Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Geophysic...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Geophysical Research Biogeosciences
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Large Vertical Migrations ofPyrosoma atlanticumPlay an Important Role in Active Carbon Transport

Authors: Amy R. Coghlan; Evgeny A. Pakhomov; Lian E. Kwong; Leonardo Laiolo; Leonardo Laiolo; Iain M. Suthers; Iain M. Suthers; +3 Authors

Large Vertical Migrations ofPyrosoma atlanticumPlay an Important Role in Active Carbon Transport

Abstract

AbstractPyrosomes are efficient grazers that can form dense aggregations. Their clearance rates are among the highest of any zooplankton grazer, and they can rapidly repackage what they consume into thousands of fecal pellets per hour. In recent years, pyrosome swarms have been found outside of their natural geographical range; however, environmental drivers that promote these swarms are still unknown. During the austral spring of 2017 aPyrosoma atlanticumswarm was sampled in the Tasman Sea. Depth‐stratified sampling during the day and night was used to examine the spatial and vertical distribution ofP. atlanticumacross three eddies. Respiration rate experiments were performed onboard to determine minimum feeding requirements for the pyrosome population.P. atlanticumwas 2 orders of magnitude more abundant in the cold core eddy (CCE) compared to both warm core eddies, with maximum biomass of 360 mg WW·m−3, most likely driven by high chlorophyllaconcentrations.P. atlanticumexhibited diel vertical migration and migrated to a maximum depth strata of 800–1,000 m. Active carbon transport in the CCE was 4 orders of magnitude higher than the warm core eddies. Fecal pellet production contributed to the majority (91%) of transport, and total downward carbon flux below the mixed layer was estimated at 11 mg C·m−2·d−1. When abundant,P. atlanticumswarms have the potential to play a major role in active carbon transport, comparable to fluxes for zooplankton and micronekton communities.

Country
Australia
Keywords

zooplankton, Thaliacea, Ocean, 1904 Earth-Surface Processes, Tunicata, 1107 Forestry, 551, Zooplankton, 2312 Water Science and Technology, 1912 Space and Planetary Science, 1902 Atmospheric Science, 1910 Oceanography, Grazing Impact, Biomass, pyrosomes, 1908 Geophysics, 1111 Soil Science, 1911 Palaeontology, Flux, Sea, 1104 Aquatic Science, Respiratory Carbon, 1901 Earth and Planetary Sciences (miscellaneous), carbon transport, 1906 Geochemistry and Petrology, Export, Pyrosoma atlanticum, 2303 Ecology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Top 10%
bronze