from 6 h to only 4 min, when compared with the numeric PMP method. Unlike other approximation methods, the proposed novel piecewise linear approximation caused no severe distortion to the engine map model. The engine state switching frequency is also reduced by 43.40% via both the filter and the corresponding engine on/off optimal control strategy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.11.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu261 citations 261 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.11.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Xiaobin Zhang; Huei Peng; Hewu Wang; Minggao Ouyang;Electric buses face problems of short driving range, slow charging, and high cost. To improve the performance of electric buses, a novel hybrid battery system (HBS) configuration consisting of lithium iron phosphate (LFP) batteries and Li-ion batteries with a Li4Ti5O12 (LTO) material anode is proposed. The configuration and control of the HBS are first studied, and a LFP battery degradation model is built. Simulation result indicates that the HBS can help us to mitigate LFP battery degradation. Then, the HBS is optimally sized for electric buses to achieve minimum cost. The daily bus operation and charging patterns as well as LFP battery degradation are considered. The optimal HBS has 10.7% and 19.3% lower total cost than the single LTO-battery and LFP-battery configurations, and has higher range flexibility than the single LTO-battery configuration.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Vehicular TechnologyArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tvt.2017.2749882&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Vehicular TechnologyArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tvt.2017.2749882&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Xiaobin Zhang; Huei Peng; Hewu Wang; Minggao Ouyang;Electric buses face problems of short driving range, slow charging, and high cost. To improve the performance of electric buses, a novel hybrid battery system (HBS) configuration consisting of lithium iron phosphate (LFP) batteries and Li-ion batteries with a Li4Ti5O12 (LTO) material anode is proposed. The configuration and control of the HBS are first studied, and a LFP battery degradation model is built. Simulation result indicates that the HBS can help us to mitigate LFP battery degradation. Then, the HBS is optimally sized for electric buses to achieve minimum cost. The daily bus operation and charging patterns as well as LFP battery degradation are considered. The optimal HBS has 10.7% and 19.3% lower total cost than the single LTO-battery and LFP-battery configurations, and has higher range flexibility than the single LTO-battery configuration.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Vehicular TechnologyArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tvt.2017.2749882&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Vehicular TechnologyArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tvt.2017.2749882&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Zhihang Bei; Juan Wang; Yalun Li; Hewu Wang; Minghai Li; Feng Qian; Wenqiang Xu;doi: 10.3390/en17133311
Growing environmental concerns have prompted the shipping industry to adopt stringent measures to address greenhouse gas emissions, with fuel-powered ships being the primary source of such emissions. Additionally, alternative forms of ship propulsion, such as internal combustion engine hybridization, low-carbon fuels, and zero-carbon fuels, face significant challenges either in terms of cost or emission-reduction capability at present. In order to decarbonize navigation, countries are focusing the maritime industry’s transition towards low-carbon alternatives on transforming energy consumption, with widespread attention on the electrification of ships. Therefore, this paper provides a comprehensive review of the feasibility of fully electrifying ships, covering aspects such as technological prospects, economic viability, and emission-reduction capabilities. Firstly, the current state of research on ship electrification technology is summarized; the applicability of different battery types to electric ship technology is compared. Subsequently, the economic viability and emission-reduction capabilities of five different electric ship lifecycles are discussed separately. The results indicate that ship electrification is a key pathway to achieving zero-emission shipping, with lithium-ion batteries being the most suitable battery technology for maritime use currently. Short-to-medium-range electric ship types have demonstrated economic advantages over traditional diesel ships. As battery costs continue to decline and energy density keeps improving, the economic feasibility of ship electrification is expected to expand.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17133311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17133311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Zhihang Bei; Juan Wang; Yalun Li; Hewu Wang; Minghai Li; Feng Qian; Wenqiang Xu;doi: 10.3390/en17133311
Growing environmental concerns have prompted the shipping industry to adopt stringent measures to address greenhouse gas emissions, with fuel-powered ships being the primary source of such emissions. Additionally, alternative forms of ship propulsion, such as internal combustion engine hybridization, low-carbon fuels, and zero-carbon fuels, face significant challenges either in terms of cost or emission-reduction capability at present. In order to decarbonize navigation, countries are focusing the maritime industry’s transition towards low-carbon alternatives on transforming energy consumption, with widespread attention on the electrification of ships. Therefore, this paper provides a comprehensive review of the feasibility of fully electrifying ships, covering aspects such as technological prospects, economic viability, and emission-reduction capabilities. Firstly, the current state of research on ship electrification technology is summarized; the applicability of different battery types to electric ship technology is compared. Subsequently, the economic viability and emission-reduction capabilities of five different electric ship lifecycles are discussed separately. The results indicate that ship electrification is a key pathway to achieving zero-emission shipping, with lithium-ion batteries being the most suitable battery technology for maritime use currently. Short-to-medium-range electric ship types have demonstrated economic advantages over traditional diesel ships. As battery costs continue to decline and energy density keeps improving, the economic feasibility of ship electrification is expected to expand.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17133311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17133311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Yaping Wei; Xuning Feng; Yang Huiqian; Hewu Wang; Xinyu Rui; Wan Mingchun; Zhang Youqun; Minggao Ouyang;Abstract Electric vehicles (EVs) occasionally experience accidents caused by the thermal runaway propagation (TRP) of Li-ion batteries. Countermeasures for TRP through battery thermal management systems have typically been conducted by enhancing heat dissipation or thermal insulation individually, without considering their coupled effects. In this study, the synergy of heat dissipation underneath the battery module with thermal insulation between adjacent cells was investigated through experiments and simulations for TRP elimination. Simulations of the heat flux were conducted based on a 3D model, and the results agreed well with the failure behavior in the experiments. The results indicate that pure liquid cooling fails to mitigate the TRP of a prismatic battery module because the heat flux between a thermal runaway cell and its neighbor is difficult to attenuate by cooling plate placed underneath, which only reduces it from 885.7 to 848.2 W. Furthermore, the insulation provides more time for the heat to be drained through the cooling plate; therefore, successful TRP inhibition requires the cooperation of thermal insulation and liquid cooling. Six critical conditions under which no TRP occurs and a theoretical diagram regarding the nexus of heat dissipation and thermal insulation were obtained from the modeling analysis. Finally, a universal criterion was proposed to optimize the design of thermal insulation and heat dissipation in a battery module, providing insight into the thermal safety design of EVs.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2021.117521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu72 citations 72 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2021.117521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Yaping Wei; Xuning Feng; Yang Huiqian; Hewu Wang; Xinyu Rui; Wan Mingchun; Zhang Youqun; Minggao Ouyang;Abstract Electric vehicles (EVs) occasionally experience accidents caused by the thermal runaway propagation (TRP) of Li-ion batteries. Countermeasures for TRP through battery thermal management systems have typically been conducted by enhancing heat dissipation or thermal insulation individually, without considering their coupled effects. In this study, the synergy of heat dissipation underneath the battery module with thermal insulation between adjacent cells was investigated through experiments and simulations for TRP elimination. Simulations of the heat flux were conducted based on a 3D model, and the results agreed well with the failure behavior in the experiments. The results indicate that pure liquid cooling fails to mitigate the TRP of a prismatic battery module because the heat flux between a thermal runaway cell and its neighbor is difficult to attenuate by cooling plate placed underneath, which only reduces it from 885.7 to 848.2 W. Furthermore, the insulation provides more time for the heat to be drained through the cooling plate; therefore, successful TRP inhibition requires the cooperation of thermal insulation and liquid cooling. Six critical conditions under which no TRP occurs and a theoretical diagram regarding the nexus of heat dissipation and thermal insulation were obtained from the modeling analysis. Finally, a universal criterion was proposed to optimize the design of thermal insulation and heat dissipation in a battery module, providing insight into the thermal safety design of EVs.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2021.117521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu72 citations 72 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2021.117521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Elsevier BV Authors: Hewu Wang; Minggao Ouyang;The problems of the transportation energy and environment are the major challenges faced globally in the 21st century and are especially serious for China. The future 20 years is the strategic opportunity period of the transition of the transportation energy and powertrain system for China. The greatest characteristics of hydrogen economy lie in its diversity of the primary energy source, the unification of energy carrier and the greening of energy transformation. Development of hydrogen energy transportation powertrain system is suitable for China from the views of the situation of Chinese resources and energy sources, the urban and rural layouts, the superiority of later development and the successful practices of clean cars and electric vehicle development projects. The transition of the transportation energy powertrain system includes three parts: the transition of the energy structure, the transition of the powertrain system and the transition of the fuel infrastructure. The technical pathways of energy powertrain system transition includes expending the use of gaseous fuel to prompt the multiform of the transportation energy and to prepare for the transition of the infrastructure simultaneously, developing and promoting the hybrid technology to solve the current energy and environment problems and to prepare for the transition of powertrain system, and focusing on the research and development and demonstration of fuel cell vehicles and the hydrogen energy technology to prompt the earlier formation of the market of fuel cell vehicles. The goal in the near and medium term of transition is to reduce the fuel consumption by 100 million ton in 2020 by substituting and saving, and the long-term goal is to setup the infrastructure of hydrogen and fuel cell vehicle as the main one replacing the petroleum internal combustion engine vehicle. In order to realize the strategic goals of the transition, the four-phases strategic periods and research and development activities are discussed and proposed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2006.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2006.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Elsevier BV Authors: Hewu Wang; Minggao Ouyang;The problems of the transportation energy and environment are the major challenges faced globally in the 21st century and are especially serious for China. The future 20 years is the strategic opportunity period of the transition of the transportation energy and powertrain system for China. The greatest characteristics of hydrogen economy lie in its diversity of the primary energy source, the unification of energy carrier and the greening of energy transformation. Development of hydrogen energy transportation powertrain system is suitable for China from the views of the situation of Chinese resources and energy sources, the urban and rural layouts, the superiority of later development and the successful practices of clean cars and electric vehicle development projects. The transition of the transportation energy powertrain system includes three parts: the transition of the energy structure, the transition of the powertrain system and the transition of the fuel infrastructure. The technical pathways of energy powertrain system transition includes expending the use of gaseous fuel to prompt the multiform of the transportation energy and to prepare for the transition of the infrastructure simultaneously, developing and promoting the hybrid technology to solve the current energy and environment problems and to prepare for the transition of powertrain system, and focusing on the research and development and demonstration of fuel cell vehicles and the hydrogen energy technology to prompt the earlier formation of the market of fuel cell vehicles. The goal in the near and medium term of transition is to reduce the fuel consumption by 100 million ton in 2020 by substituting and saving, and the long-term goal is to setup the infrastructure of hydrogen and fuel cell vehicle as the main one replacing the petroleum internal combustion engine vehicle. In order to realize the strategic goals of the transition, the four-phases strategic periods and research and development activities are discussed and proposed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2006.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2006.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Yuebo Yuan; Hewu Wang; Xuebing Han; Yue Pan; Yukun Sun; Xiangdong Kong; Languang Lu; Minggao Ouyang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.122968&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.122968&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Yuebo Yuan; Hewu Wang; Xuebing Han; Yue Pan; Yukun Sun; Xiangdong Kong; Languang Lu; Minggao Ouyang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.122968&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.122968&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Yue Zhou; Ruoxi Wen; Hewu Wang; Hua Cai;Abstract The choice of battery range (all-electric driving range) for battery electric vehicles (BEVs) is an important issue for both BEV adopters and BEV makers. This paper proposes a model to identify the minimum BEV battery range that can satisfy given travel demands, considering the opportunities to charge at existing public charging stations and the uncertainties in charging decision making. We conducted a stated preference survey to study the charging decision making and analyzed the data using the Latent Class model to generate the model coefficients for charging decisions making. The proposed approach can better identify the needed battery range than the often-used simplified charging rules. We applied the model to a case study of Beijing to evaluate the needed battery range for taxis and private vehicles. For taxis, BEVs with 220-mile battery range are able to satisfy the travel demands for about 90% of the drivers. For private vehicles, a 300-mile range is needed to cover the travel demands of 90% of the drivers, while a 100-mile range battery is able to satisfy the need for 80% of the private drivers. Simplified charging rules tend to underestimate the range needs for taxis but overestimate the range needs for private vehicles.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.116945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu50 citations 50 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.116945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Yue Zhou; Ruoxi Wen; Hewu Wang; Hua Cai;Abstract The choice of battery range (all-electric driving range) for battery electric vehicles (BEVs) is an important issue for both BEV adopters and BEV makers. This paper proposes a model to identify the minimum BEV battery range that can satisfy given travel demands, considering the opportunities to charge at existing public charging stations and the uncertainties in charging decision making. We conducted a stated preference survey to study the charging decision making and analyzed the data using the Latent Class model to generate the model coefficients for charging decisions making. The proposed approach can better identify the needed battery range than the often-used simplified charging rules. We applied the model to a case study of Beijing to evaluate the needed battery range for taxis and private vehicles. For taxis, BEVs with 220-mile battery range are able to satisfy the travel demands for about 90% of the drivers. For private vehicles, a 300-mile range is needed to cover the travel demands of 90% of the drivers, while a 100-mile range battery is able to satisfy the need for 80% of the private drivers. Simplified charging rules tend to underestimate the range needs for taxis but overestimate the range needs for private vehicles.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.116945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu50 citations 50 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.116945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Han Hao; Hewu Wang; Minggao Ouyang;Abstract We established a bottom-up model to deliver the future trends of fuel consumption and life cycle greenhouse gas (GHG) emissions by China's on-road trucks. The mitigation measures of mileage utilization rate (MUR) improvement, fuel consumption rate (FCR) improvement, and penetration of liquefied natural gas (LNG) fueled trucks were evaluated. With no mitigation measures implemented, in the year 2050, the total fuel consumption and life cycle GHG emissions by China's on-road trucks were projected to reach 498 million toe and 2125 million tons, respectively, approximately 5.2 times the level in 2010. If the MUR of trucks in China is increased from the current status as those of the developed countries, a 13% reduction of total fuel consumption can be achieved after 2020. If the FCR of trucks is reduced by 10% in 2011, 2016, 2021, and 2026, a 30% reduction of total fuel consumption can be achieved after 2030. Moreover, if the share of LNG fueled trucks in all newly registered semi-trailer towing trucks and heavy-duty trucks is increased to 20% in 2030, an estimate of 7.9% and 10.9% of the total diesel consumption by trucks will be replaced by LNG in 2030 and 2050, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.12.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.12.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Han Hao; Hewu Wang; Minggao Ouyang;Abstract We established a bottom-up model to deliver the future trends of fuel consumption and life cycle greenhouse gas (GHG) emissions by China's on-road trucks. The mitigation measures of mileage utilization rate (MUR) improvement, fuel consumption rate (FCR) improvement, and penetration of liquefied natural gas (LNG) fueled trucks were evaluated. With no mitigation measures implemented, in the year 2050, the total fuel consumption and life cycle GHG emissions by China's on-road trucks were projected to reach 498 million toe and 2125 million tons, respectively, approximately 5.2 times the level in 2010. If the MUR of trucks in China is increased from the current status as those of the developed countries, a 13% reduction of total fuel consumption can be achieved after 2020. If the FCR of trucks is reduced by 10% in 2011, 2016, 2021, and 2026, a 30% reduction of total fuel consumption can be achieved after 2030. Moreover, if the share of LNG fueled trucks in all newly registered semi-trailer towing trucks and heavy-duty trucks is increased to 20% in 2030, an estimate of 7.9% and 10.9% of the total diesel consumption by trucks will be replaced by LNG in 2030 and 2050, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.12.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.12.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Springer Science and Business Media LLC Michael Wang; Hewu Wang; Yan Zhou; Han Hao; Han Hao; Minggao Ouyang;Electric vehicles offer the potential to reduce oil consumption, air pollutants, and greenhouse gas (GHG) emissions. To take advantage of electric vehicles and improve its urban environment, Beijing, as one of China’s most polluted cities, launched an electric vehicle promotion program that provided a generous subsidy for consumers who purchased battery electric vehicles (BEVs). In this study, we compare the levelized costs of a conventional vehicle (CV) versus a BEV using real data from the Beijing BEV subsidy program. Levelized cost for this study considers consumer driving patterns and vehicle age. For consumers with average driving profiles—i.e., an average driving distance of around 20 km per trip—the levelized cost of CVs decreases from 1.40 yuan/km for an 8-year vehicle lifetime to 1.04 yuan/km for a 15-year lifetime, while the levelized cost for BEVs decreases from 1.44 yuan/km for an 8-year vehicle lifetime to 1.01 yuan/km for a 15-year lifetime. BEVs are more cost competitive than CVs for consumers with medium and high driving profiles and a 12-year and 15-year lifetime. Under current conditions, the subsidy and tax incentives are necessary to make BEVs cost competitive. However, we project that, even if the subsidy is phased out in 2020, BEVs may become cost competitive with CVs because of the decrease in battery cost. Our study results suggest that the BEV subsidy should reflect changes in battery cost and gasoline prices to help continuing deployment of BEVs.
Research Papers in E... arrow_drop_down Mitigation and Adaptation Strategies for Global ChangeArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11027-013-9536-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research Papers in E... arrow_drop_down Mitigation and Adaptation Strategies for Global ChangeArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11027-013-9536-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Springer Science and Business Media LLC Michael Wang; Hewu Wang; Yan Zhou; Han Hao; Han Hao; Minggao Ouyang;Electric vehicles offer the potential to reduce oil consumption, air pollutants, and greenhouse gas (GHG) emissions. To take advantage of electric vehicles and improve its urban environment, Beijing, as one of China’s most polluted cities, launched an electric vehicle promotion program that provided a generous subsidy for consumers who purchased battery electric vehicles (BEVs). In this study, we compare the levelized costs of a conventional vehicle (CV) versus a BEV using real data from the Beijing BEV subsidy program. Levelized cost for this study considers consumer driving patterns and vehicle age. For consumers with average driving profiles—i.e., an average driving distance of around 20 km per trip—the levelized cost of CVs decreases from 1.40 yuan/km for an 8-year vehicle lifetime to 1.04 yuan/km for a 15-year lifetime, while the levelized cost for BEVs decreases from 1.44 yuan/km for an 8-year vehicle lifetime to 1.01 yuan/km for a 15-year lifetime. BEVs are more cost competitive than CVs for consumers with medium and high driving profiles and a 12-year and 15-year lifetime. Under current conditions, the subsidy and tax incentives are necessary to make BEVs cost competitive. However, we project that, even if the subsidy is phased out in 2020, BEVs may become cost competitive with CVs because of the decrease in battery cost. Our study results suggest that the BEV subsidy should reflect changes in battery cost and gasoline prices to help continuing deployment of BEVs.
Research Papers in E... arrow_drop_down Mitigation and Adaptation Strategies for Global ChangeArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11027-013-9536-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research Papers in E... arrow_drop_down Mitigation and Adaptation Strategies for Global ChangeArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11027-013-9536-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Changyong Jin; Yuedong Sun; Huaibin Wang; Yuejiu Zheng; Shuyu Wang; Xinyu Rui; Chengshan Xu; Xuning Feng; Hewu Wang; Minggao Ouyang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118760&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu86 citations 86 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118760&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Changyong Jin; Yuedong Sun; Huaibin Wang; Yuejiu Zheng; Shuyu Wang; Xinyu Rui; Chengshan Xu; Xuning Feng; Hewu Wang; Minggao Ouyang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118760&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu86 citations 86 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118760&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Cong Hou; Minggao Ouyang; Liangfei Xu; Hewu Wang;Abstract This paper proposes an optimal energy management strategy based on the approximate Pontryagin’s Minimum Principle (A-PMP) algorithm for parallel plug-in hybrid electric vehicles (HEVs). When the driving cycles are known in advance, the Pontryagin’s Minimum Principle (PMP) can help to achieve the best fuel economy, but real-time control has been unavailable due to the massive computational load required by instantaneous Hamiltonian optimization. After observing some regular patterns in numeric PMP results, we were inspired to apply a novel piecewise linear approximation strategy by specifying the turning point of the engine fuel rate for the Hamiltonian optimization. As a result, the instantaneous Hamiltonian optimization becomes convex. Considering the engine state, there are only five candidate solutions for the optimization. For the engine off state, only one of the available torque split ratios (TSR) is one of these five candidates. The other four TSR candidates are for the engine on state, including the TSR when the engine operates at the best efficiency point for the current speed, the TSR when the engine delivers all the required torque and two terminal TSRs. The optimal TSR is the one with the smallest Hamiltonian of the current engine state. The engine state with the smallest Hamiltonian will be requested for the next time step. The results show that the A-PMP strategy reduced fuel consumption by 6.96% compared with the conventional “All-Electric, Charge-Sustaining” (AE–CS) strategy. In addition, the A-PMP shortened the simulation time from 6 h to only 4 min, when compared with the numeric PMP method. Unlike other approximation methods, the proposed novel piecewise linear approximation caused no severe distortion to the engine map model. The engine state switching frequency is also reduced by 43.40% via both the filter and the corresponding engine on/off optimal control strategy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.11.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu261 citations 261 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.11.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Cong Hou; Minggao Ouyang; Liangfei Xu; Hewu Wang;Abstract This paper proposes an optimal energy management strategy based on the approximate Pontryagin’s Minimum Principle (A-PMP) algorithm for parallel plug-in hybrid electric vehicles (HEVs). When the driving cycles are known in advance, the Pontryagin’s Minimum Principle (PMP) can help to achieve the best fuel economy, but real-time control has been unavailable due to the massive computational load required by instantaneous Hamiltonian optimization. After observing some regular patterns in numeric PMP results, we were inspired to apply a novel piecewise linear approximation strategy by specifying the turning point of the engine fuel rate for the Hamiltonian optimization. As a result, the instantaneous Hamiltonian optimization becomes convex. Considering the engine state, there are only five candidate solutions for the optimization. For the engine off state, only one of the available torque split ratios (TSR) is one of these five candidates. The other four TSR candidates are for the engine on state, including the TSR when the engine operates at the best efficiency point for the current speed, the TSR when the engine delivers all the required torque and two terminal TSRs. The optimal TSR is the one with the smallest Hamiltonian of the current engine state. The engine state with the smallest Hamiltonian will be requested for the next time step. The results show that the A-PMP strategy reduced fuel consumption by 6.96% compared with the conventional “All-Electric, Charge-Sustaining” (AE–CS) strategy. In addition, the A-PMP shortened the simulation time from 6 h to only 4 min, when compared with the numeric PMP method. Unlike other approximation methods, the proposed novel piecewise linear approximation caused no severe distortion to the engine map model. The engine state switching frequency is also reduced by 43.40% via both the filter and the corresponding engine on/off optimal control strategy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.11.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu261 citations 261 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.11.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Xiaobin Zhang; Huei Peng; Hewu Wang; Minggao Ouyang;Electric buses face problems of short driving range, slow charging, and high cost. To improve the performance of electric buses, a novel hybrid battery system (HBS) configuration consisting of lithium iron phosphate (LFP) batteries and Li-ion batteries with a Li4Ti5O12 (LTO) material anode is proposed. The configuration and control of the HBS are first studied, and a LFP battery degradation model is built. Simulation result indicates that the HBS can help us to mitigate LFP battery degradation. Then, the HBS is optimally sized for electric buses to achieve minimum cost. The daily bus operation and charging patterns as well as LFP battery degradation are considered. The optimal HBS has 10.7% and 19.3% lower total cost than the single LTO-battery and LFP-battery configurations, and has higher range flexibility than the single LTO-battery configuration.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Vehicular TechnologyArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tvt.2017.2749882&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Vehicular TechnologyArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tvt.2017.2749882&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Xiaobin Zhang; Huei Peng; Hewu Wang; Minggao Ouyang;Electric buses face problems of short driving range, slow charging, and high cost. To improve the performance of electric buses, a novel hybrid battery system (HBS) configuration consisting of lithium iron phosphate (LFP) batteries and Li-ion batteries with a Li4Ti5O12 (LTO) material anode is proposed. The configuration and control of the HBS are first studied, and a LFP battery degradation model is built. Simulation result indicates that the HBS can help us to mitigate LFP battery degradation. Then, the HBS is optimally sized for electric buses to achieve minimum cost. The daily bus operation and charging patterns as well as LFP battery degradation are considered. The optimal HBS has 10.7% and 19.3% lower total cost than the single LTO-battery and LFP-battery configurations, and has higher range flexibility than the single LTO-battery configuration.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Vehicular TechnologyArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tvt.2017.2749882&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Vehicular TechnologyArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tvt.2017.2749882&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Zhihang Bei; Juan Wang; Yalun Li; Hewu Wang; Minghai Li; Feng Qian; Wenqiang Xu;doi: 10.3390/en17133311
Growing environmental concerns have prompted the shipping industry to adopt stringent measures to address greenhouse gas emissions, with fuel-powered ships being the primary source of such emissions. Additionally, alternative forms of ship propulsion, such as internal combustion engine hybridization, low-carbon fuels, and zero-carbon fuels, face significant challenges either in terms of cost or emission-reduction capability at present. In order to decarbonize navigation, countries are focusing the maritime industry’s transition towards low-carbon alternatives on transforming energy consumption, with widespread attention on the electrification of ships. Therefore, this paper provides a comprehensive review of the feasibility of fully electrifying ships, covering aspects such as technological prospects, economic viability, and emission-reduction capabilities. Firstly, the current state of research on ship electrification technology is summarized; the applicability of different battery types to electric ship technology is compared. Subsequently, the economic viability and emission-reduction capabilities of five different electric ship lifecycles are discussed separately. The results indicate that ship electrification is a key pathway to achieving zero-emission shipping, with lithium-ion batteries being the most suitable battery technology for maritime use currently. Short-to-medium-range electric ship types have demonstrated economic advantages over traditional diesel ships. As battery costs continue to decline and energy density keeps improving, the economic feasibility of ship electrification is expected to expand.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17133311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17133311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Zhihang Bei; Juan Wang; Yalun Li; Hewu Wang; Minghai Li; Feng Qian; Wenqiang Xu;doi: 10.3390/en17133311
Growing environmental concerns have prompted the shipping industry to adopt stringent measures to address greenhouse gas emissions, with fuel-powered ships being the primary source of such emissions. Additionally, alternative forms of ship propulsion, such as internal combustion engine hybridization, low-carbon fuels, and zero-carbon fuels, face significant challenges either in terms of cost or emission-reduction capability at present. In order to decarbonize navigation, countries are focusing the maritime industry’s transition towards low-carbon alternatives on transforming energy consumption, with widespread attention on the electrification of ships. Therefore, this paper provides a comprehensive review of the feasibility of fully electrifying ships, covering aspects such as technological prospects, economic viability, and emission-reduction capabilities. Firstly, the current state of research on ship electrification technology is summarized; the applicability of different battery types to electric ship technology is compared. Subsequently, the economic viability and emission-reduction capabilities of five different electric ship lifecycles are discussed separately. The results indicate that ship electrification is a key pathway to achieving zero-emission shipping, with lithium-ion batteries being the most suitable battery technology for maritime use currently. Short-to-medium-range electric ship types have demonstrated economic advantages over traditional diesel ships. As battery costs continue to decline and energy density keeps improving, the economic feasibility of ship electrification is expected to expand.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17133311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17133311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Yaping Wei; Xuning Feng; Yang Huiqian; Hewu Wang; Xinyu Rui; Wan Mingchun; Zhang Youqun; Minggao Ouyang;Abstract Electric vehicles (EVs) occasionally experience accidents caused by the thermal runaway propagation (TRP) of Li-ion batteries. Countermeasures for TRP through battery thermal management systems have typically been conducted by enhancing heat dissipation or thermal insulation individually, without considering their coupled effects. In this study, the synergy of heat dissipation underneath the battery module with thermal insulation between adjacent cells was investigated through experiments and simulations for TRP elimination. Simulations of the heat flux were conducted based on a 3D model, and the results agreed well with the failure behavior in the experiments. The results indicate that pure liquid cooling fails to mitigate the TRP of a prismatic battery module because the heat flux between a thermal runaway cell and its neighbor is difficult to attenuate by cooling plate placed underneath, which only reduces it from 885.7 to 848.2 W. Furthermore, the insulation provides more time for the heat to be drained through the cooling plate; therefore, successful TRP inhibition requires the cooperation of thermal insulation and liquid cooling. Six critical conditions under which no TRP occurs and a theoretical diagram regarding the nexus of heat dissipation and thermal insulation were obtained from the modeling analysis. Finally, a universal criterion was proposed to optimize the design of thermal insulation and heat dissipation in a battery module, providing insight into the thermal safety design of EVs.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2021.117521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu72 citations 72 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2021.117521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Yaping Wei; Xuning Feng; Yang Huiqian; Hewu Wang; Xinyu Rui; Wan Mingchun; Zhang Youqun; Minggao Ouyang;Abstract Electric vehicles (EVs) occasionally experience accidents caused by the thermal runaway propagation (TRP) of Li-ion batteries. Countermeasures for TRP through battery thermal management systems have typically been conducted by enhancing heat dissipation or thermal insulation individually, without considering their coupled effects. In this study, the synergy of heat dissipation underneath the battery module with thermal insulation between adjacent cells was investigated through experiments and simulations for TRP elimination. Simulations of the heat flux were conducted based on a 3D model, and the results agreed well with the failure behavior in the experiments. The results indicate that pure liquid cooling fails to mitigate the TRP of a prismatic battery module because the heat flux between a thermal runaway cell and its neighbor is difficult to attenuate by cooling plate placed underneath, which only reduces it from 885.7 to 848.2 W. Furthermore, the insulation provides more time for the heat to be drained through the cooling plate; therefore, successful TRP inhibition requires the cooperation of thermal insulation and liquid cooling. Six critical conditions under which no TRP occurs and a theoretical diagram regarding the nexus of heat dissipation and thermal insulation were obtained from the modeling analysis. Finally, a universal criterion was proposed to optimize the design of thermal insulation and heat dissipation in a battery module, providing insight into the thermal safety design of EVs.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2021.117521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu72 citations 72 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2021.117521&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Elsevier BV Authors: Hewu Wang; Minggao Ouyang;The problems of the transportation energy and environment are the major challenges faced globally in the 21st century and are especially serious for China. The future 20 years is the strategic opportunity period of the transition of the transportation energy and powertrain system for China. The greatest characteristics of hydrogen economy lie in its diversity of the primary energy source, the unification of energy carrier and the greening of energy transformation. Development of hydrogen energy transportation powertrain system is suitable for China from the views of the situation of Chinese resources and energy sources, the urban and rural layouts, the superiority of later development and the successful practices of clean cars and electric vehicle development projects. The transition of the transportation energy powertrain system includes three parts: the transition of the energy structure, the transition of the powertrain system and the transition of the fuel infrastructure. The technical pathways of energy powertrain system transition includes expending the use of gaseous fuel to prompt the multiform of the transportation energy and to prepare for the transition of the infrastructure simultaneously, developing and promoting the hybrid technology to solve the current energy and environment problems and to prepare for the transition of powertrain system, and focusing on the research and development and demonstration of fuel cell vehicles and the hydrogen energy technology to prompt the earlier formation of the market of fuel cell vehicles. The goal in the near and medium term of transition is to reduce the fuel consumption by 100 million ton in 2020 by substituting and saving, and the long-term goal is to setup the infrastructure of hydrogen and fuel cell vehicle as the main one replacing the petroleum internal combustion engine vehicle. In order to realize the strategic goals of the transition, the four-phases strategic periods and research and development activities are discussed and proposed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2006.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2006.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Elsevier BV Authors: Hewu Wang; Minggao Ouyang;The problems of the transportation energy and environment are the major challenges faced globally in the 21st century and are especially serious for China. The future 20 years is the strategic opportunity period of the transition of the transportation energy and powertrain system for China. The greatest characteristics of hydrogen economy lie in its diversity of the primary energy source, the unification of energy carrier and the greening of energy transformation. Development of hydrogen energy transportation powertrain system is suitable for China from the views of the situation of Chinese resources and energy sources, the urban and rural layouts, the superiority of later development and the successful practices of clean cars and electric vehicle development projects. The transition of the transportation energy powertrain system includes three parts: the transition of the energy structure, the transition of the powertrain system and the transition of the fuel infrastructure. The technical pathways of energy powertrain system transition includes expending the use of gaseous fuel to prompt the multiform of the transportation energy and to prepare for the transition of the infrastructure simultaneously, developing and promoting the hybrid technology to solve the current energy and environment problems and to prepare for the transition of powertrain system, and focusing on the research and development and demonstration of fuel cell vehicles and the hydrogen energy technology to prompt the earlier formation of the market of fuel cell vehicles. The goal in the near and medium term of transition is to reduce the fuel consumption by 100 million ton in 2020 by substituting and saving, and the long-term goal is to setup the infrastructure of hydrogen and fuel cell vehicle as the main one replacing the petroleum internal combustion engine vehicle. In order to realize the strategic goals of the transition, the four-phases strategic periods and research and development activities are discussed and proposed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2006.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2006.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Yuebo Yuan; Hewu Wang; Xuebing Han; Yue Pan; Yukun Sun; Xiangdong Kong; Languang Lu; Minggao Ouyang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.122968&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.122968&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Yuebo Yuan; Hewu Wang; Xuebing Han; Yue Pan; Yukun Sun; Xiangdong Kong; Languang Lu; Minggao Ouyang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.122968&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.122968&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Yue Zhou; Ruoxi Wen; Hewu Wang; Hua Cai;Abstract The choice of battery range (all-electric driving range) for battery electric vehicles (BEVs) is an important issue for both BEV adopters and BEV makers. This paper proposes a model to identify the minimum BEV battery range that can satisfy given travel demands, considering the opportunities to charge at existing public charging stations and the uncertainties in charging decision making. We conducted a stated preference survey to study the charging decision making and analyzed the data using the Latent Class model to generate the model coefficients for charging decisions making. The proposed approach can better identify the needed battery range than the often-used simplified charging rules. We applied the model to a case study of Beijing to evaluate the needed battery range for taxis and private vehicles. For taxis, BEVs with 220-mile battery range are able to satisfy the travel demands for about 90% of the drivers. For private vehicles, a 300-mile range is needed to cover the travel demands of 90% of the drivers, while a 100-mile range battery is able to satisfy the need for 80% of the private drivers. Simplified charging rules tend to underestimate the range needs for taxis but overestimate the range needs for private vehicles.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.116945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu50 citations 50 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.116945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Yue Zhou; Ruoxi Wen; Hewu Wang; Hua Cai;Abstract The choice of battery range (all-electric driving range) for battery electric vehicles (BEVs) is an important issue for both BEV adopters and BEV makers. This paper proposes a model to identify the minimum BEV battery range that can satisfy given travel demands, considering the opportunities to charge at existing public charging stations and the uncertainties in charging decision making. We conducted a stated preference survey to study the charging decision making and analyzed the data using the Latent Class model to generate the model coefficients for charging decisions making. The proposed approach can better identify the needed battery range than the often-used simplified charging rules. We applied the model to a case study of Beijing to evaluate the needed battery range for taxis and private vehicles. For taxis, BEVs with 220-mile battery range are able to satisfy the travel demands for about 90% of the drivers. For private vehicles, a 300-mile range is needed to cover the travel demands of 90% of the drivers, while a 100-mile range battery is able to satisfy the need for 80% of the private drivers. Simplified charging rules tend to underestimate the range needs for taxis but overestimate the range needs for private vehicles.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.116945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu50 citations 50 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.116945&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Han Hao; Hewu Wang; Minggao Ouyang;Abstract We established a bottom-up model to deliver the future trends of fuel consumption and life cycle greenhouse gas (GHG) emissions by China's on-road trucks. The mitigation measures of mileage utilization rate (MUR) improvement, fuel consumption rate (FCR) improvement, and penetration of liquefied natural gas (LNG) fueled trucks were evaluated. With no mitigation measures implemented, in the year 2050, the total fuel consumption and life cycle GHG emissions by China's on-road trucks were projected to reach 498 million toe and 2125 million tons, respectively, approximately 5.2 times the level in 2010. If the MUR of trucks in China is increased from the current status as those of the developed countries, a 13% reduction of total fuel consumption can be achieved after 2020. If the FCR of trucks is reduced by 10% in 2011, 2016, 2021, and 2026, a 30% reduction of total fuel consumption can be achieved after 2030. Moreover, if the share of LNG fueled trucks in all newly registered semi-trailer towing trucks and heavy-duty trucks is increased to 20% in 2030, an estimate of 7.9% and 10.9% of the total diesel consumption by trucks will be replaced by LNG in 2030 and 2050, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.12.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.12.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Han Hao; Hewu Wang; Minggao Ouyang;Abstract We established a bottom-up model to deliver the future trends of fuel consumption and life cycle greenhouse gas (GHG) emissions by China's on-road trucks. The mitigation measures of mileage utilization rate (MUR) improvement, fuel consumption rate (FCR) improvement, and penetration of liquefied natural gas (LNG) fueled trucks were evaluated. With no mitigation measures implemented, in the year 2050, the total fuel consumption and life cycle GHG emissions by China's on-road trucks were projected to reach 498 million toe and 2125 million tons, respectively, approximately 5.2 times the level in 2010. If the MUR of trucks in China is increased from the current status as those of the developed countries, a 13% reduction of total fuel consumption can be achieved after 2020. If the FCR of trucks is reduced by 10% in 2011, 2016, 2021, and 2026, a 30% reduction of total fuel consumption can be achieved after 2030. Moreover, if the share of LNG fueled trucks in all newly registered semi-trailer towing trucks and heavy-duty trucks is increased to 20% in 2030, an estimate of 7.9% and 10.9% of the total diesel consumption by trucks will be replaced by LNG in 2030 and 2050, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.12.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.12.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Springer Science and Business Media LLC Michael Wang; Hewu Wang; Yan Zhou; Han Hao; Han Hao; Minggao Ouyang;Electric vehicles offer the potential to reduce oil consumption, air pollutants, and greenhouse gas (GHG) emissions. To take advantage of electric vehicles and improve its urban environment, Beijing, as one of China’s most polluted cities, launched an electric vehicle promotion program that provided a generous subsidy for consumers who purchased battery electric vehicles (BEVs). In this study, we compare the levelized costs of a conventional vehicle (CV) versus a BEV using real data from the Beijing BEV subsidy program. Levelized cost for this study considers consumer driving patterns and vehicle age. For consumers with average driving profiles—i.e., an average driving distance of around 20 km per trip—the levelized cost of CVs decreases from 1.40 yuan/km for an 8-year vehicle lifetime to 1.04 yuan/km for a 15-year lifetime, while the levelized cost for BEVs decreases from 1.44 yuan/km for an 8-year vehicle lifetime to 1.01 yuan/km for a 15-year lifetime. BEVs are more cost competitive than CVs for consumers with medium and high driving profiles and a 12-year and 15-year lifetime. Under current conditions, the subsidy and tax incentives are necessary to make BEVs cost competitive. However, we project that, even if the subsidy is phased out in 2020, BEVs may become cost competitive with CVs because of the decrease in battery cost. Our study results suggest that the BEV subsidy should reflect changes in battery cost and gasoline prices to help continuing deployment of BEVs.
Research Papers in E... arrow_drop_down Mitigation and Adaptation Strategies for Global ChangeArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11027-013-9536-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research Papers in E... arrow_drop_down Mitigation and Adaptation Strategies for Global ChangeArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11027-013-9536-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Springer Science and Business Media LLC Michael Wang; Hewu Wang; Yan Zhou; Han Hao; Han Hao; Minggao Ouyang;Electric vehicles offer the potential to reduce oil consumption, air pollutants, and greenhouse gas (GHG) emissions. To take advantage of electric vehicles and improve its urban environment, Beijing, as one of China’s most polluted cities, launched an electric vehicle promotion program that provided a generous subsidy for consumers who purchased battery electric vehicles (BEVs). In this study, we compare the levelized costs of a conventional vehicle (CV) versus a BEV using real data from the Beijing BEV subsidy program. Levelized cost for this study considers consumer driving patterns and vehicle age. For consumers with average driving profiles—i.e., an average driving distance of around 20 km per trip—the levelized cost of CVs decreases from 1.40 yuan/km for an 8-year vehicle lifetime to 1.04 yuan/km for a 15-year lifetime, while the levelized cost for BEVs decreases from 1.44 yuan/km for an 8-year vehicle lifetime to 1.01 yuan/km for a 15-year lifetime. BEVs are more cost competitive than CVs for consumers with medium and high driving profiles and a 12-year and 15-year lifetime. Under current conditions, the subsidy and tax incentives are necessary to make BEVs cost competitive. However, we project that, even if the subsidy is phased out in 2020, BEVs may become cost competitive with CVs because of the decrease in battery cost. Our study results suggest that the BEV subsidy should reflect changes in battery cost and gasoline prices to help continuing deployment of BEVs.
Research Papers in E... arrow_drop_down Mitigation and Adaptation Strategies for Global ChangeArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11027-013-9536-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research Papers in E... arrow_drop_down Mitigation and Adaptation Strategies for Global ChangeArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11027-013-9536-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu