- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Jun Zhao; Muhammad Shahbaz; Xiucheng Dong; Kangyin Dong;Abstract To empirically verify whether financial risk affects global carbon emissions, this study investigates the financial risk-emission nexus by employing a global balanced panel dataset of 62 countries over the period 2003–2018. Furthermore, we explore the mediation effect of technological innovation on the financial risk-emission nexus. Fully considering potential regional heterogeneity and asymmetry, this study further analyzes the heterogeneous and asymmetric relationships among the variables, such as the difference between regional comprehensive economic partnership countries and other countries. The empirical results indicate that: (1) a mediation effect between financial risk and global carbon emissions exists; in other words, increased financial risk not only reduces global carbon emissions directly, but can also have an indirect impact in mitigating carbon emissions by promoting technological innovation; (2) the impacts of financial risk and technological innovation on global carbon emissions show significant regional heterogeneity; and (3) financial risk and technological innovation show asymmetry across different quantiles. To be specific, technological innovation and financial risk have a significant inhibitory effect on global carbon emissions only in the 10th quantile, while promoting carbon emissions in other quantiles.
Technological Foreca... arrow_drop_down Technological Forecasting and Social ChangeArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.techfore.2021.120751&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu274 citations 274 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Technological Foreca... arrow_drop_down Technological Forecasting and Social ChangeArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.techfore.2021.120751&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Frontiers Media SA Yue Dou; Yue Dou; Jun Zhao; Jun Zhao; Jiajia Dong;To investigate the nexus between natural gas consumption, global carbon dioxide (CO2) emissions, and technological innovation, this study employs a balanced panel dataset of 73 countries for the period 1990–2019 based on the fixed effect and random effect estimation methods. Considering potential heterogeneity in the natural gas-CO2nexus, this study divides the 73 countries into regional comprehensive economic partnership (RCEP) countries and non-RCEP countries for comparative analysis. The main findings indicate that natural gas consumption can significantly promote CO2emissions for the full sample and non-RCEP countries, and improved technological innovation can help alleviate CO2emissions from natural gas consumption. In the RCEP countries, technological innovation can improve the carbon emission reduction effect of natural gas. Furthermore, economic growth and global CO2emissions show an inverted U-shaped relationship, which confirms the environmental Kuznets curve hypothesis. Finally, several policy implications are provided to reduce global CO2emissions and promote green recovery in the post-epidemic era.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.651586&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.651586&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Kangyin Dong; Jun Zhao; Qingzhe Jiang; Xiucheng Dong;Abstract A sound and resilient global energy system can effectively guarantee normal production and green research and development activities, which have uncertain global greenhouse effect. Thus, to accurately investigate the potential impact of energy resilience on carbon dioxide (CO2) emissions, we first construct an energy resilience composite index based on three components (i.e., energy access, renewable energy, and energy efficiency) by employing cross-sectional data of 107 countries in 2016. Then, to explore the internal impact mechanism in the energy resilience-CO2 nexus, we divide the total effect of energy resilience on CO2 emissions into three effects: scale effect, technical effect, and composition effect. The main findings of this study show that: (1) increased energy resilience across the globe is positively associated with CO2 emissions, and three sub-indexes of energy resilience (i.e., energy access, renewable energy, and energy efficiency) affect greenhouse effect positively; (2) strong energy resilience and CO2 emissions show significant asymmetric and regional heterogeneous relationships; and (3) the positive energy resilience-CO2 nexus stems from the fact that the negative technical and composition effects of energy resilience on CO2 emissions are fully offset by the strong positive scale effect. Following the above conclusions, we propose several policy implications of strengthening energy resilience and mitigating the greenhouse effect.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2021.105659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2021.105659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Yichen Qian; Renjin Sun; Jun Zhao; Sasa Song; Pinchen Wang;To empirically investigate as to whether and how public infrastructure influences the global greenhouse effect, this study utilizes a panel dataset of 35 countries over the period 2003–2019 for regression estimation. Furthermore, regional heterogeneous and mediation effects between infrastructure and carbon dioxide (CO2) emissions are explored. The primary findings insist that: 1) at the global level, public infrastructure is positive associated with CO2 emissions. In other words, strengthening infrastructure at this stage is not conducive to mitigating the greenhouse effect; 2) public infrastructure construction development in Belt and Road Initiative (BRI) countries has a greater positive impact on CO2 emissions than in non-BRI countries; and 3) the mediation roles of industrial upgrading and trade openness are established; specifically, trade openness and industrial upgrading are valid transmission routes through which public infrastructure affects CO2 emissions. Based on the above three findings, a number of policy implications related to accelerate low-carbon construction of infrastructure and promote industrial upgrading are proposed.
Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2022.1048297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2022.1048297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Jun Zhao; Yue Dou; Xiucheng Dong; Kangyin Dong;Abstract This study empirically investigates the impact of energy inequality on household carbon dioxide (CO2) emissions in China by employing a balanced panel dataset for China's 30 provinces for the period 2000–2017. Fully considering the potential cross-sectional dependence, this study employs a series of empirical approaches allowing for cross-sectional dependence. Moreover, given the significant differences in energy inequality and household CO2 emissions, we further conduct an asymmetric analysis on the nexus between energy inequality and household CO2 emissions. The empirical results indicate energy inequality can positively affect the volume of household CO2 emissions; however, this finding makes no economic sense since it goes against the actual conditions in China (energy inequality and household CO2 emissions have shown reverse change trends in recent years). Simultaneously, we find that narrowing energy inequality can reduce the growth rate of CO2 emissions, a fact we confirm with a series of robustness tests. Notably, the impact of energy inequality on household CO2 growth is asymmetric across various quantiles (i.e., different regions). Accordingly, we highlight several relevant policy implications for the Chinese government to reduce household CO2 emissions and narrow energy inequality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2021.105502&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2021.105502&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Xiaohang Ren; Jun Zhao; Kangyin Dong;Abstract Low-carbon energy transition is conducive to saving energy and reducing emissions, and its impact on energy poverty warrants intensive attention. By employing a balanced panel dataset of China's 30 provinces for the period 2004–2017, we examine the causal relationship between low-carbon energy transition and energy poverty by using a novel nonparametric panel causality-in-quantiles (PCIQ) method. Also, the internal impact mechanism between low-carbon energy transition and energy poverty is analyzed. The primary findings of our study imply that low-carbon energy transition shows significant bidirectional causality with energy poverty alleviation. And the low-carbon energy transition can stimulate energy poverty alleviation by affecting poverty in the availability of energy services, the cleanness of energy consumption, the integrity of energy management, and energy affordability and efficiency. Our findings provide an important reference for the government to formulate relevant policies that promote the alleviation of energy poverty.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2021.105620&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu160 citations 160 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2021.105620&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Jun Zhao; Xiucheng Dong; Qingzhe Jiang; Hongdian Jiang; Kangyin Dong;Abstract To accelerate industrial structure adjustment and effectively mitigate carbon dioxide (CO2) emissions, this study aims to investigate the carbon emission reduction effect of China's industrial structure adjustment. For this purpose, considering the potential spatial effect, the spatial econometric technique is utilized. Also, the industrial structure adjustment is divided into industrial structure upgrading and industrial structure optimization for heterogeneous analysis. Then, we empirically explore the mediating role of energy efficiency in the relationship between industrial structure adjustment and CO2 emissions in China. Three findings are drawn from the estimation results: (1) the index of industrial structure upgrading in China has gradually increased, while the index of industrial structure optimization has displayed a slightly downward trend; (2) industrial structure upgrading shows a significant spatial negative correlation with CO2 emissions, while industrial structure optimization affects CO2 emissions positively; and (3) industrial structure upgrading can reduce CO2 emissions by improving energy efficiency, and industrial structure optimization can exacerbate the greenhouse effect by impeding energy efficiency improvements. Based on these findings, we make several policy suggestions for mitigating CO2 emissions and promoting industrial structure adjustment in China.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2021.105704&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu325 citations 325 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2021.105704&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Kangyin Dong; Muhammad Shahbaz; Jun Zhao;Abstract Pollution fees are an important financial tool for the government to achieve environmental protection goals. Accordingly, evaluating the emissions-reduction effect of pollution fees has important theoretical value for China's construction of an ecological civilization. Thus, using panel data of China's 30 provinces for the period 2000–2017, we examine the dynamic linkage between pollution fees and sulfur dioxide (SO2) as well as chemical oxygen demand (COD) emissions. We further explore the moderating role of pollution fees in the innovation-emission nexus and regional heterogeneity. The primary findings of our study indicate that: (1) The imposition of pollution fees and technological innovation can help mitigate SO2 and COD emissions. Economic growth shows a significant inverted U-shaped relationship between SO2 and COD emissions; (2) levying pollution fees can effectively promote the technological innovation of enterprises, thus further reducing pollutant emissions; and (3) the impacts of levying pollution fees on SO2 and COD emissions differ across various regions; in other words, significant regional heterogeneity exists between regions. Only in low-fees and low-emission regions can pollution fees help mitigate SO2 emissions. Finally, we provide several policy pathways to promote energy conservation and emissions reduction.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112695&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112695&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 CroatiaPublisher:Informa UK Limited Authors: Jun Zhao; Farhad Taghizadeh-Hesary; Kangyin Dong; Xiucheng Dong;Accelerating the green transition of the economy is an effective way to conserve energy and reduce emissions, and its impact on the greenhouse effect deserves in-depth discussion. Based on this, we examine the potential effect of China’s green growth on carbon dioxide (CO2) emissions by applying provincial panel data from 2004 to 2018. The regional heterogeneity and how does green finance affect the green growth-CO2 nexus are also checked. The primary findings imply that: (i) China’s green growth achieves preliminary results, and its impact on CO2 emissions is significantly negative. Also, green finance can facilitate carbon emission reduction; (ii) significant regional heterogeneity exists within various regions. Only in the central and western regions can green growth effectively reduce CO2 emissions, and in the eastern and central regions, green finance is conducive to promoting carbon reduction; and (iii) the mediating role of green finance is significant. In other words, China’s green growth not only mitigates the greenhouse effect directly, but also affects CO2 emissions indirectly by accelerating the development of green finance
Ekonomska Istraživan... arrow_drop_down Ekonomska IstraživanjaArticle . 2023Full-Text: https://hrcak.srce.hr/file/438588Data sources: HRČAK - Portal of scientific journals of Croatiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/1331677x.2022.2095522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 42 citations 42 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ekonomska Istraživan... arrow_drop_down Ekonomska IstraživanjaArticle . 2023Full-Text: https://hrcak.srce.hr/file/438588Data sources: HRČAK - Portal of scientific journals of Croatiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/1331677x.2022.2095522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Springer Science and Business Media LLC Authors: Kangyin Dong; Jun Zhao; Farhad Taghizadeh-Hesary;The primary purpose of this study is to quantitatively evaluate whether low-carbon energy transition has achieved preliminary progress in facilitating China's green evolution of economy following the provincial dataset. Besides, how improved energy efficiency moderates the influence of energy transition on green growth and the mediation effects are also quantitatively explored. The primary findings insist that low carbonization energy transition is positively associated with green growth, a finding detected by a series of sensitivity checks. Besides, the reciprocal actions between adjusting energy structure and raising energy productivity can effectively strengthen their roles in promoting green growth. In addition, boosting clean energy transition plays an indirect role in green growth by enhancing energy productivity while directly facilitating green growth. Following the three outcomes, this study puts forward some policy implications on enhancing governmental supervision, promoting clean energy evolution, and upgrading ecological protection technologies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-023-10123-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-023-10123-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Jun Zhao; Muhammad Shahbaz; Xiucheng Dong; Kangyin Dong;Abstract To empirically verify whether financial risk affects global carbon emissions, this study investigates the financial risk-emission nexus by employing a global balanced panel dataset of 62 countries over the period 2003–2018. Furthermore, we explore the mediation effect of technological innovation on the financial risk-emission nexus. Fully considering potential regional heterogeneity and asymmetry, this study further analyzes the heterogeneous and asymmetric relationships among the variables, such as the difference between regional comprehensive economic partnership countries and other countries. The empirical results indicate that: (1) a mediation effect between financial risk and global carbon emissions exists; in other words, increased financial risk not only reduces global carbon emissions directly, but can also have an indirect impact in mitigating carbon emissions by promoting technological innovation; (2) the impacts of financial risk and technological innovation on global carbon emissions show significant regional heterogeneity; and (3) financial risk and technological innovation show asymmetry across different quantiles. To be specific, technological innovation and financial risk have a significant inhibitory effect on global carbon emissions only in the 10th quantile, while promoting carbon emissions in other quantiles.
Technological Foreca... arrow_drop_down Technological Forecasting and Social ChangeArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.techfore.2021.120751&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu274 citations 274 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Technological Foreca... arrow_drop_down Technological Forecasting and Social ChangeArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.techfore.2021.120751&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Frontiers Media SA Yue Dou; Yue Dou; Jun Zhao; Jun Zhao; Jiajia Dong;To investigate the nexus between natural gas consumption, global carbon dioxide (CO2) emissions, and technological innovation, this study employs a balanced panel dataset of 73 countries for the period 1990–2019 based on the fixed effect and random effect estimation methods. Considering potential heterogeneity in the natural gas-CO2nexus, this study divides the 73 countries into regional comprehensive economic partnership (RCEP) countries and non-RCEP countries for comparative analysis. The main findings indicate that natural gas consumption can significantly promote CO2emissions for the full sample and non-RCEP countries, and improved technological innovation can help alleviate CO2emissions from natural gas consumption. In the RCEP countries, technological innovation can improve the carbon emission reduction effect of natural gas. Furthermore, economic growth and global CO2emissions show an inverted U-shaped relationship, which confirms the environmental Kuznets curve hypothesis. Finally, several policy implications are provided to reduce global CO2emissions and promote green recovery in the post-epidemic era.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.651586&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.651586&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Kangyin Dong; Jun Zhao; Qingzhe Jiang; Xiucheng Dong;Abstract A sound and resilient global energy system can effectively guarantee normal production and green research and development activities, which have uncertain global greenhouse effect. Thus, to accurately investigate the potential impact of energy resilience on carbon dioxide (CO2) emissions, we first construct an energy resilience composite index based on three components (i.e., energy access, renewable energy, and energy efficiency) by employing cross-sectional data of 107 countries in 2016. Then, to explore the internal impact mechanism in the energy resilience-CO2 nexus, we divide the total effect of energy resilience on CO2 emissions into three effects: scale effect, technical effect, and composition effect. The main findings of this study show that: (1) increased energy resilience across the globe is positively associated with CO2 emissions, and three sub-indexes of energy resilience (i.e., energy access, renewable energy, and energy efficiency) affect greenhouse effect positively; (2) strong energy resilience and CO2 emissions show significant asymmetric and regional heterogeneous relationships; and (3) the positive energy resilience-CO2 nexus stems from the fact that the negative technical and composition effects of energy resilience on CO2 emissions are fully offset by the strong positive scale effect. Following the above conclusions, we propose several policy implications of strengthening energy resilience and mitigating the greenhouse effect.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2021.105659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2021.105659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Yichen Qian; Renjin Sun; Jun Zhao; Sasa Song; Pinchen Wang;To empirically investigate as to whether and how public infrastructure influences the global greenhouse effect, this study utilizes a panel dataset of 35 countries over the period 2003–2019 for regression estimation. Furthermore, regional heterogeneous and mediation effects between infrastructure and carbon dioxide (CO2) emissions are explored. The primary findings insist that: 1) at the global level, public infrastructure is positive associated with CO2 emissions. In other words, strengthening infrastructure at this stage is not conducive to mitigating the greenhouse effect; 2) public infrastructure construction development in Belt and Road Initiative (BRI) countries has a greater positive impact on CO2 emissions than in non-BRI countries; and 3) the mediation roles of industrial upgrading and trade openness are established; specifically, trade openness and industrial upgrading are valid transmission routes through which public infrastructure affects CO2 emissions. Based on the above three findings, a number of policy implications related to accelerate low-carbon construction of infrastructure and promote industrial upgrading are proposed.
Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2022.1048297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2022.1048297&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Jun Zhao; Yue Dou; Xiucheng Dong; Kangyin Dong;Abstract This study empirically investigates the impact of energy inequality on household carbon dioxide (CO2) emissions in China by employing a balanced panel dataset for China's 30 provinces for the period 2000–2017. Fully considering the potential cross-sectional dependence, this study employs a series of empirical approaches allowing for cross-sectional dependence. Moreover, given the significant differences in energy inequality and household CO2 emissions, we further conduct an asymmetric analysis on the nexus between energy inequality and household CO2 emissions. The empirical results indicate energy inequality can positively affect the volume of household CO2 emissions; however, this finding makes no economic sense since it goes against the actual conditions in China (energy inequality and household CO2 emissions have shown reverse change trends in recent years). Simultaneously, we find that narrowing energy inequality can reduce the growth rate of CO2 emissions, a fact we confirm with a series of robustness tests. Notably, the impact of energy inequality on household CO2 growth is asymmetric across various quantiles (i.e., different regions). Accordingly, we highlight several relevant policy implications for the Chinese government to reduce household CO2 emissions and narrow energy inequality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2021.105502&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2021.105502&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Xiaohang Ren; Jun Zhao; Kangyin Dong;Abstract Low-carbon energy transition is conducive to saving energy and reducing emissions, and its impact on energy poverty warrants intensive attention. By employing a balanced panel dataset of China's 30 provinces for the period 2004–2017, we examine the causal relationship between low-carbon energy transition and energy poverty by using a novel nonparametric panel causality-in-quantiles (PCIQ) method. Also, the internal impact mechanism between low-carbon energy transition and energy poverty is analyzed. The primary findings of our study imply that low-carbon energy transition shows significant bidirectional causality with energy poverty alleviation. And the low-carbon energy transition can stimulate energy poverty alleviation by affecting poverty in the availability of energy services, the cleanness of energy consumption, the integrity of energy management, and energy affordability and efficiency. Our findings provide an important reference for the government to formulate relevant policies that promote the alleviation of energy poverty.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2021.105620&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu160 citations 160 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2021.105620&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Jun Zhao; Xiucheng Dong; Qingzhe Jiang; Hongdian Jiang; Kangyin Dong;Abstract To accelerate industrial structure adjustment and effectively mitigate carbon dioxide (CO2) emissions, this study aims to investigate the carbon emission reduction effect of China's industrial structure adjustment. For this purpose, considering the potential spatial effect, the spatial econometric technique is utilized. Also, the industrial structure adjustment is divided into industrial structure upgrading and industrial structure optimization for heterogeneous analysis. Then, we empirically explore the mediating role of energy efficiency in the relationship between industrial structure adjustment and CO2 emissions in China. Three findings are drawn from the estimation results: (1) the index of industrial structure upgrading in China has gradually increased, while the index of industrial structure optimization has displayed a slightly downward trend; (2) industrial structure upgrading shows a significant spatial negative correlation with CO2 emissions, while industrial structure optimization affects CO2 emissions positively; and (3) industrial structure upgrading can reduce CO2 emissions by improving energy efficiency, and industrial structure optimization can exacerbate the greenhouse effect by impeding energy efficiency improvements. Based on these findings, we make several policy suggestions for mitigating CO2 emissions and promoting industrial structure adjustment in China.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2021.105704&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu325 citations 325 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2021.105704&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Kangyin Dong; Muhammad Shahbaz; Jun Zhao;Abstract Pollution fees are an important financial tool for the government to achieve environmental protection goals. Accordingly, evaluating the emissions-reduction effect of pollution fees has important theoretical value for China's construction of an ecological civilization. Thus, using panel data of China's 30 provinces for the period 2000–2017, we examine the dynamic linkage between pollution fees and sulfur dioxide (SO2) as well as chemical oxygen demand (COD) emissions. We further explore the moderating role of pollution fees in the innovation-emission nexus and regional heterogeneity. The primary findings of our study indicate that: (1) The imposition of pollution fees and technological innovation can help mitigate SO2 and COD emissions. Economic growth shows a significant inverted U-shaped relationship between SO2 and COD emissions; (2) levying pollution fees can effectively promote the technological innovation of enterprises, thus further reducing pollutant emissions; and (3) the impacts of levying pollution fees on SO2 and COD emissions differ across various regions; in other words, significant regional heterogeneity exists between regions. Only in low-fees and low-emission regions can pollution fees help mitigate SO2 emissions. Finally, we provide several policy pathways to promote energy conservation and emissions reduction.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112695&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112695&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 CroatiaPublisher:Informa UK Limited Authors: Jun Zhao; Farhad Taghizadeh-Hesary; Kangyin Dong; Xiucheng Dong;Accelerating the green transition of the economy is an effective way to conserve energy and reduce emissions, and its impact on the greenhouse effect deserves in-depth discussion. Based on this, we examine the potential effect of China’s green growth on carbon dioxide (CO2) emissions by applying provincial panel data from 2004 to 2018. The regional heterogeneity and how does green finance affect the green growth-CO2 nexus are also checked. The primary findings imply that: (i) China’s green growth achieves preliminary results, and its impact on CO2 emissions is significantly negative. Also, green finance can facilitate carbon emission reduction; (ii) significant regional heterogeneity exists within various regions. Only in the central and western regions can green growth effectively reduce CO2 emissions, and in the eastern and central regions, green finance is conducive to promoting carbon reduction; and (iii) the mediating role of green finance is significant. In other words, China’s green growth not only mitigates the greenhouse effect directly, but also affects CO2 emissions indirectly by accelerating the development of green finance
Ekonomska Istraživan... arrow_drop_down Ekonomska IstraživanjaArticle . 2023Full-Text: https://hrcak.srce.hr/file/438588Data sources: HRČAK - Portal of scientific journals of Croatiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/1331677x.2022.2095522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 42 citations 42 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ekonomska Istraživan... arrow_drop_down Ekonomska IstraživanjaArticle . 2023Full-Text: https://hrcak.srce.hr/file/438588Data sources: HRČAK - Portal of scientific journals of Croatiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/1331677x.2022.2095522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Springer Science and Business Media LLC Authors: Kangyin Dong; Jun Zhao; Farhad Taghizadeh-Hesary;The primary purpose of this study is to quantitatively evaluate whether low-carbon energy transition has achieved preliminary progress in facilitating China's green evolution of economy following the provincial dataset. Besides, how improved energy efficiency moderates the influence of energy transition on green growth and the mediation effects are also quantitatively explored. The primary findings insist that low carbonization energy transition is positively associated with green growth, a finding detected by a series of sensitivity checks. Besides, the reciprocal actions between adjusting energy structure and raising energy productivity can effectively strengthen their roles in promoting green growth. In addition, boosting clean energy transition plays an indirect role in green growth by enhancing energy productivity while directly facilitating green growth. Following the three outcomes, this study puts forward some policy implications on enhancing governmental supervision, promoting clean energy evolution, and upgrading ecological protection technologies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-023-10123-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-023-10123-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu