Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass and Bioenerg...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biomass and Bioenergy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The effect of land use change from grassland to bioenergy crops Miscanthus and reed canary grass on nitrous oxide emissions

Authors: D.J. Krol; M.B. Jones; M. Williams; Ó. Ní Choncubhair; G.J. Lanigan;

The effect of land use change from grassland to bioenergy crops Miscanthus and reed canary grass on nitrous oxide emissions

Abstract

Abstract Bioenergy crop production can enhance greenhouse gas (GHG) mitigation, whilst producing feedstocks for energy generation. However, the GHG balance of these ecosystems is intimately linked to crop selection, previous and current land management and the effects of land conversion. This study aims to quantify nitrous oxide (N2O) emissions from the early stage of land-use change (LUC) from perennial grassland to two perennial rhizomatous grasses in a temperate climate: Miscanthus and reed canary grass (RCG) in the south of Ireland. Emissions of N2O were measured during the first two years of RCG and Miscanthus establishment. Miscanthus stands emitted 7.7 ± 1.6 and 2.3 ± 0.2 kg N2O-N ha−1 yr−1 in the first and the second year, respectively, while RCG produced 1.1 ± 0.2 kg N2O-N ha−1 yr−1 in the first year following LUC. Temporal fluxes of N2O were generally low, however peak emissions observed in the first year contributed approximately 83% of annual N2O in the Miscanthus treatment. This peak occurred in wet (50 mm rainfall in the week preceding the peak) and warm (>18.5 °C in the top 5 cm of soil) weather conditions and was significantly affected (R2 = 0.77) by the soil moisture deficit. However large, annual N2O losses from Miscanthus and RCG found in this study are well within the range of those from grassland soils in temperate climate, drawing conclusions that any short-term increases in N2O production will soon be offset by the reduced future fertilisation, carbon sequestration and produced bioenergy feedstock.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%