- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Funded by:EC | NEXT-CSPEC| NEXT-CSPRovense F.; Reyes-Belmonte M. A.; González-Aguilar J.; Amelio M.; Bova S.; Romero M.;handle: 20.500.11770/298981
Abstract This paper presents a novel power block concept for flexible electricity dispatch in a Concentrating Solar Power (CSP) plant. The power block is based on intercooled – unfired regenerative closed air Brayton cycle that is connected to a pressurized solar air receiver. The Closed Brayton cycle uses a mass flow regulation system centered on the pressure regulation (auxiliary compressor and bleed valve) in order to control the Turbine Inlet Temperature (TIT). Doing so, the system is able to modulate turbine electricity production according to variations in the solar resource and changes in power electric demand. It has been found that the proposed power block is able to fully cover the electricity demand curve for those days with high solar resource. In case of integrating particles-based high temperature Thermal Energy Storage (TES) system, the power block can extend its production till the next day following the electricity curve demand during summer period. During winter period, the power plant can extend its production for a few hours due to the lower solar resource and the higher electric curve demand load.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.02.135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 45 citations 45 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 9 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.02.135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 ItalyPublisher:Hindawi Limited Authors: AMELIO, Mario; FLORIO, Gaetano; Morrone P; Senatore S.;doi: 10.1002/er.1332
handle: 20.500.11770/145534
On–off valve systems, commonly used in regenerative thermal oxidizer (RTO) plants, generate, during the opening time, a mass flow rate (MFR) which is constant. On the contrary, rotary valve systems, which are increasingly adopted in RTO plants, are characterized by variable MFR profiles. In this work, the energy requirements of two RTO systems, equipped with on–off or rotary valves, were determined using a home-developed numerical code. Energy performances were evaluated by calculating the thermal efficiency and pressure drop within structured or random packed bed RTO systems, at the same mean MFR. The results demonstrated that thermal efficiency was only moderately influenced by the valve system, and is slightly lower for the RTO with on–off valve. On the other hand, the study revealed that energy requirements of all RTO systems were basically unaffected by cycle duration, allowing valve rotational velocity to be freely set to maximize for other technical requirements. On the contrary, pressure drop was greatly influenced by the valve type and increased as variability in MFR function augmented. Moreover, the type of regenerator, structured or random packed bed, affected differently the total energy requirements (basically pumping energy plus auxiliary fuel). Energy requirements of structured and random regenerators were comparable only when volatile organic compounds concentration was lower than typical values encountered in the industrial practise. In other cases, structured regenerators RTO were more competitive. Finally, structured regenerators are usually the best choice when rotating valve distribution systems are adopted. Copyright © 2007 John Wiley & Sons, Ltd.
Open Access Reposito... arrow_drop_down International Journal of Energy ResearchArticle . 2007 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefArchivio Istituzionale dell'Università della CalabriaArticle . 2008Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.1332&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Average influence Average impulse Average Powered by BIP!
more_vert Open Access Reposito... arrow_drop_down International Journal of Energy ResearchArticle . 2007 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefArchivio Istituzionale dell'Università della CalabriaArticle . 2008Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.1332&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2018 ItalyPublisher:Elsevier BV D. Perrone; T. Castiglione; P. Morrone; S. Barbarelli; M. Amelio;handle: 20.500.11770/290255
Abstract Oxy-MILD (Moderate or Intensive Low Oxygen Dilution) combustion is an attractive technology for increasing combustion efficiency and reducing the nitric oxides with respect to the conventional combustion in traditional boilers or furnaces. This technology is a combination of MILD combustion, which exploits the initial preheating of combustion air up to 800÷1300 °C and the simultaneous recirculation of the hot flue gases, and of Oxy-Combustion, which uses pure oxygen (greater than 95% purity) as oxidant instead of air. The combination of both technologies is expected to bring synergetic effects: NO x reduction, CO 2 capture possibility, fuel flexibility and uniformity of heat fluxes and species concentrations. This study focuses, in particular, on the analysis, by a CFD approach, of the NO x emissions for Oxy-MILD combustion of pulverized coal in a new concept of industrial boiler. The boiler, fueled with a high-volatile coal, is equipped with five burners and three outlets of the combustion products, localized on the top wall. Each burner is made-up of a central pulverized coal jet surrounded by six preheated oxygen jets. This configuration allows the achievement of the MILD combustion in pure oxygen. Results show that the goal of NO x reduction with this combustion approach is achieved. A value of about 296 mg/Nm 3 @6%O 2 at the boiler exit is obtained under Oxy-MILD conditions, which is significantly lower than 600-800 mg/Nm 3 @6%O 2 obtained in a traditional boiler.
Energy Procedia arrow_drop_down Archivio Istituzionale dell'Università della CalabriaConference object . 2018Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.08.143&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Procedia arrow_drop_down Archivio Istituzionale dell'Università della CalabriaConference object . 2018Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.08.143&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2015 ItalyPublisher:Elsevier BV Authors: Diego Perrone; Mario Amelio;handle: 20.500.11770/132075 , 20.500.11770/341575
AbstractFluidized bed reactors are found in a wide range of applications in various industrial operations, including chemical, mechanical, petroleum, mineral and pharmaceutical industries. This work aims to study hydrodynamics and heat transfer between fluidized bed and a heated wall using the Eulerian – Eulerian approach. Gas/particle flow behavior in the riser section of a Bubbling Fluidized Bed has been simulated using a Computational Fluid Dynamics (CFD) combined with a Kinetics Theory of Granular Flow (KTGF). Conservation equations of mass and momentum for each phase has been solved using the finite volume technique. The results of numerical solutions have been compared with results from literature.
Energy Procedia arrow_drop_down Archivio Istituzionale dell'Università della CalabriaArticle . 2015Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio Istituzionale dell'Università della CalabriaConference object . 2015Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
visibility 1visibility views 1 download downloads 11 Powered bymore_vert Energy Procedia arrow_drop_down Archivio Istituzionale dell'Università della CalabriaArticle . 2015Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio Istituzionale dell'Università della CalabriaConference object . 2015Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors: Barbarelli, Silvio; Amelio, Mario; Florio, Gaetano; Scornaienchi, Nino Michele;handle: 20.500.11770/276110
Abstract An innovative system for the recovering of energy from tidal currents is proposed. The system is composed of a blade submerged in sea waters and connected to a vertical bar which, moving up and down through the tide action, transfers energy to a double effect piston pump. The latter feeds a pressurized reservoir able to provide water flow rate, at a suitable pressure level, to a hydraulic turbine. The basic configuration involves a four-bar linkage connecting the vertical bar and the piston pump. The system can be easily employed in all those sites whose seabed quickly deepens and whose tidal currents are parallel to the coast. The proposed system is a valid alternative to the current tidal energy converters: its big dimensions are necessary to balance the low efficiencies of the overall energy conversion. At any rate, during the working the seabed is not altered, neither is the aquatic fauna damaged.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 6 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2012 ItalyPublisher:Elsevier BV AMELIO, Mario; Barbarelli S.; Florio G.; SCORNAIENCHI, Nino Michele; Cutrupi A.; Minniti G.; Sanchez Blanco M.;handle: 20.500.11770/157525 , 20.500.11770/185557
Abstract The paper presents an innovative system for the collection of energy from river and tidal currents, designed with the objective of combining high performance, cost-efficiency and simplicity. The proposed system consists of a kinetic turbine able to be immersed inside water currents and kept in equilibrium by the action of a central deflector and a steel cable anchored to the shore. The size and the orientation of the deflector are defined according to the working conditions and desired equilibrium position. The paper also describes the design parameters of a demonstrative installation at Punta Pezzo (Villa San Giovanni, Italy), located in the Strait of Messina. In the selected site, nearby the coast, the peak current speed reaches 3 m/s (6 kn). The turbine and its components have been designed assuming that the machine will always work under maximum power coefficient conditions. This implies a variable rotational speed, so the use of an inverter becomes mandatory. Preliminary performance estimations show that the system can provide electrical power of about 470 kW, with 43% efficiency when the system works under optimal conditions.
Applied Energy arrow_drop_down Archivio Istituzionale dell'Università della CalabriaArticle . 2012Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio Istituzionale dell'Università della CalabriaConference object . 2011Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.11.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down Archivio Istituzionale dell'Università della CalabriaArticle . 2012Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio Istituzionale dell'Università della CalabriaConference object . 2011Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.11.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2016 ItalyPublisher:Elsevier BV Authors: Diego PERRONE; Mario AMELIO;handle: 20.500.11770/341529
Abstract The Conventional coal-fired plants are large contributors to air pollution and greenhouse gas. The combustion generates pollutants such as oxides of sulphur, nitrogen, and carbon as well as fine organic and inorganic particulates. The new technologies able to reduce drastically the pollutant emissions and facilitate to use of coal in an environmentally more friendly way, are commonly known as clean coal technologies (CCT). In this context the CCS technologies play an important role to reduce the CO2 emissions. The only form with truly zero CO2 emissions in existence today is pre-combustion gas separation, namely, the combustion of fuel using oxygen instead of air. It is well known that burning pulverized coal in pure oxygen increases the flame temperatures, thus also increases NOx emissions. Therefore, to moderate the flame temperature and reduce NOx the oxygen is mixed with recycled flue gas (RFG). This approach to reduce CO2 emissions is often called oxy-firing or oxy-fuel combustion. The purified CO2 stream is then compressed and condensed to produce a manageable effluent of liquid CO2, which can be sequestered for storage (CCS) or for use in subsequent processes (CCR). MILD (Moderate or Intensive Low Dilution) or HiTAC (High Temperature Air Combustion) is an innovative combustion technology and probably the most important achievement of the combustion technology in recent years. In MILD combustion the reactions take place in almost the whole volume of the combustion chamber. This leads to temperature and species concentration fields uniform in the chamber. The fuel is oxidized in an environment that contains a substantial amount of inert gases (N2, CO2, H2O) and low oxygen concentrations. This is caused by an internal recirculation of combustion products generated by injecting preheated air jets into the combustion chamber with very high momentum, bringing the temperatures close to the combustion products temperature, reducing the NOx emissions. Because both technologies allow reductions of pollutant emissions, the aim of this work is to demonstrate the advantages of a combination of these two combustion technologies in order to analyze the temperature and specie concentrations field, the CO2 and NOx emissions by means of CFD. The goal is understand if it is possible to combine the MILD combustion and OXY one in order to reduce the NOx emissions, and capture the CO2.
Energy Procedia arrow_drop_down Archivio Istituzionale dell'Università della CalabriaConference object . 2016Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2016.11.161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 8 Powered bymore_vert Energy Procedia arrow_drop_down Archivio Istituzionale dell'Università della CalabriaConference object . 2016Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2016.11.161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 ItalyPublisher:SAE International Authors: ALGIERI, Angelo; AMELIO, Mario; BOVA, Sergio; Morrone P.;doi: 10.4271/2009-24-0155
handle: 20.500.11770/122581
The work aims at analysing the energetic performances of monolith and pellet emission control systems using unidirectional and reverse-flow design (passive and active flow control respectively). To this purpose a one- dimensional transient model has been developed and the cooling process of different system configurations has been studied. The influence of the engine operating conditions on the system performances has been analysed and the fuel saving capability of the several arrangements has been investigated. The analysis showed that the system with active reverse flow and pellet packed bed design presents higher heat retention capability. Moreover, the numerical model put in evidence the large influence of the exhaust gas temperature on the energy efficiency of the emission control systems and the significant effect of unburned hydrocarbons concentration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2009-24-0155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2009-24-0155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2017 ItalyPublisher:Elsevier BV Authors: Barbarelli, S.; Amelio, M.; Florio, G.; Scornaienchi, N. M.;handle: 20.500.11770/268743
Abstract The authors present a combined method using statistical and numerical models for selecting a pump running as turbine in micro hydro plants. The data of the site (head and capacity) allow calculating two coefficients, C Q and C H , which identify the pump to use successfully as turbine in that place. A one dimensional model, starting from data available on the pumps manufacturers catalogues, reconstructs a virtual geometry of the PAT, then calculates the performances curves, head vs. capacity, efficiency vs. capacity. The procedure has been applied with the aim to select a PAT recovering energy from a pipeline whose characteristic curve is known.
Energy Procedia arrow_drop_down Archivio Istituzionale dell'Università della CalabriaConference object . 2017Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.08.282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 2visibility views 2 Powered bymore_vert Energy Procedia arrow_drop_down Archivio Istituzionale dell'Università della CalabriaConference object . 2017Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.08.282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Giacomo Lo Zupone; A. Cutrupi; Silvio Barbarelli; Mario Amelio; Nino Michele Scornaienchi; Gaetano Florio;handle: 20.500.11770/143749
AbstractSince 2009, the team DIMEG Unical and SintEnergy srl have been developing an innovative kinetic turbine able to produce energy form tidal currents. The machine is able to maintain the frontal position to the flow only thanks to its geometry and technical solutions. This turbine doesn’t need any concrete structure, nor pylons or floating devices; in terms of energy conversion, it doesn’t use any nacelle, gearbox, external generator, but only a little stabilizer, a permanent magnetic generator and a coast anchoring system able to retain the machine during the working operations. A first cost evaluation has been performed in this work, together with an approximate LCOE calculation, in order to compare this device to the other ones in the pre commercialization phase. The project is in an early stage of the development, but quite ready for a prototype realization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.346&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Average influence Top 10% impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.346&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Funded by:EC | NEXT-CSPEC| NEXT-CSPRovense F.; Reyes-Belmonte M. A.; González-Aguilar J.; Amelio M.; Bova S.; Romero M.;handle: 20.500.11770/298981
Abstract This paper presents a novel power block concept for flexible electricity dispatch in a Concentrating Solar Power (CSP) plant. The power block is based on intercooled – unfired regenerative closed air Brayton cycle that is connected to a pressurized solar air receiver. The Closed Brayton cycle uses a mass flow regulation system centered on the pressure regulation (auxiliary compressor and bleed valve) in order to control the Turbine Inlet Temperature (TIT). Doing so, the system is able to modulate turbine electricity production according to variations in the solar resource and changes in power electric demand. It has been found that the proposed power block is able to fully cover the electricity demand curve for those days with high solar resource. In case of integrating particles-based high temperature Thermal Energy Storage (TES) system, the power block can extend its production till the next day following the electricity curve demand during summer period. During winter period, the power plant can extend its production for a few hours due to the lower solar resource and the higher electric curve demand load.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.02.135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 45 citations 45 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 9 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.02.135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 ItalyPublisher:Hindawi Limited Authors: AMELIO, Mario; FLORIO, Gaetano; Morrone P; Senatore S.;doi: 10.1002/er.1332
handle: 20.500.11770/145534
On–off valve systems, commonly used in regenerative thermal oxidizer (RTO) plants, generate, during the opening time, a mass flow rate (MFR) which is constant. On the contrary, rotary valve systems, which are increasingly adopted in RTO plants, are characterized by variable MFR profiles. In this work, the energy requirements of two RTO systems, equipped with on–off or rotary valves, were determined using a home-developed numerical code. Energy performances were evaluated by calculating the thermal efficiency and pressure drop within structured or random packed bed RTO systems, at the same mean MFR. The results demonstrated that thermal efficiency was only moderately influenced by the valve system, and is slightly lower for the RTO with on–off valve. On the other hand, the study revealed that energy requirements of all RTO systems were basically unaffected by cycle duration, allowing valve rotational velocity to be freely set to maximize for other technical requirements. On the contrary, pressure drop was greatly influenced by the valve type and increased as variability in MFR function augmented. Moreover, the type of regenerator, structured or random packed bed, affected differently the total energy requirements (basically pumping energy plus auxiliary fuel). Energy requirements of structured and random regenerators were comparable only when volatile organic compounds concentration was lower than typical values encountered in the industrial practise. In other cases, structured regenerators RTO were more competitive. Finally, structured regenerators are usually the best choice when rotating valve distribution systems are adopted. Copyright © 2007 John Wiley & Sons, Ltd.
Open Access Reposito... arrow_drop_down International Journal of Energy ResearchArticle . 2007 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefArchivio Istituzionale dell'Università della CalabriaArticle . 2008Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.1332&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Average influence Average impulse Average Powered by BIP!
more_vert Open Access Reposito... arrow_drop_down International Journal of Energy ResearchArticle . 2007 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefArchivio Istituzionale dell'Università della CalabriaArticle . 2008Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.1332&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2018 ItalyPublisher:Elsevier BV D. Perrone; T. Castiglione; P. Morrone; S. Barbarelli; M. Amelio;handle: 20.500.11770/290255
Abstract Oxy-MILD (Moderate or Intensive Low Oxygen Dilution) combustion is an attractive technology for increasing combustion efficiency and reducing the nitric oxides with respect to the conventional combustion in traditional boilers or furnaces. This technology is a combination of MILD combustion, which exploits the initial preheating of combustion air up to 800÷1300 °C and the simultaneous recirculation of the hot flue gases, and of Oxy-Combustion, which uses pure oxygen (greater than 95% purity) as oxidant instead of air. The combination of both technologies is expected to bring synergetic effects: NO x reduction, CO 2 capture possibility, fuel flexibility and uniformity of heat fluxes and species concentrations. This study focuses, in particular, on the analysis, by a CFD approach, of the NO x emissions for Oxy-MILD combustion of pulverized coal in a new concept of industrial boiler. The boiler, fueled with a high-volatile coal, is equipped with five burners and three outlets of the combustion products, localized on the top wall. Each burner is made-up of a central pulverized coal jet surrounded by six preheated oxygen jets. This configuration allows the achievement of the MILD combustion in pure oxygen. Results show that the goal of NO x reduction with this combustion approach is achieved. A value of about 296 mg/Nm 3 @6%O 2 at the boiler exit is obtained under Oxy-MILD conditions, which is significantly lower than 600-800 mg/Nm 3 @6%O 2 obtained in a traditional boiler.
Energy Procedia arrow_drop_down Archivio Istituzionale dell'Università della CalabriaConference object . 2018Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.08.143&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Procedia arrow_drop_down Archivio Istituzionale dell'Università della CalabriaConference object . 2018Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.08.143&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2015 ItalyPublisher:Elsevier BV Authors: Diego Perrone; Mario Amelio;handle: 20.500.11770/132075 , 20.500.11770/341575
AbstractFluidized bed reactors are found in a wide range of applications in various industrial operations, including chemical, mechanical, petroleum, mineral and pharmaceutical industries. This work aims to study hydrodynamics and heat transfer between fluidized bed and a heated wall using the Eulerian – Eulerian approach. Gas/particle flow behavior in the riser section of a Bubbling Fluidized Bed has been simulated using a Computational Fluid Dynamics (CFD) combined with a Kinetics Theory of Granular Flow (KTGF). Conservation equations of mass and momentum for each phase has been solved using the finite volume technique. The results of numerical solutions have been compared with results from literature.
Energy Procedia arrow_drop_down Archivio Istituzionale dell'Università della CalabriaArticle . 2015Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio Istituzionale dell'Università della CalabriaConference object . 2015Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
visibility 1visibility views 1 download downloads 11 Powered bymore_vert Energy Procedia arrow_drop_down Archivio Istituzionale dell'Università della CalabriaArticle . 2015Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio Istituzionale dell'Università della CalabriaConference object . 2015Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors: Barbarelli, Silvio; Amelio, Mario; Florio, Gaetano; Scornaienchi, Nino Michele;handle: 20.500.11770/276110
Abstract An innovative system for the recovering of energy from tidal currents is proposed. The system is composed of a blade submerged in sea waters and connected to a vertical bar which, moving up and down through the tide action, transfers energy to a double effect piston pump. The latter feeds a pressurized reservoir able to provide water flow rate, at a suitable pressure level, to a hydraulic turbine. The basic configuration involves a four-bar linkage connecting the vertical bar and the piston pump. The system can be easily employed in all those sites whose seabed quickly deepens and whose tidal currents are parallel to the coast. The proposed system is a valid alternative to the current tidal energy converters: its big dimensions are necessary to balance the low efficiencies of the overall energy conversion. At any rate, during the working the seabed is not altered, neither is the aquatic fauna damaged.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 6 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.12.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2012 ItalyPublisher:Elsevier BV AMELIO, Mario; Barbarelli S.; Florio G.; SCORNAIENCHI, Nino Michele; Cutrupi A.; Minniti G.; Sanchez Blanco M.;handle: 20.500.11770/157525 , 20.500.11770/185557
Abstract The paper presents an innovative system for the collection of energy from river and tidal currents, designed with the objective of combining high performance, cost-efficiency and simplicity. The proposed system consists of a kinetic turbine able to be immersed inside water currents and kept in equilibrium by the action of a central deflector and a steel cable anchored to the shore. The size and the orientation of the deflector are defined according to the working conditions and desired equilibrium position. The paper also describes the design parameters of a demonstrative installation at Punta Pezzo (Villa San Giovanni, Italy), located in the Strait of Messina. In the selected site, nearby the coast, the peak current speed reaches 3 m/s (6 kn). The turbine and its components have been designed assuming that the machine will always work under maximum power coefficient conditions. This implies a variable rotational speed, so the use of an inverter becomes mandatory. Preliminary performance estimations show that the system can provide electrical power of about 470 kW, with 43% efficiency when the system works under optimal conditions.
Applied Energy arrow_drop_down Archivio Istituzionale dell'Università della CalabriaArticle . 2012Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio Istituzionale dell'Università della CalabriaConference object . 2011Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.11.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down Archivio Istituzionale dell'Università della CalabriaArticle . 2012Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio Istituzionale dell'Università della CalabriaConference object . 2011Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.11.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2016 ItalyPublisher:Elsevier BV Authors: Diego PERRONE; Mario AMELIO;handle: 20.500.11770/341529
Abstract The Conventional coal-fired plants are large contributors to air pollution and greenhouse gas. The combustion generates pollutants such as oxides of sulphur, nitrogen, and carbon as well as fine organic and inorganic particulates. The new technologies able to reduce drastically the pollutant emissions and facilitate to use of coal in an environmentally more friendly way, are commonly known as clean coal technologies (CCT). In this context the CCS technologies play an important role to reduce the CO2 emissions. The only form with truly zero CO2 emissions in existence today is pre-combustion gas separation, namely, the combustion of fuel using oxygen instead of air. It is well known that burning pulverized coal in pure oxygen increases the flame temperatures, thus also increases NOx emissions. Therefore, to moderate the flame temperature and reduce NOx the oxygen is mixed with recycled flue gas (RFG). This approach to reduce CO2 emissions is often called oxy-firing or oxy-fuel combustion. The purified CO2 stream is then compressed and condensed to produce a manageable effluent of liquid CO2, which can be sequestered for storage (CCS) or for use in subsequent processes (CCR). MILD (Moderate or Intensive Low Dilution) or HiTAC (High Temperature Air Combustion) is an innovative combustion technology and probably the most important achievement of the combustion technology in recent years. In MILD combustion the reactions take place in almost the whole volume of the combustion chamber. This leads to temperature and species concentration fields uniform in the chamber. The fuel is oxidized in an environment that contains a substantial amount of inert gases (N2, CO2, H2O) and low oxygen concentrations. This is caused by an internal recirculation of combustion products generated by injecting preheated air jets into the combustion chamber with very high momentum, bringing the temperatures close to the combustion products temperature, reducing the NOx emissions. Because both technologies allow reductions of pollutant emissions, the aim of this work is to demonstrate the advantages of a combination of these two combustion technologies in order to analyze the temperature and specie concentrations field, the CO2 and NOx emissions by means of CFD. The goal is understand if it is possible to combine the MILD combustion and OXY one in order to reduce the NOx emissions, and capture the CO2.
Energy Procedia arrow_drop_down Archivio Istituzionale dell'Università della CalabriaConference object . 2016Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2016.11.161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 8 Powered bymore_vert Energy Procedia arrow_drop_down Archivio Istituzionale dell'Università della CalabriaConference object . 2016Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2016.11.161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 ItalyPublisher:SAE International Authors: ALGIERI, Angelo; AMELIO, Mario; BOVA, Sergio; Morrone P.;doi: 10.4271/2009-24-0155
handle: 20.500.11770/122581
The work aims at analysing the energetic performances of monolith and pellet emission control systems using unidirectional and reverse-flow design (passive and active flow control respectively). To this purpose a one- dimensional transient model has been developed and the cooling process of different system configurations has been studied. The influence of the engine operating conditions on the system performances has been analysed and the fuel saving capability of the several arrangements has been investigated. The analysis showed that the system with active reverse flow and pellet packed bed design presents higher heat retention capability. Moreover, the numerical model put in evidence the large influence of the exhaust gas temperature on the energy efficiency of the emission control systems and the significant effect of unburned hydrocarbons concentration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2009-24-0155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2009-24-0155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2017 ItalyPublisher:Elsevier BV Authors: Barbarelli, S.; Amelio, M.; Florio, G.; Scornaienchi, N. M.;handle: 20.500.11770/268743
Abstract The authors present a combined method using statistical and numerical models for selecting a pump running as turbine in micro hydro plants. The data of the site (head and capacity) allow calculating two coefficients, C Q and C H , which identify the pump to use successfully as turbine in that place. A one dimensional model, starting from data available on the pumps manufacturers catalogues, reconstructs a virtual geometry of the PAT, then calculates the performances curves, head vs. capacity, efficiency vs. capacity. The procedure has been applied with the aim to select a PAT recovering energy from a pipeline whose characteristic curve is known.
Energy Procedia arrow_drop_down Archivio Istituzionale dell'Università della CalabriaConference object . 2017Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.08.282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 2visibility views 2 Powered bymore_vert Energy Procedia arrow_drop_down Archivio Istituzionale dell'Università della CalabriaConference object . 2017Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.08.282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Giacomo Lo Zupone; A. Cutrupi; Silvio Barbarelli; Mario Amelio; Nino Michele Scornaienchi; Gaetano Florio;handle: 20.500.11770/143749
AbstractSince 2009, the team DIMEG Unical and SintEnergy srl have been developing an innovative kinetic turbine able to produce energy form tidal currents. The machine is able to maintain the frontal position to the flow only thanks to its geometry and technical solutions. This turbine doesn’t need any concrete structure, nor pylons or floating devices; in terms of energy conversion, it doesn’t use any nacelle, gearbox, external generator, but only a little stabilizer, a permanent magnetic generator and a coast anchoring system able to retain the machine during the working operations. A first cost evaluation has been performed in this work, together with an approximate LCOE calculation, in order to compare this device to the other ones in the pre commercialization phase. The project is in an early stage of the development, but quite ready for a prototype realization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.346&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Average influence Top 10% impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.346&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu