- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:American Geophysical Union (AGU) Amy R. Coghlan; Evgeny A. Pakhomov; Lian E. Kwong; Leonardo Laiolo; Leonardo Laiolo; Iain M. Suthers; Iain M. Suthers; Jason D. Everett; Jason D. Everett; Natasha Henschke;doi: 10.1029/2018jg004918
AbstractPyrosomes are efficient grazers that can form dense aggregations. Their clearance rates are among the highest of any zooplankton grazer, and they can rapidly repackage what they consume into thousands of fecal pellets per hour. In recent years, pyrosome swarms have been found outside of their natural geographical range; however, environmental drivers that promote these swarms are still unknown. During the austral spring of 2017 aPyrosoma atlanticumswarm was sampled in the Tasman Sea. Depth‐stratified sampling during the day and night was used to examine the spatial and vertical distribution ofP. atlanticumacross three eddies. Respiration rate experiments were performed onboard to determine minimum feeding requirements for the pyrosome population.P. atlanticumwas 2 orders of magnitude more abundant in the cold core eddy (CCE) compared to both warm core eddies, with maximum biomass of 360 mg WW·m−3, most likely driven by high chlorophyllaconcentrations.P. atlanticumexhibited diel vertical migration and migrated to a maximum depth strata of 800–1,000 m. Active carbon transport in the CCE was 4 orders of magnitude higher than the warm core eddies. Fecal pellet production contributed to the majority (91%) of transport, and total downward carbon flux below the mixed layer was estimated at 11 mg C·m−2·d−1. When abundant,P. atlanticumswarms have the potential to play a major role in active carbon transport, comparable to fluxes for zooplankton and micronekton communities.
Journal of Geophysic... arrow_drop_down Journal of Geophysical Research BiogeosciencesArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018jg004918&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Geophysic... arrow_drop_down Journal of Geophysical Research BiogeosciencesArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018jg004918&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:American Geophysical Union (AGU) Amy R. Coghlan; Evgeny A. Pakhomov; Lian E. Kwong; Leonardo Laiolo; Leonardo Laiolo; Iain M. Suthers; Iain M. Suthers; Jason D. Everett; Jason D. Everett; Natasha Henschke;doi: 10.1029/2018jg004918
AbstractPyrosomes are efficient grazers that can form dense aggregations. Their clearance rates are among the highest of any zooplankton grazer, and they can rapidly repackage what they consume into thousands of fecal pellets per hour. In recent years, pyrosome swarms have been found outside of their natural geographical range; however, environmental drivers that promote these swarms are still unknown. During the austral spring of 2017 aPyrosoma atlanticumswarm was sampled in the Tasman Sea. Depth‐stratified sampling during the day and night was used to examine the spatial and vertical distribution ofP. atlanticumacross three eddies. Respiration rate experiments were performed onboard to determine minimum feeding requirements for the pyrosome population.P. atlanticumwas 2 orders of magnitude more abundant in the cold core eddy (CCE) compared to both warm core eddies, with maximum biomass of 360 mg WW·m−3, most likely driven by high chlorophyllaconcentrations.P. atlanticumexhibited diel vertical migration and migrated to a maximum depth strata of 800–1,000 m. Active carbon transport in the CCE was 4 orders of magnitude higher than the warm core eddies. Fecal pellet production contributed to the majority (91%) of transport, and total downward carbon flux below the mixed layer was estimated at 11 mg C·m−2·d−1. When abundant,P. atlanticumswarms have the potential to play a major role in active carbon transport, comparable to fluxes for zooplankton and micronekton communities.
Journal of Geophysic... arrow_drop_down Journal of Geophysical Research BiogeosciencesArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018jg004918&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Geophysic... arrow_drop_down Journal of Geophysical Research BiogeosciencesArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018jg004918&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:American Geophysical Union (AGU) Amy R. Coghlan; Evgeny A. Pakhomov; Lian E. Kwong; Leonardo Laiolo; Leonardo Laiolo; Iain M. Suthers; Iain M. Suthers; Jason D. Everett; Jason D. Everett; Natasha Henschke;doi: 10.1029/2018jg004918
AbstractPyrosomes are efficient grazers that can form dense aggregations. Their clearance rates are among the highest of any zooplankton grazer, and they can rapidly repackage what they consume into thousands of fecal pellets per hour. In recent years, pyrosome swarms have been found outside of their natural geographical range; however, environmental drivers that promote these swarms are still unknown. During the austral spring of 2017 aPyrosoma atlanticumswarm was sampled in the Tasman Sea. Depth‐stratified sampling during the day and night was used to examine the spatial and vertical distribution ofP. atlanticumacross three eddies. Respiration rate experiments were performed onboard to determine minimum feeding requirements for the pyrosome population.P. atlanticumwas 2 orders of magnitude more abundant in the cold core eddy (CCE) compared to both warm core eddies, with maximum biomass of 360 mg WW·m−3, most likely driven by high chlorophyllaconcentrations.P. atlanticumexhibited diel vertical migration and migrated to a maximum depth strata of 800–1,000 m. Active carbon transport in the CCE was 4 orders of magnitude higher than the warm core eddies. Fecal pellet production contributed to the majority (91%) of transport, and total downward carbon flux below the mixed layer was estimated at 11 mg C·m−2·d−1. When abundant,P. atlanticumswarms have the potential to play a major role in active carbon transport, comparable to fluxes for zooplankton and micronekton communities.
Journal of Geophysic... arrow_drop_down Journal of Geophysical Research BiogeosciencesArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018jg004918&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Geophysic... arrow_drop_down Journal of Geophysical Research BiogeosciencesArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018jg004918&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:American Geophysical Union (AGU) Amy R. Coghlan; Evgeny A. Pakhomov; Lian E. Kwong; Leonardo Laiolo; Leonardo Laiolo; Iain M. Suthers; Iain M. Suthers; Jason D. Everett; Jason D. Everett; Natasha Henschke;doi: 10.1029/2018jg004918
AbstractPyrosomes are efficient grazers that can form dense aggregations. Their clearance rates are among the highest of any zooplankton grazer, and they can rapidly repackage what they consume into thousands of fecal pellets per hour. In recent years, pyrosome swarms have been found outside of their natural geographical range; however, environmental drivers that promote these swarms are still unknown. During the austral spring of 2017 aPyrosoma atlanticumswarm was sampled in the Tasman Sea. Depth‐stratified sampling during the day and night was used to examine the spatial and vertical distribution ofP. atlanticumacross three eddies. Respiration rate experiments were performed onboard to determine minimum feeding requirements for the pyrosome population.P. atlanticumwas 2 orders of magnitude more abundant in the cold core eddy (CCE) compared to both warm core eddies, with maximum biomass of 360 mg WW·m−3, most likely driven by high chlorophyllaconcentrations.P. atlanticumexhibited diel vertical migration and migrated to a maximum depth strata of 800–1,000 m. Active carbon transport in the CCE was 4 orders of magnitude higher than the warm core eddies. Fecal pellet production contributed to the majority (91%) of transport, and total downward carbon flux below the mixed layer was estimated at 11 mg C·m−2·d−1. When abundant,P. atlanticumswarms have the potential to play a major role in active carbon transport, comparable to fluxes for zooplankton and micronekton communities.
Journal of Geophysic... arrow_drop_down Journal of Geophysical Research BiogeosciencesArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018jg004918&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Geophysic... arrow_drop_down Journal of Geophysical Research BiogeosciencesArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018jg004918&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu