- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011 Italy, Italy, Belgium, United KingdomPublisher:Wiley Publicly fundedFunded by:EC | GHG EUROPE, EC | POPFULLEC| GHG EUROPE ,EC| POPFULLDon, Axel; Osborne, Bruce; Hastings, Astley; Skiba, Ute; Carter, Mette S.; Drewer, Julia; Flessa, Heinz; Freibauer, Annette; Hyvönen, Niina; Jones, Mike B.; Lanigan, Gary J.; Mander, Ülo; Monti, Andrea; Djomo, Sylvestre Njakou; Valentine, John; Walter, Katja; Zegada-Lizarazu, Walter; Zenone, Terenzio;AbstractBioenergy from crops is expected to make a considerable contribution to climate change mitigation. However, bioenergy is not necessarily carbon neutral because emissions of CO2, N2O and CH4 during crop production may reduce or completely counterbalance CO2 savings of the substituted fossil fuels. These greenhouse gases (GHGs) need to be included into the carbon footprint calculation of different bioenergy crops under a range of soil conditions and management practices. This review compiles existing knowledge on agronomic and environmental constraints and GHG balances of the major European bioenergy crops, although it focuses on dedicated perennial crops such as Miscanthus and short rotation coppice species. Such second‐generation crops account for only 3% of the current European bioenergy production, but field data suggest they emit 40% to >99% less N2O than conventional annual crops. This is a result of lower fertilizer requirements as well as a higher N‐use efficiency, due to effective N‐recycling. Perennial energy crops have the potential to sequester additional carbon in soil biomass if established on former cropland (0.44 Mg soil C ha−1 yr−1 for poplar and willow and 0.66 Mg soil C ha−1 yr−1 for Miscanthus). However, there was no positive or even negative effects on the C balance if energy crops are established on former grassland. Increased bioenergy production may also result in direct and indirect land‐use changes with potential high C losses when native vegetation is converted to annual crops. Although dedicated perennial energy crops have a high potential to improve the GHG balance of bioenergy production, several agronomic and economic constraints still have to be overcome.
Archivio istituziona... arrow_drop_down GCB BioenergyArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/j.17...Other literature typeData sources: European Union Open Data PortalNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1757-1707.2011.01116.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 307 citations 307 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down GCB BioenergyArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/j.17...Other literature typeData sources: European Union Open Data PortalNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1757-1707.2011.01116.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 IrelandPublisher:Elsevier BV Publicly fundedFunded by:Department of Agriculture, Food and the Marine, IrelandDepartment of Agriculture, Food and the Marine, IrelandCatherine J. Watson; Rachael Carolan; Patrick J. Forrestal; Mary Harty; Mary Harty; Gary Lanigan; Dominika Krol; Karl G. Richards; Niharika Rahman;handle: 11019/3580
Abstract The present study evaluated the impact of three nitrogen (N) fertiliser formulations, applied at five N rates, on nitrous oxide (N2O) fluxes and annual direct N2O-N emission factors (EF) in temperate grassland. Closed static chambers were used to measure direct N2O fluxes at three geographically dispersed locations in Ireland over a two-year period, generating a total of 90 EFs across the six site-years and treatments. The three fertiliser formulations tested were calcium ammonium nitrate (CAN), urea, and urea amended with the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) at 100, 200, 300, 400 and 500 kg N ha−1 yr−1. All treatments were applied in five equal split applications ranging from 20 to 100 kg N ha−1 split-1 over the growing season. The N2O-N EFs for CAN ranged from 0.39 − 4.68 with a mean of 1.62 (cv. 81 %), for urea from 0.04 – 1.7 with a mean of 0.46 (cv. 77 %) and for urea + NBPT from 0.18 – 1.7 with a mean of 0.60 (cv. 59 %). A significant positive relationship was found between the N rate and the annual N2O-N EFs in three (CAN), five (urea) and two (urea + NBPT) of six the site-years. For the remainder of the site-years EF was unaffected by N rate. These results indicate that fertiliser N choice and rate can be management factors that enable farmers to alter N2O losses in temperate grassland. Notably, the response of EF to increasing N rate was not consistent across the fertilisers, with the EF from urea being the most sensitive to the increasing N rate, urea + NBPT the least sensitive and CAN being intermediate. The accuracy of national greenhouse gas accounting could be improved by including N fertiliser formulation and its rate of application. Further research is also needed to understand the inconsistency in EF response to N rate across sites.
T-Stór arrow_drop_down Agriculture Ecosystems & EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agee.2021.107382&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert T-Stór arrow_drop_down Agriculture Ecosystems & EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agee.2021.107382&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Embargo end date: 20 Sep 2018 IrelandPublisher:Public Library of Science (PLoS) Publicly fundedAuthors: Brennan, Raymond B.; Healy, Mark G.; Fenton, Owen; Lanigan, Gary J.;Land application of cattle slurry can result in incidental and chronic phosphorus (P) loss to waterbodies, leading to eutrophication. Chemical amendment of slurry has been proposed as a management practice, allowing slurry nutrients to remain available to plants whilst mitigating P losses in runoff. The effectiveness of amendments is well understood but their impacts on other loss pathways (so-called 'pollution swapping' potential) and therefore the feasibility of using such amendments has not been examined to date. The aim of this laboratory scale study was to determine how the chemical amendment of slurry affects losses of NH3, CH4, N2O, and CO2. Alum, FeCl2, Polyaluminium chloride (PAC)-and biochar reduced NH3 emissions by 92, 54, 65 and 77% compared to the slurry control, while lime increased emissions by 114%. Cumulative N2O emissions of cattle slurry increased when amended with alum and FeCl2 by 202% and 154% compared to the slurry only treatment. Lime, PAC and biochar resulted in a reduction of 44, 29 and 63% in cumulative N2O loss compared to the slurry only treatment. Addition of amendments to slurry did not significantly affect soil CO2 release during the study while CH4 emissions followed a similar trend for all of the amended slurries applied, with an initial increase in losses followed by a rapid decrease for the duration of the study. All of the amendments examined reduced the initial peak in CH4 emissions compared to the slurry only treatment. There was no significant effect of slurry amendments on global warming potential (GWP) caused by slurry land application, with the exception of biochar. After considering pollution swapping in conjunction with amendment effectiveness, the amendments recommended for further field study are PAC, alum and lime. This study has also shown that biochar has potential to reduce GHG losses arising from slurry application.
National University ... arrow_drop_down National University of Ireland (NUI), Galway: ARANArticle . 2015License: CC BY NC NDFull-Text: http://hdl.handle.net/10379/10527Data sources: Bielefeld Academic Search Engine (BASE)University of Galway Research RepositoryArticle . 2015License: CC BY NC NDData sources: University of Galway Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0111965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert National University ... arrow_drop_down National University of Ireland (NUI), Galway: ARANArticle . 2015License: CC BY NC NDFull-Text: http://hdl.handle.net/10379/10527Data sources: Bielefeld Academic Search Engine (BASE)University of Galway Research RepositoryArticle . 2015License: CC BY NC NDData sources: University of Galway Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0111965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Embargo end date: 08 Aug 2019 United KingdomPublisher:Wiley Publicly fundedAuthors: Owen, Nick A; Choncubhair, Órlaith Ní; Males, Jamie; Del Real Laborde, José Ignacio; +3 AuthorsOwen, Nick A; Choncubhair, Órlaith Ní; Males, Jamie; Del Real Laborde, José Ignacio; Rubio-Cortés, Ramón; Griffiths, Howard; Lanigan, Gary;pmid: 26177873
AbstractMass and energy fluxes were measured over a field of Agave tequilana in Mexico using eddy covariance (EC) methodology. Data were gathered over 252 d, including the transition from wet to dry periods. Net ecosystem exchanges (FN,EC) displayed a crassulacean acid metabolism (CAM) rhythm that alternated from CO2 sink at night to CO2 source during the day, and partitioned canopy fluxes (FA,EC) showed a characteristic four‐phase CO2 exchange pattern. Results were cross‐validated against diel changes in titratable acidity, leaf‐unfurling rates, energy exchange fluxes and reported biomass yields. Projected carbon balance (g C m−2 year−1, mean ± 95% confidence interval) indicated the site was a net sink of −333 ± 24, of which contributions from soil respiration were +692 ± 7, and FA,EC was −1025 ± 25. EC estimated biomass yield was 20.1 Mg (dry) ha−1 year−1. Average integrated daily FA,EC was −234 ± 5 mmol CO2 m−2 d−1 and persisted almost unchanged after 70 d of drought conditions. Regression analyses were performed on the EC data to identify the best environmental predictors of FA. Results suggest that the carbon acquisition strategy of Agave offers productivity and drought resilience advantages over conventional semi‐arid C3 and C4 bioenergy candidates.
Apollo arrow_drop_down Plant Cell & EnvironmentArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.12610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Apollo arrow_drop_down Plant Cell & EnvironmentArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.12610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 IrelandPublisher:Elsevier BV Publicly fundedFunded by:Department of Agriculture, Food and the Marine, IrelandDepartment of Agriculture, Food and the Marine, IrelandAuthors: D.J. Krol; P.J. Forrestal; G.J. Lanigan; K.G. Richards;Ruminant urine patches deposited onto pasture are a significant source of greenhouse gas nitrous oxide (N2O) from livestock agriculture. Increasing food demand is predicted to lead to a rise in ruminant numbers globally, which, in turn will result in elevated levels of urine-derived N2O. Therefore mitigation strategies are urgently needed. Urine contains hippuric acid and together with one of its breakdown products, benzoic acid, has previously been linked to mitigating N2O emissions from urine patches in laboratory studies. However, the sole field study to date found no effect of hippuric and benzoic acid concentration on N2O emissions. Therefore the aim of this study was to investigate the in situ effect of these urine constituents on N2O emissions under conditions conducive to denitrification losses. Unadulterated bovine urine (0 mM of hippuric acid, U) was applied, as well as urine amended with either benzoic acid (96 mM, U+BA) or varying rates of hippuric acid (8 and 82 mM, U+HA1, U+HA2). Soil inorganic nitrogen (N) and N2O fluxes were monitored over a 66 day period. Urine application resulted in elevated N2O flux for 44 days. The largest N2O fluxes accounting for between 13% (U) and 26% (U+HA1) of total loss were observed on the day of urine application. Between 0.9 and 1.3% of urine-N was lost as N2O. Cumulative N2O loss from the control was 0.3 kg N2O-Nha(-1) compared with 11, 9, 12, and 10 kg N2O-Nha(-1) for the U, U+HA1, U+HA2, and U+BA treatments, respectively. Incremental increases in urine HA or increase in BA concentrations had no effect on N2O emissions. Although simulation of dietary manipulation to reduce N2O emissions through altering individual urine constituents appears to have no effect, there may be other manipulations such as reducing N content or inclusion of synthetic inhibitory products that warrant further investigation.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2014.12.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2014.12.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Publicly fundedFunded by:Department of Agriculture, Food and the Marine, Ireland, EPADepartment of Agriculture, Food and the Marine, Ireland ,EPAKevin, Black; Gary, Lanigan; Mark, Ward; Ian, Kavanagh; Daire Ó, hUallacháin; Lilian O, Sullivan;pmid: 36764538
Landscape features, such as hedgerows, can play a role in enhancing terrestrial carbon (C) sinks, especially in North-western Europe, where they form a large part of the agricultural landscape. To date, there are few studies relating aerial imagery to ground-truthed biomass measurements and relating changes in biomass to hedgerow management. This study sought to develop relationships between measured biomass of hedgerows and digital elevation model (DEM) data from drones and aircraft. Furthermore, changes in hedgerow above-ground and below-ground biomass stocks were assessed using a systematic grid sample, DEM data and developed volume-biomass regression models. The developed inventory framework was then applied to a pilot study area of 419,701 ha in Ireland. Robust relationships were developed relating DEM data to volume and above-ground biomass. Model equations were also developed linking above-ground and below-ground biomass. However, these were less robust due to the confounding impacts of hedgerow management intensity, hedgerow type and dominant species. Above-ground biomass density was linearly correlated with hedge volume. Wider, less intensively managed, irregular hedges exhibit a higher biomass stocks per km, when compared to regular, more intensively managed hedgerows. When the models were extrapolated to the county level, hedgerow biomass C pools for Co Wexford and Waterford are suggested to be a net emission of -0.3 tC ha-1 year-1 due to hedgerow removals and management. Flailing or coppicing of hedgerows, in particular irregular profile hedgerows, had the largest impact on the biomass C balance in the pilot study area. Re-introduction of traditional management practices such as layering and increasing the allowable hedgerow width in areas qualifying for farm payments could be considered with the aim of increasing the maximum sink potential of established hedgerows.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2023.162073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2023.162073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2008 NetherlandsPublisher:Oxford University Press (OUP) Publicly fundedKromdijk, J.; Schepers, H.E.; Albanito, F.; Fitton, N.; Carroll, F.; Jones, M.B.; Finnan, J.; Lanigan, G.J.; Griffiths, H.;Abstract Perennial species with the C4 pathway hold promise for biomass-based energy sources. We have explored the extent that CO2 uptake of such species may be limited by light in a temperate climate. One energetic cost of the C4 pathway is the leakiness (ϕ) of bundle sheath tissues, whereby a variable proportion of the CO2, concentrated in bundle sheath cells, retrodiffuses back to the mesophyll. In this study, we scale ϕ from leaf to canopy level of a Miscanthus crop (Miscanthus × giganteus hybrid) under field conditions and model the likely limitations to CO2 fixation. At the leaf level, measurements of photosynthesis coupled to online carbon isotope discrimination showed that leaves within a 3.3-m canopy (leaf area index = 8.3) show a progressive increase in both carbon isotope discrimination and ϕ as light decreases. A similar increase was observed at the ecosystem scale when we used eddy covariance net ecosystem CO2 fluxes, together with isotopic profiles, to partition photosynthetic and respiratory isotopic flux densities (isofluxes) and derive canopy carbon isotope discrimination as an integrated proxy for ϕ at the canopy level. Modeled values of canopy CO2 fixation using leaf-level measurements of ϕ suggest that around 32% of potential photosynthetic carbon gain is lost due to light limitation, whereas using ϕ determined independently from isofluxes at the canopy level the reduction in canopy CO2 uptake is estimated at 14%. Based on these results, we identify ϕ as an important limitation to CO2 uptake of crops with the C4 pathway.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1104/pp.108...Article . 2008 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1104/pp.108.129890&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 69 citations 69 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1104/pp.108...Article . 2008 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1104/pp.108.129890&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Publicly fundedFunded by:Department of Agriculture, Food and the Marine, IrelandDepartment of Agriculture, Food and the Marine, IrelandD.J. Krol; M.B. Jones; M. Williams; Ó. Ní Choncubhair; G.J. Lanigan;Abstract Bioenergy crop production can enhance greenhouse gas (GHG) mitigation, whilst producing feedstocks for energy generation. However, the GHG balance of these ecosystems is intimately linked to crop selection, previous and current land management and the effects of land conversion. This study aims to quantify nitrous oxide (N2O) emissions from the early stage of land-use change (LUC) from perennial grassland to two perennial rhizomatous grasses in a temperate climate: Miscanthus and reed canary grass (RCG) in the south of Ireland. Emissions of N2O were measured during the first two years of RCG and Miscanthus establishment. Miscanthus stands emitted 7.7 ± 1.6 and 2.3 ± 0.2 kg N2O-N ha−1 yr−1 in the first and the second year, respectively, while RCG produced 1.1 ± 0.2 kg N2O-N ha−1 yr−1 in the first year following LUC. Temporal fluxes of N2O were generally low, however peak emissions observed in the first year contributed approximately 83% of annual N2O in the Miscanthus treatment. This peak occurred in wet (50 mm rainfall in the week preceding the peak) and warm (>18.5 °C in the top 5 cm of soil) weather conditions and was significantly affected (R2 = 0.77) by the soil moisture deficit. However large, annual N2O losses from Miscanthus and RCG found in this study are well within the range of those from grassland soils in temperate climate, drawing conclusions that any short-term increases in N2O production will soon be offset by the reduced future fertilisation, carbon sequestration and produced bioenergy feedstock.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.11.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.11.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, France, France, Argentina, ArgentinaPublisher:Elsevier BV Publicly fundedSebastian Vangeli; Laura M. Cardenas; Gabriela Posse; Dave R. Chadwick; Dominika J. Krol; Rachel E. Thorman; Gary J. Lanigan; Tom H. Misselbrook;pmid: 36049305
handle: 20.500.12123/12891 , 11336/204823 , 10568/125214
According to the available guidelines, good practices for calculating nitrous oxide (N2O) emission factors (EFs) for livestock excreta and manure application include that sampling duration should be of at least one year after the nitrogen (N) application or deposition. However, the available experimental data suggest that in many cases most emissions are concentrated in the first months following N application. Therefore resources could be better deployed by measuring more intensively during a shorter period. This study aimed to assess the contribution of the N2O flux in the period directly after N application to the annual net emission. We used a database of 100 year-long plot experiments from different excreted-N sources (dung, urine, farmyard manure and slurry) used to derive EFs for the UK and Ireland. We explored different shorter potential measurement periods that could be used as proxies for cumulative annual emissions. The analysis showed that the majority of emissions occur in the first months after application, especially in experiments that i) had urine as the N source, ii) had spring N application, iii) were conducted on fine-textured soils, or iv) showed high annual emissions magnitude. Experiments that showed a smaller percentage of emissions in the first months also had a low magnitude of annual net emissions (below 370 gN2O-N ha-1 year-1), so the impact of measuring during a shorter period would not greatly influence the calculated EF. Accurate EF estimations were obtained by measuring for at least 60 days for urine (underestimation: 7.1%), 120 days for dung and slurry (4.7 and 5.1%) and 180 days for FYM (1.4%). At least in temperate climates, these results are promising in terms of being able to estimate annual N2O fluxes accurately by collecting data for less than 12 months, with significant resource-saving when conducting experiments towards developing country-specific EFs.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022Full-Text: https://hdl.handle.net/10568/125214Data sources: Bielefeld Academic Search Engine (BASE)Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.116037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022Full-Text: https://hdl.handle.net/10568/125214Data sources: Bielefeld Academic Search Engine (BASE)Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.116037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 14 Aug 2024 Netherlands, GermanyPublisher:Elsevier BV Publicly fundedLatifa Ouatahar; André Bannink; Jürgen Zentek; Thomas Amon; Jia Deng; Sabrina Hempel; David Janke; Pierre Beukes; Tony van der Weerden; Dominika Krol; Gary J. Lanigan; Barbara Amon;pmid: 38996622
Feed management decisions are crucial in mitigating greenhouse gas (GHG) and nitrogen (N) emissions from ruminant farming systems. However, assessing the downstream impact of diet on emissions in dairy production systems is complex, due to the multifunctional relationships between a variety of distinct but interconnected sources such as animals, housing, manure storage, and soil. Therefore, there is a need for an integral assessment of the direct and indirect GHG and N emissions that considers the underlying processes of carbon (C), N and their drivers within the system. Here we show the relevance of using a cascade of process-based (PB) models, such as Dutch Tier 3 and (Manure)-DNDC (Denitrification-Decomposition) models, for capturing the downstream influence of diet on whole-farm emissions in two contrasting case study dairy farms: a confinement system in Germany and a pasture-based system in New Zealand. Considerable variation was found in emissions on a per hectare and per head basis, and across different farm components and categories of animals. Moreover, the confinement system had a farm C emission of 1.01 kg CO2-eq kg−1 fat and protein corrected milk (FPCM), and a farm N emission of 0.0300 kg N kg−1 FPCM. In contrast, the pasture-based system had a lower farm C and N emission averaging 0.82 kg CO2-eq kg−1 FPCM and 0.006 kg N kg−1 FPCM, respectively over the 4-year period. The results demonstrate how inputs and outputs could be made compatible and exchangeable across the PB models for quantifying dietary effects on whole-farm GHG and N emissions.
Waste Management arrow_drop_down https://dx.doi.org/10.17169/re...Other literature type . 2024License: CC BY NCData sources: DataciteRefubium - Repositorium der Freien Universität BerlinArticle . 2024License: CC BY NCData sources: Refubium - Repositorium der Freien Universität BerlinWageningen Staff PublicationsArticle . 2024License: CC BY NCData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2024.07.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Waste Management arrow_drop_down https://dx.doi.org/10.17169/re...Other literature type . 2024License: CC BY NCData sources: DataciteRefubium - Repositorium der Freien Universität BerlinArticle . 2024License: CC BY NCData sources: Refubium - Repositorium der Freien Universität BerlinWageningen Staff PublicationsArticle . 2024License: CC BY NCData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2024.07.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011 Italy, Italy, Belgium, United KingdomPublisher:Wiley Publicly fundedFunded by:EC | GHG EUROPE, EC | POPFULLEC| GHG EUROPE ,EC| POPFULLDon, Axel; Osborne, Bruce; Hastings, Astley; Skiba, Ute; Carter, Mette S.; Drewer, Julia; Flessa, Heinz; Freibauer, Annette; Hyvönen, Niina; Jones, Mike B.; Lanigan, Gary J.; Mander, Ülo; Monti, Andrea; Djomo, Sylvestre Njakou; Valentine, John; Walter, Katja; Zegada-Lizarazu, Walter; Zenone, Terenzio;AbstractBioenergy from crops is expected to make a considerable contribution to climate change mitigation. However, bioenergy is not necessarily carbon neutral because emissions of CO2, N2O and CH4 during crop production may reduce or completely counterbalance CO2 savings of the substituted fossil fuels. These greenhouse gases (GHGs) need to be included into the carbon footprint calculation of different bioenergy crops under a range of soil conditions and management practices. This review compiles existing knowledge on agronomic and environmental constraints and GHG balances of the major European bioenergy crops, although it focuses on dedicated perennial crops such as Miscanthus and short rotation coppice species. Such second‐generation crops account for only 3% of the current European bioenergy production, but field data suggest they emit 40% to >99% less N2O than conventional annual crops. This is a result of lower fertilizer requirements as well as a higher N‐use efficiency, due to effective N‐recycling. Perennial energy crops have the potential to sequester additional carbon in soil biomass if established on former cropland (0.44 Mg soil C ha−1 yr−1 for poplar and willow and 0.66 Mg soil C ha−1 yr−1 for Miscanthus). However, there was no positive or even negative effects on the C balance if energy crops are established on former grassland. Increased bioenergy production may also result in direct and indirect land‐use changes with potential high C losses when native vegetation is converted to annual crops. Although dedicated perennial energy crops have a high potential to improve the GHG balance of bioenergy production, several agronomic and economic constraints still have to be overcome.
Archivio istituziona... arrow_drop_down GCB BioenergyArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/j.17...Other literature typeData sources: European Union Open Data PortalNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1757-1707.2011.01116.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 307 citations 307 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down GCB BioenergyArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefhttp://dx.doi.org/10.1111/j.17...Other literature typeData sources: European Union Open Data PortalNatural Environment Research Council: NERC Open Research ArchiveArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1757-1707.2011.01116.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 IrelandPublisher:Elsevier BV Publicly fundedFunded by:Department of Agriculture, Food and the Marine, IrelandDepartment of Agriculture, Food and the Marine, IrelandCatherine J. Watson; Rachael Carolan; Patrick J. Forrestal; Mary Harty; Mary Harty; Gary Lanigan; Dominika Krol; Karl G. Richards; Niharika Rahman;handle: 11019/3580
Abstract The present study evaluated the impact of three nitrogen (N) fertiliser formulations, applied at five N rates, on nitrous oxide (N2O) fluxes and annual direct N2O-N emission factors (EF) in temperate grassland. Closed static chambers were used to measure direct N2O fluxes at three geographically dispersed locations in Ireland over a two-year period, generating a total of 90 EFs across the six site-years and treatments. The three fertiliser formulations tested were calcium ammonium nitrate (CAN), urea, and urea amended with the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) at 100, 200, 300, 400 and 500 kg N ha−1 yr−1. All treatments were applied in five equal split applications ranging from 20 to 100 kg N ha−1 split-1 over the growing season. The N2O-N EFs for CAN ranged from 0.39 − 4.68 with a mean of 1.62 (cv. 81 %), for urea from 0.04 – 1.7 with a mean of 0.46 (cv. 77 %) and for urea + NBPT from 0.18 – 1.7 with a mean of 0.60 (cv. 59 %). A significant positive relationship was found between the N rate and the annual N2O-N EFs in three (CAN), five (urea) and two (urea + NBPT) of six the site-years. For the remainder of the site-years EF was unaffected by N rate. These results indicate that fertiliser N choice and rate can be management factors that enable farmers to alter N2O losses in temperate grassland. Notably, the response of EF to increasing N rate was not consistent across the fertilisers, with the EF from urea being the most sensitive to the increasing N rate, urea + NBPT the least sensitive and CAN being intermediate. The accuracy of national greenhouse gas accounting could be improved by including N fertiliser formulation and its rate of application. Further research is also needed to understand the inconsistency in EF response to N rate across sites.
T-Stór arrow_drop_down Agriculture Ecosystems & EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agee.2021.107382&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert T-Stór arrow_drop_down Agriculture Ecosystems & EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agee.2021.107382&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Embargo end date: 20 Sep 2018 IrelandPublisher:Public Library of Science (PLoS) Publicly fundedAuthors: Brennan, Raymond B.; Healy, Mark G.; Fenton, Owen; Lanigan, Gary J.;Land application of cattle slurry can result in incidental and chronic phosphorus (P) loss to waterbodies, leading to eutrophication. Chemical amendment of slurry has been proposed as a management practice, allowing slurry nutrients to remain available to plants whilst mitigating P losses in runoff. The effectiveness of amendments is well understood but their impacts on other loss pathways (so-called 'pollution swapping' potential) and therefore the feasibility of using such amendments has not been examined to date. The aim of this laboratory scale study was to determine how the chemical amendment of slurry affects losses of NH3, CH4, N2O, and CO2. Alum, FeCl2, Polyaluminium chloride (PAC)-and biochar reduced NH3 emissions by 92, 54, 65 and 77% compared to the slurry control, while lime increased emissions by 114%. Cumulative N2O emissions of cattle slurry increased when amended with alum and FeCl2 by 202% and 154% compared to the slurry only treatment. Lime, PAC and biochar resulted in a reduction of 44, 29 and 63% in cumulative N2O loss compared to the slurry only treatment. Addition of amendments to slurry did not significantly affect soil CO2 release during the study while CH4 emissions followed a similar trend for all of the amended slurries applied, with an initial increase in losses followed by a rapid decrease for the duration of the study. All of the amendments examined reduced the initial peak in CH4 emissions compared to the slurry only treatment. There was no significant effect of slurry amendments on global warming potential (GWP) caused by slurry land application, with the exception of biochar. After considering pollution swapping in conjunction with amendment effectiveness, the amendments recommended for further field study are PAC, alum and lime. This study has also shown that biochar has potential to reduce GHG losses arising from slurry application.
National University ... arrow_drop_down National University of Ireland (NUI), Galway: ARANArticle . 2015License: CC BY NC NDFull-Text: http://hdl.handle.net/10379/10527Data sources: Bielefeld Academic Search Engine (BASE)University of Galway Research RepositoryArticle . 2015License: CC BY NC NDData sources: University of Galway Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0111965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert National University ... arrow_drop_down National University of Ireland (NUI), Galway: ARANArticle . 2015License: CC BY NC NDFull-Text: http://hdl.handle.net/10379/10527Data sources: Bielefeld Academic Search Engine (BASE)University of Galway Research RepositoryArticle . 2015License: CC BY NC NDData sources: University of Galway Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0111965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Embargo end date: 08 Aug 2019 United KingdomPublisher:Wiley Publicly fundedAuthors: Owen, Nick A; Choncubhair, Órlaith Ní; Males, Jamie; Del Real Laborde, José Ignacio; +3 AuthorsOwen, Nick A; Choncubhair, Órlaith Ní; Males, Jamie; Del Real Laborde, José Ignacio; Rubio-Cortés, Ramón; Griffiths, Howard; Lanigan, Gary;pmid: 26177873
AbstractMass and energy fluxes were measured over a field of Agave tequilana in Mexico using eddy covariance (EC) methodology. Data were gathered over 252 d, including the transition from wet to dry periods. Net ecosystem exchanges (FN,EC) displayed a crassulacean acid metabolism (CAM) rhythm that alternated from CO2 sink at night to CO2 source during the day, and partitioned canopy fluxes (FA,EC) showed a characteristic four‐phase CO2 exchange pattern. Results were cross‐validated against diel changes in titratable acidity, leaf‐unfurling rates, energy exchange fluxes and reported biomass yields. Projected carbon balance (g C m−2 year−1, mean ± 95% confidence interval) indicated the site was a net sink of −333 ± 24, of which contributions from soil respiration were +692 ± 7, and FA,EC was −1025 ± 25. EC estimated biomass yield was 20.1 Mg (dry) ha−1 year−1. Average integrated daily FA,EC was −234 ± 5 mmol CO2 m−2 d−1 and persisted almost unchanged after 70 d of drought conditions. Regression analyses were performed on the EC data to identify the best environmental predictors of FA. Results suggest that the carbon acquisition strategy of Agave offers productivity and drought resilience advantages over conventional semi‐arid C3 and C4 bioenergy candidates.
Apollo arrow_drop_down Plant Cell & EnvironmentArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.12610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Apollo arrow_drop_down Plant Cell & EnvironmentArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.12610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 IrelandPublisher:Elsevier BV Publicly fundedFunded by:Department of Agriculture, Food and the Marine, IrelandDepartment of Agriculture, Food and the Marine, IrelandAuthors: D.J. Krol; P.J. Forrestal; G.J. Lanigan; K.G. Richards;Ruminant urine patches deposited onto pasture are a significant source of greenhouse gas nitrous oxide (N2O) from livestock agriculture. Increasing food demand is predicted to lead to a rise in ruminant numbers globally, which, in turn will result in elevated levels of urine-derived N2O. Therefore mitigation strategies are urgently needed. Urine contains hippuric acid and together with one of its breakdown products, benzoic acid, has previously been linked to mitigating N2O emissions from urine patches in laboratory studies. However, the sole field study to date found no effect of hippuric and benzoic acid concentration on N2O emissions. Therefore the aim of this study was to investigate the in situ effect of these urine constituents on N2O emissions under conditions conducive to denitrification losses. Unadulterated bovine urine (0 mM of hippuric acid, U) was applied, as well as urine amended with either benzoic acid (96 mM, U+BA) or varying rates of hippuric acid (8 and 82 mM, U+HA1, U+HA2). Soil inorganic nitrogen (N) and N2O fluxes were monitored over a 66 day period. Urine application resulted in elevated N2O flux for 44 days. The largest N2O fluxes accounting for between 13% (U) and 26% (U+HA1) of total loss were observed on the day of urine application. Between 0.9 and 1.3% of urine-N was lost as N2O. Cumulative N2O loss from the control was 0.3 kg N2O-Nha(-1) compared with 11, 9, 12, and 10 kg N2O-Nha(-1) for the U, U+HA1, U+HA2, and U+BA treatments, respectively. Incremental increases in urine HA or increase in BA concentrations had no effect on N2O emissions. Although simulation of dietary manipulation to reduce N2O emissions through altering individual urine constituents appears to have no effect, there may be other manipulations such as reducing N content or inclusion of synthetic inhibitory products that warrant further investigation.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2014.12.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2014.12.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Publicly fundedFunded by:Department of Agriculture, Food and the Marine, Ireland, EPADepartment of Agriculture, Food and the Marine, Ireland ,EPAKevin, Black; Gary, Lanigan; Mark, Ward; Ian, Kavanagh; Daire Ó, hUallacháin; Lilian O, Sullivan;pmid: 36764538
Landscape features, such as hedgerows, can play a role in enhancing terrestrial carbon (C) sinks, especially in North-western Europe, where they form a large part of the agricultural landscape. To date, there are few studies relating aerial imagery to ground-truthed biomass measurements and relating changes in biomass to hedgerow management. This study sought to develop relationships between measured biomass of hedgerows and digital elevation model (DEM) data from drones and aircraft. Furthermore, changes in hedgerow above-ground and below-ground biomass stocks were assessed using a systematic grid sample, DEM data and developed volume-biomass regression models. The developed inventory framework was then applied to a pilot study area of 419,701 ha in Ireland. Robust relationships were developed relating DEM data to volume and above-ground biomass. Model equations were also developed linking above-ground and below-ground biomass. However, these were less robust due to the confounding impacts of hedgerow management intensity, hedgerow type and dominant species. Above-ground biomass density was linearly correlated with hedge volume. Wider, less intensively managed, irregular hedges exhibit a higher biomass stocks per km, when compared to regular, more intensively managed hedgerows. When the models were extrapolated to the county level, hedgerow biomass C pools for Co Wexford and Waterford are suggested to be a net emission of -0.3 tC ha-1 year-1 due to hedgerow removals and management. Flailing or coppicing of hedgerows, in particular irregular profile hedgerows, had the largest impact on the biomass C balance in the pilot study area. Re-introduction of traditional management practices such as layering and increasing the allowable hedgerow width in areas qualifying for farm payments could be considered with the aim of increasing the maximum sink potential of established hedgerows.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2023.162073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2023.162073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2008 NetherlandsPublisher:Oxford University Press (OUP) Publicly fundedKromdijk, J.; Schepers, H.E.; Albanito, F.; Fitton, N.; Carroll, F.; Jones, M.B.; Finnan, J.; Lanigan, G.J.; Griffiths, H.;Abstract Perennial species with the C4 pathway hold promise for biomass-based energy sources. We have explored the extent that CO2 uptake of such species may be limited by light in a temperate climate. One energetic cost of the C4 pathway is the leakiness (ϕ) of bundle sheath tissues, whereby a variable proportion of the CO2, concentrated in bundle sheath cells, retrodiffuses back to the mesophyll. In this study, we scale ϕ from leaf to canopy level of a Miscanthus crop (Miscanthus × giganteus hybrid) under field conditions and model the likely limitations to CO2 fixation. At the leaf level, measurements of photosynthesis coupled to online carbon isotope discrimination showed that leaves within a 3.3-m canopy (leaf area index = 8.3) show a progressive increase in both carbon isotope discrimination and ϕ as light decreases. A similar increase was observed at the ecosystem scale when we used eddy covariance net ecosystem CO2 fluxes, together with isotopic profiles, to partition photosynthetic and respiratory isotopic flux densities (isofluxes) and derive canopy carbon isotope discrimination as an integrated proxy for ϕ at the canopy level. Modeled values of canopy CO2 fixation using leaf-level measurements of ϕ suggest that around 32% of potential photosynthetic carbon gain is lost due to light limitation, whereas using ϕ determined independently from isofluxes at the canopy level the reduction in canopy CO2 uptake is estimated at 14%. Based on these results, we identify ϕ as an important limitation to CO2 uptake of crops with the C4 pathway.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1104/pp.108...Article . 2008 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1104/pp.108.129890&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 69 citations 69 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1104/pp.108...Article . 2008 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1104/pp.108.129890&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Publicly fundedFunded by:Department of Agriculture, Food and the Marine, IrelandDepartment of Agriculture, Food and the Marine, IrelandD.J. Krol; M.B. Jones; M. Williams; Ó. Ní Choncubhair; G.J. Lanigan;Abstract Bioenergy crop production can enhance greenhouse gas (GHG) mitigation, whilst producing feedstocks for energy generation. However, the GHG balance of these ecosystems is intimately linked to crop selection, previous and current land management and the effects of land conversion. This study aims to quantify nitrous oxide (N2O) emissions from the early stage of land-use change (LUC) from perennial grassland to two perennial rhizomatous grasses in a temperate climate: Miscanthus and reed canary grass (RCG) in the south of Ireland. Emissions of N2O were measured during the first two years of RCG and Miscanthus establishment. Miscanthus stands emitted 7.7 ± 1.6 and 2.3 ± 0.2 kg N2O-N ha−1 yr−1 in the first and the second year, respectively, while RCG produced 1.1 ± 0.2 kg N2O-N ha−1 yr−1 in the first year following LUC. Temporal fluxes of N2O were generally low, however peak emissions observed in the first year contributed approximately 83% of annual N2O in the Miscanthus treatment. This peak occurred in wet (50 mm rainfall in the week preceding the peak) and warm (>18.5 °C in the top 5 cm of soil) weather conditions and was significantly affected (R2 = 0.77) by the soil moisture deficit. However large, annual N2O losses from Miscanthus and RCG found in this study are well within the range of those from grassland soils in temperate climate, drawing conclusions that any short-term increases in N2O production will soon be offset by the reduced future fertilisation, carbon sequestration and produced bioenergy feedstock.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.11.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.11.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, France, France, Argentina, ArgentinaPublisher:Elsevier BV Publicly fundedSebastian Vangeli; Laura M. Cardenas; Gabriela Posse; Dave R. Chadwick; Dominika J. Krol; Rachel E. Thorman; Gary J. Lanigan; Tom H. Misselbrook;pmid: 36049305
handle: 20.500.12123/12891 , 11336/204823 , 10568/125214
According to the available guidelines, good practices for calculating nitrous oxide (N2O) emission factors (EFs) for livestock excreta and manure application include that sampling duration should be of at least one year after the nitrogen (N) application or deposition. However, the available experimental data suggest that in many cases most emissions are concentrated in the first months following N application. Therefore resources could be better deployed by measuring more intensively during a shorter period. This study aimed to assess the contribution of the N2O flux in the period directly after N application to the annual net emission. We used a database of 100 year-long plot experiments from different excreted-N sources (dung, urine, farmyard manure and slurry) used to derive EFs for the UK and Ireland. We explored different shorter potential measurement periods that could be used as proxies for cumulative annual emissions. The analysis showed that the majority of emissions occur in the first months after application, especially in experiments that i) had urine as the N source, ii) had spring N application, iii) were conducted on fine-textured soils, or iv) showed high annual emissions magnitude. Experiments that showed a smaller percentage of emissions in the first months also had a low magnitude of annual net emissions (below 370 gN2O-N ha-1 year-1), so the impact of measuring during a shorter period would not greatly influence the calculated EF. Accurate EF estimations were obtained by measuring for at least 60 days for urine (underestimation: 7.1%), 120 days for dung and slurry (4.7 and 5.1%) and 180 days for FYM (1.4%). At least in temperate climates, these results are promising in terms of being able to estimate annual N2O fluxes accurately by collecting data for less than 12 months, with significant resource-saving when conducting experiments towards developing country-specific EFs.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022Full-Text: https://hdl.handle.net/10568/125214Data sources: Bielefeld Academic Search Engine (BASE)Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.116037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022Full-Text: https://hdl.handle.net/10568/125214Data sources: Bielefeld Academic Search Engine (BASE)Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.116037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 14 Aug 2024 Netherlands, GermanyPublisher:Elsevier BV Publicly fundedLatifa Ouatahar; André Bannink; Jürgen Zentek; Thomas Amon; Jia Deng; Sabrina Hempel; David Janke; Pierre Beukes; Tony van der Weerden; Dominika Krol; Gary J. Lanigan; Barbara Amon;pmid: 38996622
Feed management decisions are crucial in mitigating greenhouse gas (GHG) and nitrogen (N) emissions from ruminant farming systems. However, assessing the downstream impact of diet on emissions in dairy production systems is complex, due to the multifunctional relationships between a variety of distinct but interconnected sources such as animals, housing, manure storage, and soil. Therefore, there is a need for an integral assessment of the direct and indirect GHG and N emissions that considers the underlying processes of carbon (C), N and their drivers within the system. Here we show the relevance of using a cascade of process-based (PB) models, such as Dutch Tier 3 and (Manure)-DNDC (Denitrification-Decomposition) models, for capturing the downstream influence of diet on whole-farm emissions in two contrasting case study dairy farms: a confinement system in Germany and a pasture-based system in New Zealand. Considerable variation was found in emissions on a per hectare and per head basis, and across different farm components and categories of animals. Moreover, the confinement system had a farm C emission of 1.01 kg CO2-eq kg−1 fat and protein corrected milk (FPCM), and a farm N emission of 0.0300 kg N kg−1 FPCM. In contrast, the pasture-based system had a lower farm C and N emission averaging 0.82 kg CO2-eq kg−1 FPCM and 0.006 kg N kg−1 FPCM, respectively over the 4-year period. The results demonstrate how inputs and outputs could be made compatible and exchangeable across the PB models for quantifying dietary effects on whole-farm GHG and N emissions.
Waste Management arrow_drop_down https://dx.doi.org/10.17169/re...Other literature type . 2024License: CC BY NCData sources: DataciteRefubium - Repositorium der Freien Universität BerlinArticle . 2024License: CC BY NCData sources: Refubium - Repositorium der Freien Universität BerlinWageningen Staff PublicationsArticle . 2024License: CC BY NCData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2024.07.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Waste Management arrow_drop_down https://dx.doi.org/10.17169/re...Other literature type . 2024License: CC BY NCData sources: DataciteRefubium - Repositorium der Freien Universität BerlinArticle . 2024License: CC BY NCData sources: Refubium - Repositorium der Freien Universität BerlinWageningen Staff PublicationsArticle . 2024License: CC BY NCData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2024.07.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu