Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
5 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ihsan Elahi Zaheer; Shafaqat Ali; Muhammad Hamzah Saleem; Iqra Noor; +7 Authors

    Chromium (Cr) is among the most widespread toxic trace elements found in agricultural soils due to various anthropogenic activities. However, the role of micronutrient-amino chelates on reducing Cr toxicity in crop plants was recently introduced. In the current experiment, the exogenous application of micronutrients [iron (Fe)] chelated with amino acid [lysine (lys)] was examined, using an in vivo approach that involved plant growth and biomass, photosynthetic pigments and gaseous exchange parameters, oxidative stress indicators and antioxidant response. The uptake and accumulation of Fe and Cr were determined under different levels of tannery wastewater (33, 66, 100%) used along with the exogenous supplementation of Fe-lys (5 mM) to Spinacia oleracea plants. Results revealed that tannery wastewater in the soil decreased plant growth and growth-related attributes, photosynthetic apparatus and Fe contents in different parts of the plants. In contrast, the addition of different levels of tannery wastewater to the soil significantly increased the contents of malondialdehyde (MDA), hydrogen peroxide (H2O2) and electrolyte leakage (EL), which induced oxidative damage in the roots and leaves of S. oleracea plants. However, S. oleracea plants increased the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX), which scavenge the over-production of reactive oxygen species (ROS). Cr toxicity can be overcome by the supplementation of Fe-lys, which significantly increased plant growth and biomass, improved photosynthetic machinery and increased the activities of different antioxidative enzymes, even in the plants grown under different levels of tannery wastewater in the soil. Furthermore, the supplementation of Fe-lys increased the contents of essential nutrients (Fe) and decreased the contents of Cr in all plant parts compared to the plants cultivated in tannery wastewater without application of Fe-lys. In conclusion, the application of Fe-lys is an innovative approach to mitigate Cr stress in spinach plants, which not only increased plant growth and biomass but also decreased the Cr contents in different plant organs.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2020 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2020
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    68
    citations68
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2020 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2020
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mohammad Abass Ahanger; Renu Bhardwaj; Leonard Wijaya; Mohammed Nasser Alyemeni; +3 Authors

    Pot experiments were conducted to investigate the role of selenium in alleviating cadmium stress in Solanum lycopersicum seedlings. Cadmium (150 mg L-1) treatment caused a significant reduction in growth in terms of height and biomass accumulation and affected chlorophyll pigments, gas exchange parameters, and chlorophyll fluorescence. Selenium (10 μM) application mitigated the adverse effects of cadmium on growth, chlorophyll and carotenoid contents, leaf relative water content, and other physiological attributes. Lipid peroxidation and electrolyte leakage increased because of cadmium treatment and selenium-treated plants exhibited considerable reduction because of the decreased production of hydrogen peroxide in them. Cadmium-treated plants exhibited enhanced activity of antioxidant enzymes that protected cellular structures by neutralizing reactive free radicals. Supplementation of selenium to cadmium-treated plants (Cd + Se) further enhanced the activity of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) by 19.69, 31.68, 33.14, and 54.47%, respectively. Osmolytes, including proline and glycine betaine, increased with selenium application, illustrating their role in improving the osmotic stability of S. lycopersicum under cadmium stress. More importantly, selenium application significantly reduced cadmium uptake. From these results, it is clear that application of selenium alleviates the negative effects of cadmium stress in S. lycopersicum through the modifications of osmolytes and antioxidant enzymes.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PROTOPLASMAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    PROTOPLASMA
    Article . 2017 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    PROTOPLASMA
    Article . 2018
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    199
    citations199
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PROTOPLASMAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      PROTOPLASMA
      Article . 2017 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      PROTOPLASMA
      Article . 2018
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ihsan Elahi Zaheer; Leonard Wijaya; Firdaus-e Bareen; Shafaqat Ali; +6 Authors

    Anthropogenic activities have resulted in severe environmental degradation. Untreated wastewater from tanneries is hazardous to all kinds of life on earth. Effluent from tanning industries, containing large amount of Cr, is used to irrigate the crops in Pakistan. The current experiment was carried out to study the effects of tannery wastewater on spinach and the role of lysine-Zn in mitigating the severity of stress. The plants were grown in soil and the following treatments were used: irrigation with 0%, 33%, 66%, and 100% wastewater (ww) along with two doses (0 mM, 10 mM) of Zn-lysine. Foliar application of zinc-lysine enhanced the plant growth, biomass, Zn contents, photosynthesis, and enzyme activities in different tissues of plant. Zinc-lysine (10 mM) considerably decreased the Cr content in roots and shoots, along with ameliorating the oxidative stress by enhancing the activities of antioxidant enzymes in plants. Addition of Zn-lys (10 mM) improved the plant height by 19%, root length by 57%, leaf dry weight by 19%, and root dry weight by33% under 100% Cr treatment. Zn-lys significantly reduces the oxidative stress and concentration of Cr as compared with the Cr treatments alone. Application of Zn-lys (10 mM) reduced the Cr contents in roots by 27 and 22 under 33 and 66% Cr treatment, respectively. Taken together, Zn-lys chelates efficiently ameliorated the toxic effects of chromium. Zn-lysine has the extravagant potential of mitigating the heavy metal toxicity without harming the normal growth and development of the plants.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science and Pollution Research
    Article . 2019 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    51
    citations51
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Science and Pollution Research
      Article . 2019 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Leonard Wijaya; Maydella Vista Putri Rinady; Toga Pangihotan Napitupulu; Atit Kanti; +4 Authors

    Abstract This study aimed to address the issue of land degradation in Ultisol soils by investigating the impact of various amendments on the growth of Sorghum (Sorghum bicolor L. Moench Accession KS). Specifically, the study explored the effects of compost, NPK fertilizer, mycorrhizal propagules, and lime on soil nutrient levels, microbial communities, and Sorghum growth. The experimentation involved 16 different treatments, combining compost, NPK fertilizer, mycorrhizal propagules, and lime in Ultisol soil. The plants were grown in pots under natural trophic greenhouse conditions. After 9 weeks, the Sorghum plants were harvested, and various plants and soil parameters were analyzed. The combination of compost + NPK fertilizer + mycorrhizae + lime significantly increased dry stover growth by 1679% and mycorrhizal colonization by 271% compared to the unfertilized/unamended control in toxic ultisol soil. The introduced amendments positively influenced soil microbial communities, with the highest fluorescein diacetate (FDA) activity and phosphatase enzyme levels observed under this combined treatment. The introduction of NPK and lime showed a positive association between alkaline phosphatase activity and soil phosphate concentration. Additionally, the Sorghum plants exhibited increased sugar content, organic matter, number of leaves, and available phosphorus when compost, lime, and mycorrhizal propagules were introduced. The study demonstrates that incorporating a combination of organic and inorganic amendments is essential for enhancing Sorghum growth and promoting soil health in Ultisol soils. The findings highlight the potential of these amendments to mitigate land degradation issues in Ultisol soils and suggest practical strategies for sustainable agriculture in similar soil types.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of the Saudi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of the Saudi Society of Agricultural Sciences
    Article . 2025 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of the Saudi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of the Saudi Society of Agricultural Sciences
      Article . 2025 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Balal Yousaf; Parvaiz Ahmad; Parvaiz Ahmad; Mohammed Nasser Alyemeni; +6 Authors

    The application of silicon (Si) under heavy metal stress is well known, but the use of Si nanoparticles (NPs) under metal stress in not well documented. Thus, the experiments were performed to investigate the impacts of soil and foliar applied Si NPs on wheat (Triticum aestivum L.) growth and cadmium (Cd) accumulation in grains under Cd toxicity. The plants were grown under natural environmental conditions and were harvested after physiological maturity (124 days after sowing). The results demonstrated that Si NPs significantly improved, relative to the control, the dry biomass of shoots, roots, spikes and grains by 24-69%, 14-59%, 34-87%, and 31-96% in foliar spray and by 10-51%, 11-49%, 25-69%, and 27-74% in soil applied Si NPs, respectively. The Si NPs enhanced the leaf gas exchange attributes and chlorophyll a and b concentrations, whereas diminished the oxidative stress in leaves which was indicated by the reduced electrolyte leakage and enhancement in superoxide dismutase and peroxidase activities in leaf under Si NPs treatments over the control. When compared with the control, the foliar spray of Si NPs reduced the Cd contents in shoots, roots, and grains by 16-58%, 19-64%, and 20-82%, respectively, whereas soil applied Si NPs reduced the Cd concentrations in shoots, roots, and grains by 11-53%, 10-59%, and 22-83%, respectively. In comparison with the control, Si concentrations significantly (p ≤ 0.05) increased in the shoots and roots in both foliar and soil supplementation of Si NPs. Our results suggested that Si NPs could improve the yield of wheat and more importantly, reduce the Cd concentrations in the grains. Thus, the use of Si NPs might be a feasible approach in controlling Cd entry into the human body via crops.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Plant Physiology and...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Plant Physiology and Biochemistry
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    236
    citations236
    popularityTop 0.1%
    influenceTop 10%
    impulseTop 0.1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Plant Physiology and...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Plant Physiology and Biochemistry
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
5 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ihsan Elahi Zaheer; Shafaqat Ali; Muhammad Hamzah Saleem; Iqra Noor; +7 Authors

    Chromium (Cr) is among the most widespread toxic trace elements found in agricultural soils due to various anthropogenic activities. However, the role of micronutrient-amino chelates on reducing Cr toxicity in crop plants was recently introduced. In the current experiment, the exogenous application of micronutrients [iron (Fe)] chelated with amino acid [lysine (lys)] was examined, using an in vivo approach that involved plant growth and biomass, photosynthetic pigments and gaseous exchange parameters, oxidative stress indicators and antioxidant response. The uptake and accumulation of Fe and Cr were determined under different levels of tannery wastewater (33, 66, 100%) used along with the exogenous supplementation of Fe-lys (5 mM) to Spinacia oleracea plants. Results revealed that tannery wastewater in the soil decreased plant growth and growth-related attributes, photosynthetic apparatus and Fe contents in different parts of the plants. In contrast, the addition of different levels of tannery wastewater to the soil significantly increased the contents of malondialdehyde (MDA), hydrogen peroxide (H2O2) and electrolyte leakage (EL), which induced oxidative damage in the roots and leaves of S. oleracea plants. However, S. oleracea plants increased the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX), which scavenge the over-production of reactive oxygen species (ROS). Cr toxicity can be overcome by the supplementation of Fe-lys, which significantly increased plant growth and biomass, improved photosynthetic machinery and increased the activities of different antioxidative enzymes, even in the plants grown under different levels of tannery wastewater in the soil. Furthermore, the supplementation of Fe-lys increased the contents of essential nutrients (Fe) and decreased the contents of Cr in all plant parts compared to the plants cultivated in tannery wastewater without application of Fe-lys. In conclusion, the application of Fe-lys is an innovative approach to mitigate Cr stress in spinach plants, which not only increased plant growth and biomass but also decreased the Cr contents in different plant organs.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2020 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2020
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    68
    citations68
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2020 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2020
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mohammad Abass Ahanger; Renu Bhardwaj; Leonard Wijaya; Mohammed Nasser Alyemeni; +3 Authors

    Pot experiments were conducted to investigate the role of selenium in alleviating cadmium stress in Solanum lycopersicum seedlings. Cadmium (150 mg L-1) treatment caused a significant reduction in growth in terms of height and biomass accumulation and affected chlorophyll pigments, gas exchange parameters, and chlorophyll fluorescence. Selenium (10 μM) application mitigated the adverse effects of cadmium on growth, chlorophyll and carotenoid contents, leaf relative water content, and other physiological attributes. Lipid peroxidation and electrolyte leakage increased because of cadmium treatment and selenium-treated plants exhibited considerable reduction because of the decreased production of hydrogen peroxide in them. Cadmium-treated plants exhibited enhanced activity of antioxidant enzymes that protected cellular structures by neutralizing reactive free radicals. Supplementation of selenium to cadmium-treated plants (Cd + Se) further enhanced the activity of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) by 19.69, 31.68, 33.14, and 54.47%, respectively. Osmolytes, including proline and glycine betaine, increased with selenium application, illustrating their role in improving the osmotic stability of S. lycopersicum under cadmium stress. More importantly, selenium application significantly reduced cadmium uptake. From these results, it is clear that application of selenium alleviates the negative effects of cadmium stress in S. lycopersicum through the modifications of osmolytes and antioxidant enzymes.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PROTOPLASMAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    PROTOPLASMA
    Article . 2017 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    PROTOPLASMA
    Article . 2018
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    199
    citations199
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PROTOPLASMAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      PROTOPLASMA
      Article . 2017 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      PROTOPLASMA
      Article . 2018
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ihsan Elahi Zaheer; Leonard Wijaya; Firdaus-e Bareen; Shafaqat Ali; +6 Authors

    Anthropogenic activities have resulted in severe environmental degradation. Untreated wastewater from tanneries is hazardous to all kinds of life on earth. Effluent from tanning industries, containing large amount of Cr, is used to irrigate the crops in Pakistan. The current experiment was carried out to study the effects of tannery wastewater on spinach and the role of lysine-Zn in mitigating the severity of stress. The plants were grown in soil and the following treatments were used: irrigation with 0%, 33%, 66%, and 100% wastewater (ww) along with two doses (0 mM, 10 mM) of Zn-lysine. Foliar application of zinc-lysine enhanced the plant growth, biomass, Zn contents, photosynthesis, and enzyme activities in different tissues of plant. Zinc-lysine (10 mM) considerably decreased the Cr content in roots and shoots, along with ameliorating the oxidative stress by enhancing the activities of antioxidant enzymes in plants. Addition of Zn-lys (10 mM) improved the plant height by 19%, root length by 57%, leaf dry weight by 19%, and root dry weight by33% under 100% Cr treatment. Zn-lys significantly reduces the oxidative stress and concentration of Cr as compared with the Cr treatments alone. Application of Zn-lys (10 mM) reduced the Cr contents in roots by 27 and 22 under 33 and 66% Cr treatment, respectively. Taken together, Zn-lys chelates efficiently ameliorated the toxic effects of chromium. Zn-lysine has the extravagant potential of mitigating the heavy metal toxicity without harming the normal growth and development of the plants.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science and Pollution Research
    Article . 2019 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    51
    citations51
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Scienc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Science and Pollution Research
      Article . 2019 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Leonard Wijaya; Maydella Vista Putri Rinady; Toga Pangihotan Napitupulu; Atit Kanti; +4 Authors

    Abstract This study aimed to address the issue of land degradation in Ultisol soils by investigating the impact of various amendments on the growth of Sorghum (Sorghum bicolor L. Moench Accession KS). Specifically, the study explored the effects of compost, NPK fertilizer, mycorrhizal propagules, and lime on soil nutrient levels, microbial communities, and Sorghum growth. The experimentation involved 16 different treatments, combining compost, NPK fertilizer, mycorrhizal propagules, and lime in Ultisol soil. The plants were grown in pots under natural trophic greenhouse conditions. After 9 weeks, the Sorghum plants were harvested, and various plants and soil parameters were analyzed. The combination of compost + NPK fertilizer + mycorrhizae + lime significantly increased dry stover growth by 1679% and mycorrhizal colonization by 271% compared to the unfertilized/unamended control in toxic ultisol soil. The introduced amendments positively influenced soil microbial communities, with the highest fluorescein diacetate (FDA) activity and phosphatase enzyme levels observed under this combined treatment. The introduction of NPK and lime showed a positive association between alkaline phosphatase activity and soil phosphate concentration. Additionally, the Sorghum plants exhibited increased sugar content, organic matter, number of leaves, and available phosphorus when compost, lime, and mycorrhizal propagules were introduced. The study demonstrates that incorporating a combination of organic and inorganic amendments is essential for enhancing Sorghum growth and promoting soil health in Ultisol soils. The findings highlight the potential of these amendments to mitigate land degradation issues in Ultisol soils and suggest practical strategies for sustainable agriculture in similar soil types.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of the Saudi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of the Saudi Society of Agricultural Sciences
    Article . 2025 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of the Saudi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of the Saudi Society of Agricultural Sciences
      Article . 2025 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Balal Yousaf; Parvaiz Ahmad; Parvaiz Ahmad; Mohammed Nasser Alyemeni; +6 Authors

    The application of silicon (Si) under heavy metal stress is well known, but the use of Si nanoparticles (NPs) under metal stress in not well documented. Thus, the experiments were performed to investigate the impacts of soil and foliar applied Si NPs on wheat (Triticum aestivum L.) growth and cadmium (Cd) accumulation in grains under Cd toxicity. The plants were grown under natural environmental conditions and were harvested after physiological maturity (124 days after sowing). The results demonstrated that Si NPs significantly improved, relative to the control, the dry biomass of shoots, roots, spikes and grains by 24-69%, 14-59%, 34-87%, and 31-96% in foliar spray and by 10-51%, 11-49%, 25-69%, and 27-74% in soil applied Si NPs, respectively. The Si NPs enhanced the leaf gas exchange attributes and chlorophyll a and b concentrations, whereas diminished the oxidative stress in leaves which was indicated by the reduced electrolyte leakage and enhancement in superoxide dismutase and peroxidase activities in leaf under Si NPs treatments over the control. When compared with the control, the foliar spray of Si NPs reduced the Cd contents in shoots, roots, and grains by 16-58%, 19-64%, and 20-82%, respectively, whereas soil applied Si NPs reduced the Cd concentrations in shoots, roots, and grains by 11-53%, 10-59%, and 22-83%, respectively. In comparison with the control, Si concentrations significantly (p ≤ 0.05) increased in the shoots and roots in both foliar and soil supplementation of Si NPs. Our results suggested that Si NPs could improve the yield of wheat and more importantly, reduce the Cd concentrations in the grains. Thus, the use of Si NPs might be a feasible approach in controlling Cd entry into the human body via crops.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Plant Physiology and...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Plant Physiology and Biochemistry
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    236
    citations236
    popularityTop 0.1%
    influenceTop 10%
    impulseTop 0.1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Plant Physiology and...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Plant Physiology and Biochemistry
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph