Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Iron–Lysine Mediated Alleviation of Chromium Toxicity in Spinach (Spinacia oleracea L.) Plants in Relation to Morpho-Physiological Traits and Iron Uptake When Irrigated with Tannery Wastewater

Authors: Ihsan Elahi Zaheer; Shafaqat Ali; Muhammad Hamzah Saleem; Iqra Noor; Mohamed A. El-Esawi; Kashif Hayat; Muhammad Rizwan; +4 Authors

Iron–Lysine Mediated Alleviation of Chromium Toxicity in Spinach (Spinacia oleracea L.) Plants in Relation to Morpho-Physiological Traits and Iron Uptake When Irrigated with Tannery Wastewater

Abstract

Chromium (Cr) is among the most widespread toxic trace elements found in agricultural soils due to various anthropogenic activities. However, the role of micronutrient-amino chelates on reducing Cr toxicity in crop plants was recently introduced. In the current experiment, the exogenous application of micronutrients [iron (Fe)] chelated with amino acid [lysine (lys)] was examined, using an in vivo approach that involved plant growth and biomass, photosynthetic pigments and gaseous exchange parameters, oxidative stress indicators and antioxidant response. The uptake and accumulation of Fe and Cr were determined under different levels of tannery wastewater (33, 66, 100%) used along with the exogenous supplementation of Fe-lys (5 mM) to Spinacia oleracea plants. Results revealed that tannery wastewater in the soil decreased plant growth and growth-related attributes, photosynthetic apparatus and Fe contents in different parts of the plants. In contrast, the addition of different levels of tannery wastewater to the soil significantly increased the contents of malondialdehyde (MDA), hydrogen peroxide (H2O2) and electrolyte leakage (EL), which induced oxidative damage in the roots and leaves of S. oleracea plants. However, S. oleracea plants increased the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX), which scavenge the over-production of reactive oxygen species (ROS). Cr toxicity can be overcome by the supplementation of Fe-lys, which significantly increased plant growth and biomass, improved photosynthetic machinery and increased the activities of different antioxidative enzymes, even in the plants grown under different levels of tannery wastewater in the soil. Furthermore, the supplementation of Fe-lys increased the contents of essential nutrients (Fe) and decreased the contents of Cr in all plant parts compared to the plants cultivated in tannery wastewater without application of Fe-lys. In conclusion, the application of Fe-lys is an innovative approach to mitigate Cr stress in spinach plants, which not only increased plant growth and biomass but also decreased the Cr contents in different plant organs.

Related Organizations
Keywords

photosynthesis, Environmental effects of industries and plants, TJ807-830, plant growth, TD194-195, Renewable energy sources, micronutrients chelation, Environmental sciences, oxidative stress, leafy green vegetable, GE1-350, heavy metals

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    68
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
68
Top 1%
Top 10%
Top 1%
gold