- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024 Portugal, Spain, France, France, Italy, France, Portugal, South Africa, France, Italy, FrancePublisher:Springer Science and Business Media LLC Funded by:EC | BIODESERT, FCT | CEECIND/02453/2018/CP1534/CT0001EC| BIODESERT ,FCT| CEECIND/02453/2018/CP1534/CT0001Authors: Díaz-Martínez, Paloma; Maestre, Fernando; Moreno-Jiménez, Eduardo; Delgado-Baquerizo, Manuel; +123 AuthorsDíaz-Martínez, Paloma; Maestre, Fernando; Moreno-Jiménez, Eduardo; Delgado-Baquerizo, Manuel; Eldridge, David; Saiz, Hugo; Gross, Nicolas; Le Bagousse-Pinguet, Yoann; Gozalo, Beatriz; Ochoa, Victoria; Guirado, Emilio; García-Gómez, Miguel; Valencia, Enrique; Asensio, Sergio; Berdugo, Miguel; Martínez-Valderrama, Jaime; Mendoza, Betty; García-Gil, Juan; Zaccone, Claudio; Panettieri, Marco; García-Palacios, Pablo; Fan, Wei; Benavente-Ferraces, Iria; Rey, Ana; Eisenhauer, Nico; Cesarz, Simone; Abedi, Mehdi; Ahumada, Rodrigo; Alcántara, Julio; Amghar, Fateh; Aramayo, Valeria; Arroyo, Antonio; Bahalkeh, Khadijeh; Ben Salem, Farah; Blaum, Niels; Boldgiv, Bazartseren; Bowker, Matthew; Bran, Donaldo; Branquinho, Cristina; Bu, Chongfeng; Cáceres, Yonatan; Canessa, Rafaella; Castillo-Monroy, Andrea; Castro, Ignacio; Castro-Quezada, Patricio; Chibani, Roukaya; Conceição, Abel; Currier, Courtney; Darrouzet-Nardi, Anthony; Deák, Balázs; Dickman, Christopher; Donoso, David; Dougill, Andrew; Durán, Jorge; Ejtehadi, Hamid; Espinosa, Carlos; Fajardo, Alex; Farzam, Mohammad; Ferrante, Daniela; Fraser, Lauchlan; Gaitán, Juan; Gusman Montalván, Elizabeth; Hernández-Hernández, Rosa; von Hessberg, Andreas; Hölzel, Norbert; Huber-Sannwald, Elisabeth; Hughes, Frederic; Jadán-Maza, Oswaldo; Geissler, Katja; Jentsch, Anke; Ju, Mengchen; Kaseke, Kudzai; Kindermann, Liana; Koopman, Jessica; Le Roux, Peter; Liancourt, Pierre; Linstädter, Anja; Liu, Jushan; Louw, Michelle; Maggs-Kölling, Gillian; Makhalanyane, Thulani; Issa, Oumarou Malam; Marais, Eugene; Margerie, Pierre; Mazaneda, Antonio; Mcclaran, Mitchel; Messeder, João Vitor S.; Mora, Juan; Moreno, Gerardo; Munson, Seth; Nunes, Alice; Oliva, Gabriel; Oñatibia, Gastón; Osborne, Brooke; Peter, Guadalupe; Pueyo, Yolanda; Quiroga, R. Emiliano; Reed, Sasha; Reyes, Victor; Rodríguez, Alexandra; Ruppert, Jan; Sala, Osvaldo; Salah, Ayman; Sebei, Julius; Sloan, Michael; Solongo, Shijirbaatar; Stavi, Ilan; Stephens, Colton; Teixido, Alberto; Thomas, Andrew; Throop, Heather; Tielbörger, Katja; Travers, Samantha; Val, James; Valko, Orsolya; van den Brink, Liesbeth; Velbert, Frederike; Wamiti, Wanyoike; Wang, Deli; Wang, Lixin; Wardle, Glenda; Yahdjian, Laura; Zaady, Eli; Zeberio, Juan; Zhang, Yuanming; Zhou, Xiaobing; Plaza, César;handle: 10261/364882 , 11562/1132966 , 20.500.14352/114759 , 2263/98010
This research was funded by the European Research Council (ERC Grant agreement 647038, BIODESERT), the Spanish Ministry of Science and Innovation (PID2020-116578RB-I00) and Generalitat Valenciana (CIDEGENT/2018/041), with additional support by the University of Alicante (UADIF22-74 and VIGROB22-350). F.T.M. acknowledges support from the King Abdullah University of Science and Technology (KAUST) and the KAUST Climate and Livability Initiative. D.J.E. is supported by the Hermon Slade Foundation. H.S. is supported by a María Zambrano fellowship funded by the Ministry of Universities and European Union-Next Generation plan. L.W. acknowledges support from the US National Science Foundation (EAR 1554894). B.B. and S.S. were supported by the Taylor Family–Asia Foundation Endowed Chair in Ecology and Conservation Biology. M.B. acknowledges support from a Ramón y Cajal grant from the Spanish Ministry of Science (RYC2021-031797-I). A.L. and L.K. acknowledge support from the German Research Foundation, DFG (grant CRC TRR228) and German Federal Government for Science and Education, BMBF (grants 01LL1802C and 01LC1821A). L.K. acknowledges travel funds from the Hans Merensky Foundation. A.N. and C. Branquinho acknowledge support from FCT—Fundação para a Ciência e a Tecnologia (CEECIND/02453/2018/CP1534/CT0001, PTDC/ASP-SIL/7743/2020, UIDB/00329/2020), from AdaptForGrazing project (PRR-C05-i03-I-000035) and from LTsER Montado platform (LTER_EU_PT_001). S.C.R. was supported by NASA (NNH22OB92A) and is grateful to E. Geiger, A. Howell, R. Reibold, N. Melone and M. Starbuck for field support. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government. We thank the landowners for granting access to the sites and many people and their institutions for supporting our fieldwork activities: L. Eloff, J. J. Jordaan, E. Mudongo, V. Mokoka, B. Mokhou, T. Maphanga, D. Thompson (SAEON), A. S. K. Frank, R. Matjea, F. Hoffmann, C. Goebel, the University of Limpopo, South African Environmental Observation Network (SAEON), the South African Military and the Scientific Services Kruger National Park. Mineral-associated organic carbon (MAOC) constitutes a major fraction of global soil carbon and is assumed less sensitive to climate than particulate organic carbon (POC) due to protection by minerals. Despite its importance for long-term carbon storage, the response of MAOC to changing climates in drylands, which cover more than 40% of the global land area, remains unexplored. Here we assess topsoil organic carbon fractions across global drylands using a standardized field survey in 326 plots from 25 countries and 6 continents. We find that soil biogeochemistry explained the majority of variation in both MAOC and POC. Both carbon fractions decreased with increases in mean annual temperature and reductions in precipitation, with MAOC responding similarly to POC. Therefore, our results suggest that ongoing climate warming and aridification may result in unforeseen carbon losses across global drylands, and that the protective role of minerals may not dampen these effects. 19 páginas total artículo.- 3 figuras.- 33 referencias y 4 figuras.- 2 tablas.- 68 referencias.- The online version contains supplementary material available and extended data is available for this paper at https://doi.org/10.1038/s41558-024-02087-y No
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversidade de Lisboa: Repositório.ULArticle . 2024Data sources: Universidade de Lisboa: Repositório.ULInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Repositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteNature Climate ChangeArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-024-02087-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 179visibility views 179 download downloads 459 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversidade de Lisboa: Repositório.ULArticle . 2024Data sources: Universidade de Lisboa: Repositório.ULInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Repositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteNature Climate ChangeArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-024-02087-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United StatesPublisher:American Geophysical Union (AGU) Koong Yi; Kimberly A. Novick; Quan Zhang; Lixin Wang; Taehee Hwang; Xi Yang; Kanishka Mallick; Martin Béland; Gabriel B. Senay; Dennis D. Baldocchi;doi: 10.1029/2023jg007875
AbstractAccording to classic stomatal optimization theory, plant stomata are regulated to maximize carbon assimilation for a given water loss. A key component of stomatal optimization models is marginal water‐use efficiency (mWUE), the ratio of the change of transpiration to the change in carbon assimilation. Although the mWUE is often assumed to be constant, variability of mWUE under changing hydrologic conditions has been reported. However, there has yet to be a consensus on the patterns of mWUE variabilities and their relations with atmospheric aridity. We investigate the dynamics of mWUE in response to vapor pressure deficit (VPD) and aridity index using carbon and water fluxes from 115 eddy covariance towers available from the global database FLUXNET. We demonstrate a non‐linear mWUE‐VPD relationship at a sub‐daily scale in general; mWUE varies substantially at both low and high VPD levels. However, mWUE remains relatively constant within the mid‐range of VPD. Despite the highly non‐linear relationship between mWUE and VPD, the relationship can be informed by the strong linear relationship between ecosystem‐level inherent water‐use efficiency (IWUE) and mWUE using the slope, m*. We further identify site‐specific m* and its variability with changing site‐level aridity across six vegetation types. We suggest accurately representing the relationship between IWUE and VPD using Michaelis–Menten or quadratic functions to ensure precise estimation of mWUE variability for individual sites.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/54m1b3t8Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research BiogeosciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023jg007875&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/54m1b3t8Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research BiogeosciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023jg007875&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 14 Jan 2025 Spain, France, United States, Portugal, United States, Portugal, Spain, Spain, SpainPublisher:American Association for the Advancement of Science (AAAS) Funded by:DFG | EarthShape: Earth Surface..., EC | BIODESERT, DFG | Future Rural Africa: Futu... +1 projectsDFG| EarthShape: Earth Surface Shaping by Biota ,EC| BIODESERT ,DFG| Future Rural Africa: Future-making and social-ecological transformation ,NSF| CAREER: Soil organic carbon dynamics in response to long-term ecological changes in drylands: an integrated program for carbon cycle research and enhancing climate change literacyBiancari, Lucio; Aguiar, Martín; Eldridge, David; Oñatibia, Gastón; Le Bagousse-Pinguet, Yoann; Saiz, Hugo; Gross, Nicolas; Austin, Amy; Ochoa, Victoria; Gozalo, Beatriz; Asensio, Sergio; Guirado, Emilio; Valencia, Enrique; Berdugo, Miguel; Plaza, César; Martínez-Valderrama, Jaime; Mendoza, Betty; García-Gómez, Miguel; Abedi, Mehdi; Ahumada, Rodrigo; Alcántara, Julio; Amghar, Fateh; Anadón, José; Aramayo, Valeria; Arredondo, Tulio; Bader, Maaike; Bahalkeh, Khadijeh; Salem, Farah Ben; Blaum, Niels; Boldgiv, Bazartseren; Bowker, Matthew; Branquinho, Cristina; Bu, Chongfeng; Byambatsogt, Batbold; Calvo, Dianela; Castillo Monroy, Andrea; Castro, Helena; Castro-Quezada, Patricio; Chibani, Roukaya; Conceição, Abel; Currier, Courtney; Donoso, David; Dougill, Andrew; Ejtehadi, Hamid; Espinosa, Carlos; Fajardo, Alex; Farzam, Mohammad; Ferrante, Daniela; Fraser, Lauchlan; Gaitán, Juan; Gherardi, Laureano; Gusmán-Montalván, Elizabeth; Hernández-Hernández, Rosa; Hölzel, Norbert; Huber-Sannwald, Elisabeth; Hughes, Frederic; Jadán, Oswaldo; Jeltsch, Florian; Jentsch, Anke; Ju, Mengchen; Kaseke, Kudzai; Kindermann, Liana; Köbel, Melanie; Le Roux, Peter; Liancourt, Pierre; Linstädter, Anja; Liu, Jushan; Louw, Michelle; Maggs-Kölling, Gillian; Issa, Oumarou Malam; Marais, Eugene; Margerie, Pierre; Messeder, João Vitor S.; Mora, Juan; Moreno, Gerardo; Munson, Seth; Oliva, Gabriel; Pueyo, Yolanda; Quiroga, R. Emiliano; Reed, Sasha; Rey, Pedro; Rodríguez, Alexandra; Rodríguez, Laura; Rolo, Víctor; Ruppert, Jan; Sala, Osvaldo; Salah, Ayman; Stavi, Ilan; Stephens, Colton; Swemmer, Anthony; Teixido, Alberto; Thomas, Andrew; Throop, Heather; Tielbörger, Katja; Travers, Samantha; van den Brink, Liesbeth; Wagner, Viktoria; Wamiti, Wanyoike; Wang, Deli; Wang, Lixin; Wolff, Peter; Yahdjian, Laura; Zaady, Eli; Maestre, Fernando;handle: 10261/373769 , 10045/147812 , 1805/44453
Increases in the abundance of woody species have been reported to affect the provisioning of ecosystem services in drylands worldwide. However, it is virtually unknown how multiple biotic and abiotic drivers, such as climate, grazing, and fire, interact to determine woody dominance across global drylands. We conducted a standardized field survey in 304 plots across 25 countries to assess how climatic features, soil properties, grazing, and fire affect woody dominance in dryland rangelands. Precipitation, temperature, and grazing were key determinants of tree and shrub dominance. The effects of grazing were determined not solely by grazing pressure but also by the dominant livestock species. Interactions between soil, climate, and grazing and differences in responses to these factors between trees and shrubs were key to understanding changes in woody dominance. Our findings suggest that projected changes in climate and grazing pressure may increase woody dominance in drylands, altering their structure and functioning.
Indiana University -... arrow_drop_down Indiana University - Purdue University Indianapolis: IUPUI Scholar WorksArticle . 2024License: CC BY NCFull-Text: https://hdl.handle.net/1805/44453Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BY NCFull-Text: http://zaguan.unizar.es/record/147227Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024License: CC BY NCData sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2024License: CC BY NCData sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteNormandie Université: HALArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Full-Text: https://doi.org/10.1126/sciadv.adn6007Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.adn6007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 79visibility views 79 download downloads 77 Powered bymore_vert Indiana University -... arrow_drop_down Indiana University - Purdue University Indianapolis: IUPUI Scholar WorksArticle . 2024License: CC BY NCFull-Text: https://hdl.handle.net/1805/44453Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BY NCFull-Text: http://zaguan.unizar.es/record/147227Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024License: CC BY NCData sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2024License: CC BY NCData sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteNormandie Université: HALArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Full-Text: https://doi.org/10.1126/sciadv.adn6007Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.adn6007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United StatesPublisher:American Geophysical Union (AGU) Chengfang Lin; Xiaofei Liu; Miaohua Jiang; Miaohua Jiang; Zongming He; Chao Xu; Jingsheng Xie; Guangshui Chen; Chen Shidong; Lixin Wang; Yusheng Yang; Teng Chiu Lin; Zhijie Yang; Jianfen Guo; Kaimiao Lin; Weisheng Lin; Decheng Xiong;doi: 10.1002/2017jg004267
handle: 1805/17196
AbstractChina manages the largest monoculture plantations in the world, with 24% being Chinese fir plantations. Maximizing the ecosystem services of Chinese fir plantations has important implications in global carbon cycle and biodiversity protection. Assisted natural regeneration (ANR) is a practice to convert degraded lands into more productive forests with great ecosystems services. However, the quantitative understanding of ANR ecosystem service benefits is very limited. We conducted a comprehensive field manipulation experiment to evaluate the ANR potentials. We quantified and compared key ecosystem services including surface runoff, sediment yield, dissolved organic carbon export, plant diversity, and aboveground carbon accumulation of ANR of secondary forests dominated by Castanopsis carlesii to that of Chinese fir and C. carlesii plantations. Our results showed that ANR of C. carlesii forest reduced surface runoff and sediment yield up to 50% compared with other young plantations in the first 3 years and substantially increased plant diversity. ANR also reduced the export of dissolved organic carbon by 60–90% in the first 2 years. Aboveground biomass of the young ANR forest was approximately 3–4 times of that of other young plantations, while aboveground biomass of mature ANR forests was approximately 1.4 times of that of mature Chinese fir plantations of the same age. If all Chinese fir plantations in China were replaced by ANR forests, potentially 0.7 Pg more carbon will be stored in aboveground in one rotation (25 years). The results indicate that ANR triggers positive feedbacks among soil and water conservation, biodiversity protection, and biomass accumulation and thereby enhances ecosystem services.
Indiana University -... arrow_drop_down Indiana University - Purdue University Indianapolis: IUPUI Scholar WorksArticle . 2018License: CC BY NC NDFull-Text: https://hdl.handle.net/1805/17196Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research BiogeosciencesArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017jg004267&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 52 citations 52 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Indiana University -... arrow_drop_down Indiana University - Purdue University Indianapolis: IUPUI Scholar WorksArticle . 2018License: CC BY NC NDFull-Text: https://hdl.handle.net/1805/17196Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research BiogeosciencesArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017jg004267&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Spain, Canada, Portugal, Spain, France, Canada, Spain, Portugal, SpainPublisher:Springer Science and Business Media LLC Funded by:ARC | Discovery Projects - Gran..., EC | DRYFUN, EC | BIODESERT +3 projectsARC| Discovery Projects - Grant ID: DP210102593 ,EC| DRYFUN ,EC| BIODESERT ,EC| AGREENSKILLSPLUS ,FCT| CEECIND/02453/2018/CP1534/CT0001 ,DFG| EarthShape: Earth Surface Shaping by BiotaGross, Nicolas; Maestre, Fernando; Liancourt, Pierre; Berdugo, Miguel; Martin, Raphaël; Gozalo, Beatriz; Ochoa, Victoria; Delgado-Baquerizo, Manuel; Maire, Vincent; Saiz, Hugo; Soliveres, Santiago; Valencia, Enrique; Eldridge, David; Guirado, Emilio; Jabot, Franck; Asensio, Sergio; Gaitán, Juan; García-Gómez, Miguel; Martínez, Paloma; Martínez-Valderrama, Jaime; Mendoza, Betty; Moreno-Jiménez, Eduardo; Pescador, David; Plaza, César; Pijuan, Ivan Santaolaria; Abedi, Mehdi; Ahumada, Rodrigo; Amghar, Fateh; Arroyo, Antonio; Bahalkeh, Khadijeh; Bailey, Lydia; Ben Salem, Farah; Blaum, Niels; Boldgiv, Bazartseren; Bowker, Matthew; Branquinho, Cristina; van den Brink, Liesbeth; Bu, Chongfeng; Canessa, Rafaella; Castillo-Monroy, Andrea del P.; Castro, Helena; Castro, Patricio; Chibani, Roukaya; Conceição, Abel Augusto; Darrouzet-Nardi, Anthony; Davila, Yvonne; Deák, Balázs; Donoso, David; Durán, Jorge; Espinosa, Carlos; Fajardo, Alex; Farzam, Mohammad; Ferrante, Daniela; Franzese, Jorgelina; Fraser, Lauchlan; Gonzalez, Sofía; Gusman-Montalvan, Elizabeth; Hernández-Hernández, Rosa Mary; Hölzel, Norbert; Huber-Sannwald, Elisabeth; Jadan, Oswaldo; Jeltsch, Florian; Jentsch, Anke; Ju, Mengchen; Kaseke, Kudzai; Kindermann, Liana; Le Roux, Peter; Linstädter, Anja; Louw, Michelle; Mabaso, Mancha; Maggs-Kölling, Gillian; Makhalanyane, Thulani; Issa, Oumarou Malam; Manzaneda, Antonio; Marais, Eugene; Margerie, Pierre; Hughes, Frederic Mendes; Messeder, João Vitor S.; Mora, Juan; Moreno, Gerardo; Munson, Seth; Nunes, Alice; Oliva, Gabriel; Oñatibia, Gaston; Peter, Guadalupe; Pueyo, Yolanda; Quiroga, R. Emiliano; Ramírez-Iglesias, Elizabeth; Reed, Sasha; Rey, Pedro; Reyes Gómez, Víctor; Rodríguez, Alexandra; Rolo, Victor; Rubalcaba, Juan; Ruppert, Jan; Sala, Osvaldo; Salah, Ayman; Sebei, Phokgedi Julius; Stavi, Ilan; Stephens, Colton; Teixido, Alberto; Thomas, Andrew; Throop, Heather; Tielbörger, Katja; Travers, Samantha; Undrakhbold, Sainbileg; Val, James; Valkó, Orsolya; Velbert, Frederike; Wamiti, Wanyoike; Wang, Lixin; Wang, Deli; Wardle, Glenda; Wolff, Peter; Yahdjian, Laura; Yari, Reza; Zaady, Eli; Zeberio, Juan Manuel; Zhang, Yuanling; Zhou, Xiaobing; Le Bagousse-Pinguet, Yoann;Earth harbours an extraordinary plant phenotypic diversity1 that is at risk from ongoing global changes2,3. However, it remains unknown how increasing aridity and livestock grazing pressure-two major drivers of global change4-6-shape the trait covariation that underlies plant phenotypic diversity1,7. Here we assessed how covariation among 20 chemical and morphological traits responds to aridity and grazing pressure within global drylands. Our analysis involved 133,769 trait measurements spanning 1,347 observations of 301 perennial plant species surveyed across 326 plots from 6 continents. Crossing an aridity threshold of approximately 0.7 (close to the transition between semi-arid and arid zones) led to an unexpected 88% increase in trait diversity. This threshold appeared in the presence of grazers, and moved toward lower aridity levels with increasing grazing pressure. Moreover, 57% of observed trait diversity occurred only in the most arid and grazed drylands, highlighting the phenotypic uniqueness of these extreme environments. Our work indicates that drylands act as a global reservoir of plant phenotypic diversity and challenge the pervasive view that harsh environmental conditions reduce plant trait diversity8-10. They also highlight that many alternative strategies may enable plants to cope with increases in environmental stress induced by climate change and land-use intensification.
Digital Repository o... arrow_drop_down Digital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2024Data sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteRecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversité du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-07731-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 17 citations 17 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 91visibility views 91 download downloads 133 Powered bymore_vert Digital Repository o... arrow_drop_down Digital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2024Data sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteRecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversité du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-07731-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United StatesPublisher:American Geophysical Union (AGU) Wenzhe Jiao; Lixin Wang; Honglang Wang; Matthew Lanning; Qing Chang; Kimberly A. Novick;doi: 10.1029/2021jg006431
handle: 1805/28982
AbstractDrought is one of the most important natural hazards impacting ecosystem carbon cycles. However, it is challenging to quantify the impacts of drought on ecosystem carbon balance and several factors hinder our explicit understanding of the complex drought impacts. First, drought impacts can have different time dimensions such as simultaneous, cumulative, and lagged impacts on ecosystem carbon balance. Second, drought is not only a multiscale (e.g., temporal and spatial) but also a multidimensional (e.g., intensity, time‐scale, and timing) phenomenon, and ecosystem production and respiration may respond to each drought dimension differently. In this study, we conducted a comprehensive drought impact assessment on ecosystem productivity and respiration in humid regions by including different drought dimensions using global FLUXNET observations. Short‐term drought (e.g., 1‐month drought) generally did not induce a decrease in plant productivity even under high severity drought. However, ecosystem production and respiration significantly decreased as drought intensity increased for droughts longer than 1 month in duration. Drought timing was important, and ecosystem productivity was most vulnerable when drought occurred during or shortly after the peak vegetation growth. We found that lagged drought impacts more significantly affected ecosystem carbon uptake than simultaneous drought, and that ecosystem respiration was less sensitive to drought time scale than ecosystem production. Overall, our results indicated that temporally‐standardized meteorological drought indices can be used to reflect plant productivity decline, but drought timing, antecedent, and cumulative drought conditions need to be considered together.
Journal of Geophysic... arrow_drop_down Journal of Geophysical Research BiogeosciencesArticle . 2022 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2021jg006431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Geophysic... arrow_drop_down Journal of Geophysical Research BiogeosciencesArticle . 2022 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2021jg006431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United StatesPublisher:American Geophysical Union (AGU) Authors: Yang Song; Wenzhe Jiao; Jing Wang; Lixin Wang;doi: 10.1029/2021ef002634
handle: 1805/37307
AbstractRising atmospheric dryness [vapor pressure deficit (VPD)] can limit photosynthesis and thus reduce vegetation productivity. Meanwhile, plants can benefit from global warming and the fertilization effect of carbon dioxide (CO2). There are growing interests to study climate change impacts on terrestrial vegetation. However, global vegetation productivity responses to recent climate and CO2 trends remain to be fully understood. Here, we provide a comprehensive evaluation of the relative impacts of VPD, temperature, and atmospheric CO2 concentration on global vegetation productivity over the last two decades using a robust ensemble of solar‐induced chlorophyll fluorescence (SIF) and gross primary productivity (GPP) data. We document a significant increase in global vegetation productivity with rising VPD, temperature, and atmospheric CO2 concentration over this period. For global SIF (or GPP), the decrease due to rising VPD was comparable to the increase due to warming but far less than the increase due to elevated CO2 concentration. We found that rising VPD counteracted only a small proportion (approximately 8.1%–15.0%) of the warming and CO2‐induced increase in global SIF (or GPP). Despite the sharp rise in atmospheric dryness imposing a negative impact on plants, the warming and CO2 fertilization effects contributed to a persistent and widespread increase in vegetation productivity over the majority (approximately 66.5%–72.2%) of the globally vegetated areas. Overall, our findings provide a quantitative and comprehensive attribution of rising atmospheric dryness on global vegetation productivity under concurrent climate warming and CO2 increasing.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2021ef002634&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 52 citations 52 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2021ef002634&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United States, United States, United KingdomPublisher:American Geophysical Union (AGU) Kudzai Farai Kaseke; Lixin Wang; Heike Wanke; Chao Tian; Matthew Lanning; Wenzhe Jiao;doi: 10.1029/2018jd028470
handle: 1805/17252
AbstractSouthern African climate is characterized by large precipitation variability, and model precipitation estimates can vary by 70% during summer. This may be partly attributed to underestimation and lack of knowledge of the exact influence of the Atlantic Ocean on precipitation over the region. The current study models trajectories of precipitation events sampled from Windhoek (2012–2016), coupled with isotopes (δ18O, δ2H, δ17O, d, and δ′17O‐δ′18O) to determine key local drivers of isotope compositions as well as infer source evaporative conditions. Multiple linear regression analyses suggest that key drivers of isotope compositions (relative humidity, precipitation amount, and air temperature) account for 47–53% of δ18O, δ2H, and δ17O variability. Surprisingly, precipitation δ18O, δ2H, and δ17O were independent of precipitation type (stratiform versus convective), and this may be attributed to greater modification of stratiform compared to convective raindrops, leading to convergence of isotopes from these precipitation types. Trajectory analyses showed that 78% and 21% of precipitation events during the period originated from the Indian and South Atlantic Oceans, respectively. Although precipitation from the Atlantic Ocean was significantly enriched compared to that from the Indian Ocean (p < 0.05), d was similar, suggesting significant local modification (up to 55% of d variability). Therefore, d may not be a conservative tracer of evaporation conditions at the source, at least for Windhoek. The δ′17O‐δ′18O appeared to be a better alternative to d, consistent with trajectory analyses, and appeared to differentiate El Niño from non‐El Niño droughts. Thus, δ′17O‐δ′18O could be a novel tool to identify drought mechanisms.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2018License: rioxx All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)UWE Research RepositoryArticle . 2018License: rioxx All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)Journal of Geophysical Research AtmospheresArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018jd028470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2018License: rioxx All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)UWE Research RepositoryArticle . 2018License: rioxx All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)Journal of Geophysical Research AtmospheresArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018jd028470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:American Geophysical Union (AGU) Funded by:NSF | The Management and Operat...NSF| The Management and Operation of the National Center for Atmoshperic Research (NCAR)Darren L. Ficklin; Danielle Touma; Benjamin I. Cook; Scott M. Robeson; Taehee Hwang; Jacob Scheff; A. Park Williams; Harper Watson; Ben Livneh; Mari R. Tye; Lixin Wang;doi: 10.1029/2024ef004661
AbstractFuture flood risk assessment has primarily focused on heavy rainfall as the main driver, with the assumption that projected increases in extreme rain events will lead to subsequent flooding. However, the presence of and changes in vegetation have long been known to influence the relationship between rainfall and runoff. Here, we extract historical (1850–1880) and projected (2070–2100) daily extreme rainfall events, the corresponding runoff, and antecedent conditions simulated in a prominent large Earth system model ensemble to examine the shifting extreme rainfall and runoff relationship. Even with widespread projected increases in the magnitude (78% of the land surface) and number (72%) of extreme rainfall events, we find projected declines in event‐based runoff ratio (runoff/rainfall) for a majority (57%) of the Earth surface. Runoff ratio declines are linked with decreases in antecedent soil water driven by greater transpiration and canopy evaporation (both linked to vegetation greening) compared to areas with runoff ratio increases. Using a machine learning regression tree approach, we find that changes in canopy evaporation is the most important variable related to changes in antecedent soil water content in areas of decreased runoff ratios (with minimal changes in antecedent rainfall) while antecedent ground evaporation is the most important variable in areas of increased runoff ratios. Our results suggest that simulated interactions between vegetation greening, increasing evaporative demand, and antecedent soil drying are projected to diminish runoff associated with extreme rainfall events, with important implications for society.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024ef004661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024ef004661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United StatesPublisher:Springer Science and Business Media LLC Wenzhe Jiao; Lixin Wang; William K. Smith; Qing Chang; Honglang Wang; Paolo D’Odorico;AbstractDespite the growing interest in predicting global and regional trends in vegetation productivity in response to a changing climate, changes in water constraint on vegetation productivity (i.e., water limitations on vegetation growth) remain poorly understood. Here we conduct a comprehensive evaluation of changes in water constraint on vegetation growth in the extratropical Northern Hemisphere between 1982 and 2015. We document a significant increase in vegetation water constraint over this period. Remarkably divergent trends were found with vegetation water deficit areas significantly expanding, and water surplus areas significantly shrinking. The increase in water constraints associated with water deficit was also consistent with a decreasing response time to water scarcity, suggesting a stronger susceptibility of vegetation to drought. We also observed shortened water surplus period for water surplus areas, suggesting a shortened exposure to water surplus associated with humid conditions. These observed changes were found to be attributable to trends in temperature, solar radiation, precipitation, and atmospheric CO2. Our findings highlight the need for a more explicit consideration of the influence of water constraints on regional and global vegetation under a warming climate.
Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-24016-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 387 citations 387 popularity Top 0.1% influence Top 10% impulse Top 0.01% Powered by BIP!
more_vert Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-24016-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024 Portugal, Spain, France, France, Italy, France, Portugal, South Africa, France, Italy, FrancePublisher:Springer Science and Business Media LLC Funded by:EC | BIODESERT, FCT | CEECIND/02453/2018/CP1534/CT0001EC| BIODESERT ,FCT| CEECIND/02453/2018/CP1534/CT0001Authors: Díaz-Martínez, Paloma; Maestre, Fernando; Moreno-Jiménez, Eduardo; Delgado-Baquerizo, Manuel; +123 AuthorsDíaz-Martínez, Paloma; Maestre, Fernando; Moreno-Jiménez, Eduardo; Delgado-Baquerizo, Manuel; Eldridge, David; Saiz, Hugo; Gross, Nicolas; Le Bagousse-Pinguet, Yoann; Gozalo, Beatriz; Ochoa, Victoria; Guirado, Emilio; García-Gómez, Miguel; Valencia, Enrique; Asensio, Sergio; Berdugo, Miguel; Martínez-Valderrama, Jaime; Mendoza, Betty; García-Gil, Juan; Zaccone, Claudio; Panettieri, Marco; García-Palacios, Pablo; Fan, Wei; Benavente-Ferraces, Iria; Rey, Ana; Eisenhauer, Nico; Cesarz, Simone; Abedi, Mehdi; Ahumada, Rodrigo; Alcántara, Julio; Amghar, Fateh; Aramayo, Valeria; Arroyo, Antonio; Bahalkeh, Khadijeh; Ben Salem, Farah; Blaum, Niels; Boldgiv, Bazartseren; Bowker, Matthew; Bran, Donaldo; Branquinho, Cristina; Bu, Chongfeng; Cáceres, Yonatan; Canessa, Rafaella; Castillo-Monroy, Andrea; Castro, Ignacio; Castro-Quezada, Patricio; Chibani, Roukaya; Conceição, Abel; Currier, Courtney; Darrouzet-Nardi, Anthony; Deák, Balázs; Dickman, Christopher; Donoso, David; Dougill, Andrew; Durán, Jorge; Ejtehadi, Hamid; Espinosa, Carlos; Fajardo, Alex; Farzam, Mohammad; Ferrante, Daniela; Fraser, Lauchlan; Gaitán, Juan; Gusman Montalván, Elizabeth; Hernández-Hernández, Rosa; von Hessberg, Andreas; Hölzel, Norbert; Huber-Sannwald, Elisabeth; Hughes, Frederic; Jadán-Maza, Oswaldo; Geissler, Katja; Jentsch, Anke; Ju, Mengchen; Kaseke, Kudzai; Kindermann, Liana; Koopman, Jessica; Le Roux, Peter; Liancourt, Pierre; Linstädter, Anja; Liu, Jushan; Louw, Michelle; Maggs-Kölling, Gillian; Makhalanyane, Thulani; Issa, Oumarou Malam; Marais, Eugene; Margerie, Pierre; Mazaneda, Antonio; Mcclaran, Mitchel; Messeder, João Vitor S.; Mora, Juan; Moreno, Gerardo; Munson, Seth; Nunes, Alice; Oliva, Gabriel; Oñatibia, Gastón; Osborne, Brooke; Peter, Guadalupe; Pueyo, Yolanda; Quiroga, R. Emiliano; Reed, Sasha; Reyes, Victor; Rodríguez, Alexandra; Ruppert, Jan; Sala, Osvaldo; Salah, Ayman; Sebei, Julius; Sloan, Michael; Solongo, Shijirbaatar; Stavi, Ilan; Stephens, Colton; Teixido, Alberto; Thomas, Andrew; Throop, Heather; Tielbörger, Katja; Travers, Samantha; Val, James; Valko, Orsolya; van den Brink, Liesbeth; Velbert, Frederike; Wamiti, Wanyoike; Wang, Deli; Wang, Lixin; Wardle, Glenda; Yahdjian, Laura; Zaady, Eli; Zeberio, Juan; Zhang, Yuanming; Zhou, Xiaobing; Plaza, César;handle: 10261/364882 , 11562/1132966 , 20.500.14352/114759 , 2263/98010
This research was funded by the European Research Council (ERC Grant agreement 647038, BIODESERT), the Spanish Ministry of Science and Innovation (PID2020-116578RB-I00) and Generalitat Valenciana (CIDEGENT/2018/041), with additional support by the University of Alicante (UADIF22-74 and VIGROB22-350). F.T.M. acknowledges support from the King Abdullah University of Science and Technology (KAUST) and the KAUST Climate and Livability Initiative. D.J.E. is supported by the Hermon Slade Foundation. H.S. is supported by a María Zambrano fellowship funded by the Ministry of Universities and European Union-Next Generation plan. L.W. acknowledges support from the US National Science Foundation (EAR 1554894). B.B. and S.S. were supported by the Taylor Family–Asia Foundation Endowed Chair in Ecology and Conservation Biology. M.B. acknowledges support from a Ramón y Cajal grant from the Spanish Ministry of Science (RYC2021-031797-I). A.L. and L.K. acknowledge support from the German Research Foundation, DFG (grant CRC TRR228) and German Federal Government for Science and Education, BMBF (grants 01LL1802C and 01LC1821A). L.K. acknowledges travel funds from the Hans Merensky Foundation. A.N. and C. Branquinho acknowledge support from FCT—Fundação para a Ciência e a Tecnologia (CEECIND/02453/2018/CP1534/CT0001, PTDC/ASP-SIL/7743/2020, UIDB/00329/2020), from AdaptForGrazing project (PRR-C05-i03-I-000035) and from LTsER Montado platform (LTER_EU_PT_001). S.C.R. was supported by NASA (NNH22OB92A) and is grateful to E. Geiger, A. Howell, R. Reibold, N. Melone and M. Starbuck for field support. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government. We thank the landowners for granting access to the sites and many people and their institutions for supporting our fieldwork activities: L. Eloff, J. J. Jordaan, E. Mudongo, V. Mokoka, B. Mokhou, T. Maphanga, D. Thompson (SAEON), A. S. K. Frank, R. Matjea, F. Hoffmann, C. Goebel, the University of Limpopo, South African Environmental Observation Network (SAEON), the South African Military and the Scientific Services Kruger National Park. Mineral-associated organic carbon (MAOC) constitutes a major fraction of global soil carbon and is assumed less sensitive to climate than particulate organic carbon (POC) due to protection by minerals. Despite its importance for long-term carbon storage, the response of MAOC to changing climates in drylands, which cover more than 40% of the global land area, remains unexplored. Here we assess topsoil organic carbon fractions across global drylands using a standardized field survey in 326 plots from 25 countries and 6 continents. We find that soil biogeochemistry explained the majority of variation in both MAOC and POC. Both carbon fractions decreased with increases in mean annual temperature and reductions in precipitation, with MAOC responding similarly to POC. Therefore, our results suggest that ongoing climate warming and aridification may result in unforeseen carbon losses across global drylands, and that the protective role of minerals may not dampen these effects. 19 páginas total artículo.- 3 figuras.- 33 referencias y 4 figuras.- 2 tablas.- 68 referencias.- The online version contains supplementary material available and extended data is available for this paper at https://doi.org/10.1038/s41558-024-02087-y No
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversidade de Lisboa: Repositório.ULArticle . 2024Data sources: Universidade de Lisboa: Repositório.ULInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Repositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteNature Climate ChangeArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-024-02087-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 179visibility views 179 download downloads 459 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversidade de Lisboa: Repositório.ULArticle . 2024Data sources: Universidade de Lisboa: Repositório.ULInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Repositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteNature Climate ChangeArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-024-02087-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United StatesPublisher:American Geophysical Union (AGU) Koong Yi; Kimberly A. Novick; Quan Zhang; Lixin Wang; Taehee Hwang; Xi Yang; Kanishka Mallick; Martin Béland; Gabriel B. Senay; Dennis D. Baldocchi;doi: 10.1029/2023jg007875
AbstractAccording to classic stomatal optimization theory, plant stomata are regulated to maximize carbon assimilation for a given water loss. A key component of stomatal optimization models is marginal water‐use efficiency (mWUE), the ratio of the change of transpiration to the change in carbon assimilation. Although the mWUE is often assumed to be constant, variability of mWUE under changing hydrologic conditions has been reported. However, there has yet to be a consensus on the patterns of mWUE variabilities and their relations with atmospheric aridity. We investigate the dynamics of mWUE in response to vapor pressure deficit (VPD) and aridity index using carbon and water fluxes from 115 eddy covariance towers available from the global database FLUXNET. We demonstrate a non‐linear mWUE‐VPD relationship at a sub‐daily scale in general; mWUE varies substantially at both low and high VPD levels. However, mWUE remains relatively constant within the mid‐range of VPD. Despite the highly non‐linear relationship between mWUE and VPD, the relationship can be informed by the strong linear relationship between ecosystem‐level inherent water‐use efficiency (IWUE) and mWUE using the slope, m*. We further identify site‐specific m* and its variability with changing site‐level aridity across six vegetation types. We suggest accurately representing the relationship between IWUE and VPD using Michaelis–Menten or quadratic functions to ensure precise estimation of mWUE variability for individual sites.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/54m1b3t8Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research BiogeosciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023jg007875&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/54m1b3t8Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research BiogeosciencesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023jg007875&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 14 Jan 2025 Spain, France, United States, Portugal, United States, Portugal, Spain, Spain, SpainPublisher:American Association for the Advancement of Science (AAAS) Funded by:DFG | EarthShape: Earth Surface..., EC | BIODESERT, DFG | Future Rural Africa: Futu... +1 projectsDFG| EarthShape: Earth Surface Shaping by Biota ,EC| BIODESERT ,DFG| Future Rural Africa: Future-making and social-ecological transformation ,NSF| CAREER: Soil organic carbon dynamics in response to long-term ecological changes in drylands: an integrated program for carbon cycle research and enhancing climate change literacyBiancari, Lucio; Aguiar, Martín; Eldridge, David; Oñatibia, Gastón; Le Bagousse-Pinguet, Yoann; Saiz, Hugo; Gross, Nicolas; Austin, Amy; Ochoa, Victoria; Gozalo, Beatriz; Asensio, Sergio; Guirado, Emilio; Valencia, Enrique; Berdugo, Miguel; Plaza, César; Martínez-Valderrama, Jaime; Mendoza, Betty; García-Gómez, Miguel; Abedi, Mehdi; Ahumada, Rodrigo; Alcántara, Julio; Amghar, Fateh; Anadón, José; Aramayo, Valeria; Arredondo, Tulio; Bader, Maaike; Bahalkeh, Khadijeh; Salem, Farah Ben; Blaum, Niels; Boldgiv, Bazartseren; Bowker, Matthew; Branquinho, Cristina; Bu, Chongfeng; Byambatsogt, Batbold; Calvo, Dianela; Castillo Monroy, Andrea; Castro, Helena; Castro-Quezada, Patricio; Chibani, Roukaya; Conceição, Abel; Currier, Courtney; Donoso, David; Dougill, Andrew; Ejtehadi, Hamid; Espinosa, Carlos; Fajardo, Alex; Farzam, Mohammad; Ferrante, Daniela; Fraser, Lauchlan; Gaitán, Juan; Gherardi, Laureano; Gusmán-Montalván, Elizabeth; Hernández-Hernández, Rosa; Hölzel, Norbert; Huber-Sannwald, Elisabeth; Hughes, Frederic; Jadán, Oswaldo; Jeltsch, Florian; Jentsch, Anke; Ju, Mengchen; Kaseke, Kudzai; Kindermann, Liana; Köbel, Melanie; Le Roux, Peter; Liancourt, Pierre; Linstädter, Anja; Liu, Jushan; Louw, Michelle; Maggs-Kölling, Gillian; Issa, Oumarou Malam; Marais, Eugene; Margerie, Pierre; Messeder, João Vitor S.; Mora, Juan; Moreno, Gerardo; Munson, Seth; Oliva, Gabriel; Pueyo, Yolanda; Quiroga, R. Emiliano; Reed, Sasha; Rey, Pedro; Rodríguez, Alexandra; Rodríguez, Laura; Rolo, Víctor; Ruppert, Jan; Sala, Osvaldo; Salah, Ayman; Stavi, Ilan; Stephens, Colton; Swemmer, Anthony; Teixido, Alberto; Thomas, Andrew; Throop, Heather; Tielbörger, Katja; Travers, Samantha; van den Brink, Liesbeth; Wagner, Viktoria; Wamiti, Wanyoike; Wang, Deli; Wang, Lixin; Wolff, Peter; Yahdjian, Laura; Zaady, Eli; Maestre, Fernando;handle: 10261/373769 , 10045/147812 , 1805/44453
Increases in the abundance of woody species have been reported to affect the provisioning of ecosystem services in drylands worldwide. However, it is virtually unknown how multiple biotic and abiotic drivers, such as climate, grazing, and fire, interact to determine woody dominance across global drylands. We conducted a standardized field survey in 304 plots across 25 countries to assess how climatic features, soil properties, grazing, and fire affect woody dominance in dryland rangelands. Precipitation, temperature, and grazing were key determinants of tree and shrub dominance. The effects of grazing were determined not solely by grazing pressure but also by the dominant livestock species. Interactions between soil, climate, and grazing and differences in responses to these factors between trees and shrubs were key to understanding changes in woody dominance. Our findings suggest that projected changes in climate and grazing pressure may increase woody dominance in drylands, altering their structure and functioning.
Indiana University -... arrow_drop_down Indiana University - Purdue University Indianapolis: IUPUI Scholar WorksArticle . 2024License: CC BY NCFull-Text: https://hdl.handle.net/1805/44453Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BY NCFull-Text: http://zaguan.unizar.es/record/147227Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024License: CC BY NCData sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2024License: CC BY NCData sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteNormandie Université: HALArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Full-Text: https://doi.org/10.1126/sciadv.adn6007Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.adn6007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 79visibility views 79 download downloads 77 Powered bymore_vert Indiana University -... arrow_drop_down Indiana University - Purdue University Indianapolis: IUPUI Scholar WorksArticle . 2024License: CC BY NCFull-Text: https://hdl.handle.net/1805/44453Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BY NCFull-Text: http://zaguan.unizar.es/record/147227Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024License: CC BY NCData sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2024License: CC BY NCData sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteNormandie Université: HALArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Full-Text: https://doi.org/10.1126/sciadv.adn6007Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.adn6007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United StatesPublisher:American Geophysical Union (AGU) Chengfang Lin; Xiaofei Liu; Miaohua Jiang; Miaohua Jiang; Zongming He; Chao Xu; Jingsheng Xie; Guangshui Chen; Chen Shidong; Lixin Wang; Yusheng Yang; Teng Chiu Lin; Zhijie Yang; Jianfen Guo; Kaimiao Lin; Weisheng Lin; Decheng Xiong;doi: 10.1002/2017jg004267
handle: 1805/17196
AbstractChina manages the largest monoculture plantations in the world, with 24% being Chinese fir plantations. Maximizing the ecosystem services of Chinese fir plantations has important implications in global carbon cycle and biodiversity protection. Assisted natural regeneration (ANR) is a practice to convert degraded lands into more productive forests with great ecosystems services. However, the quantitative understanding of ANR ecosystem service benefits is very limited. We conducted a comprehensive field manipulation experiment to evaluate the ANR potentials. We quantified and compared key ecosystem services including surface runoff, sediment yield, dissolved organic carbon export, plant diversity, and aboveground carbon accumulation of ANR of secondary forests dominated by Castanopsis carlesii to that of Chinese fir and C. carlesii plantations. Our results showed that ANR of C. carlesii forest reduced surface runoff and sediment yield up to 50% compared with other young plantations in the first 3 years and substantially increased plant diversity. ANR also reduced the export of dissolved organic carbon by 60–90% in the first 2 years. Aboveground biomass of the young ANR forest was approximately 3–4 times of that of other young plantations, while aboveground biomass of mature ANR forests was approximately 1.4 times of that of mature Chinese fir plantations of the same age. If all Chinese fir plantations in China were replaced by ANR forests, potentially 0.7 Pg more carbon will be stored in aboveground in one rotation (25 years). The results indicate that ANR triggers positive feedbacks among soil and water conservation, biodiversity protection, and biomass accumulation and thereby enhances ecosystem services.
Indiana University -... arrow_drop_down Indiana University - Purdue University Indianapolis: IUPUI Scholar WorksArticle . 2018License: CC BY NC NDFull-Text: https://hdl.handle.net/1805/17196Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research BiogeosciencesArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017jg004267&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 52 citations 52 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Indiana University -... arrow_drop_down Indiana University - Purdue University Indianapolis: IUPUI Scholar WorksArticle . 2018License: CC BY NC NDFull-Text: https://hdl.handle.net/1805/17196Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research BiogeosciencesArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017jg004267&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Spain, Canada, Portugal, Spain, France, Canada, Spain, Portugal, SpainPublisher:Springer Science and Business Media LLC Funded by:ARC | Discovery Projects - Gran..., EC | DRYFUN, EC | BIODESERT +3 projectsARC| Discovery Projects - Grant ID: DP210102593 ,EC| DRYFUN ,EC| BIODESERT ,EC| AGREENSKILLSPLUS ,FCT| CEECIND/02453/2018/CP1534/CT0001 ,DFG| EarthShape: Earth Surface Shaping by BiotaGross, Nicolas; Maestre, Fernando; Liancourt, Pierre; Berdugo, Miguel; Martin, Raphaël; Gozalo, Beatriz; Ochoa, Victoria; Delgado-Baquerizo, Manuel; Maire, Vincent; Saiz, Hugo; Soliveres, Santiago; Valencia, Enrique; Eldridge, David; Guirado, Emilio; Jabot, Franck; Asensio, Sergio; Gaitán, Juan; García-Gómez, Miguel; Martínez, Paloma; Martínez-Valderrama, Jaime; Mendoza, Betty; Moreno-Jiménez, Eduardo; Pescador, David; Plaza, César; Pijuan, Ivan Santaolaria; Abedi, Mehdi; Ahumada, Rodrigo; Amghar, Fateh; Arroyo, Antonio; Bahalkeh, Khadijeh; Bailey, Lydia; Ben Salem, Farah; Blaum, Niels; Boldgiv, Bazartseren; Bowker, Matthew; Branquinho, Cristina; van den Brink, Liesbeth; Bu, Chongfeng; Canessa, Rafaella; Castillo-Monroy, Andrea del P.; Castro, Helena; Castro, Patricio; Chibani, Roukaya; Conceição, Abel Augusto; Darrouzet-Nardi, Anthony; Davila, Yvonne; Deák, Balázs; Donoso, David; Durán, Jorge; Espinosa, Carlos; Fajardo, Alex; Farzam, Mohammad; Ferrante, Daniela; Franzese, Jorgelina; Fraser, Lauchlan; Gonzalez, Sofía; Gusman-Montalvan, Elizabeth; Hernández-Hernández, Rosa Mary; Hölzel, Norbert; Huber-Sannwald, Elisabeth; Jadan, Oswaldo; Jeltsch, Florian; Jentsch, Anke; Ju, Mengchen; Kaseke, Kudzai; Kindermann, Liana; Le Roux, Peter; Linstädter, Anja; Louw, Michelle; Mabaso, Mancha; Maggs-Kölling, Gillian; Makhalanyane, Thulani; Issa, Oumarou Malam; Manzaneda, Antonio; Marais, Eugene; Margerie, Pierre; Hughes, Frederic Mendes; Messeder, João Vitor S.; Mora, Juan; Moreno, Gerardo; Munson, Seth; Nunes, Alice; Oliva, Gabriel; Oñatibia, Gaston; Peter, Guadalupe; Pueyo, Yolanda; Quiroga, R. Emiliano; Ramírez-Iglesias, Elizabeth; Reed, Sasha; Rey, Pedro; Reyes Gómez, Víctor; Rodríguez, Alexandra; Rolo, Victor; Rubalcaba, Juan; Ruppert, Jan; Sala, Osvaldo; Salah, Ayman; Sebei, Phokgedi Julius; Stavi, Ilan; Stephens, Colton; Teixido, Alberto; Thomas, Andrew; Throop, Heather; Tielbörger, Katja; Travers, Samantha; Undrakhbold, Sainbileg; Val, James; Valkó, Orsolya; Velbert, Frederike; Wamiti, Wanyoike; Wang, Lixin; Wang, Deli; Wardle, Glenda; Wolff, Peter; Yahdjian, Laura; Yari, Reza; Zaady, Eli; Zeberio, Juan Manuel; Zhang, Yuanling; Zhou, Xiaobing; Le Bagousse-Pinguet, Yoann;Earth harbours an extraordinary plant phenotypic diversity1 that is at risk from ongoing global changes2,3. However, it remains unknown how increasing aridity and livestock grazing pressure-two major drivers of global change4-6-shape the trait covariation that underlies plant phenotypic diversity1,7. Here we assessed how covariation among 20 chemical and morphological traits responds to aridity and grazing pressure within global drylands. Our analysis involved 133,769 trait measurements spanning 1,347 observations of 301 perennial plant species surveyed across 326 plots from 6 continents. Crossing an aridity threshold of approximately 0.7 (close to the transition between semi-arid and arid zones) led to an unexpected 88% increase in trait diversity. This threshold appeared in the presence of grazers, and moved toward lower aridity levels with increasing grazing pressure. Moreover, 57% of observed trait diversity occurred only in the most arid and grazed drylands, highlighting the phenotypic uniqueness of these extreme environments. Our work indicates that drylands act as a global reservoir of plant phenotypic diversity and challenge the pervasive view that harsh environmental conditions reduce plant trait diversity8-10. They also highlight that many alternative strategies may enable plants to cope with increases in environmental stress induced by climate change and land-use intensification.
Digital Repository o... arrow_drop_down Digital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2024Data sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteRecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversité du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-07731-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 17 citations 17 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 91visibility views 91 download downloads 133 Powered bymore_vert Digital Repository o... arrow_drop_down Digital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaUniversidade de Lisboa: Repositório.ULArticle . 2024Data sources: Universidade de Lisboa: Repositório.ULRepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteRecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversité du Québec à Trois-Rivières: Dépôt numérique de UQTRArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-07731-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United StatesPublisher:American Geophysical Union (AGU) Wenzhe Jiao; Lixin Wang; Honglang Wang; Matthew Lanning; Qing Chang; Kimberly A. Novick;doi: 10.1029/2021jg006431
handle: 1805/28982
AbstractDrought is one of the most important natural hazards impacting ecosystem carbon cycles. However, it is challenging to quantify the impacts of drought on ecosystem carbon balance and several factors hinder our explicit understanding of the complex drought impacts. First, drought impacts can have different time dimensions such as simultaneous, cumulative, and lagged impacts on ecosystem carbon balance. Second, drought is not only a multiscale (e.g., temporal and spatial) but also a multidimensional (e.g., intensity, time‐scale, and timing) phenomenon, and ecosystem production and respiration may respond to each drought dimension differently. In this study, we conducted a comprehensive drought impact assessment on ecosystem productivity and respiration in humid regions by including different drought dimensions using global FLUXNET observations. Short‐term drought (e.g., 1‐month drought) generally did not induce a decrease in plant productivity even under high severity drought. However, ecosystem production and respiration significantly decreased as drought intensity increased for droughts longer than 1 month in duration. Drought timing was important, and ecosystem productivity was most vulnerable when drought occurred during or shortly after the peak vegetation growth. We found that lagged drought impacts more significantly affected ecosystem carbon uptake than simultaneous drought, and that ecosystem respiration was less sensitive to drought time scale than ecosystem production. Overall, our results indicated that temporally‐standardized meteorological drought indices can be used to reflect plant productivity decline, but drought timing, antecedent, and cumulative drought conditions need to be considered together.
Journal of Geophysic... arrow_drop_down Journal of Geophysical Research BiogeosciencesArticle . 2022 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2021jg006431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Geophysic... arrow_drop_down Journal of Geophysical Research BiogeosciencesArticle . 2022 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2021jg006431&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United StatesPublisher:American Geophysical Union (AGU) Authors: Yang Song; Wenzhe Jiao; Jing Wang; Lixin Wang;doi: 10.1029/2021ef002634
handle: 1805/37307
AbstractRising atmospheric dryness [vapor pressure deficit (VPD)] can limit photosynthesis and thus reduce vegetation productivity. Meanwhile, plants can benefit from global warming and the fertilization effect of carbon dioxide (CO2). There are growing interests to study climate change impacts on terrestrial vegetation. However, global vegetation productivity responses to recent climate and CO2 trends remain to be fully understood. Here, we provide a comprehensive evaluation of the relative impacts of VPD, temperature, and atmospheric CO2 concentration on global vegetation productivity over the last two decades using a robust ensemble of solar‐induced chlorophyll fluorescence (SIF) and gross primary productivity (GPP) data. We document a significant increase in global vegetation productivity with rising VPD, temperature, and atmospheric CO2 concentration over this period. For global SIF (or GPP), the decrease due to rising VPD was comparable to the increase due to warming but far less than the increase due to elevated CO2 concentration. We found that rising VPD counteracted only a small proportion (approximately 8.1%–15.0%) of the warming and CO2‐induced increase in global SIF (or GPP). Despite the sharp rise in atmospheric dryness imposing a negative impact on plants, the warming and CO2 fertilization effects contributed to a persistent and widespread increase in vegetation productivity over the majority (approximately 66.5%–72.2%) of the globally vegetated areas. Overall, our findings provide a quantitative and comprehensive attribution of rising atmospheric dryness on global vegetation productivity under concurrent climate warming and CO2 increasing.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2021ef002634&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 52 citations 52 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2021ef002634&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United States, United States, United KingdomPublisher:American Geophysical Union (AGU) Kudzai Farai Kaseke; Lixin Wang; Heike Wanke; Chao Tian; Matthew Lanning; Wenzhe Jiao;doi: 10.1029/2018jd028470
handle: 1805/17252
AbstractSouthern African climate is characterized by large precipitation variability, and model precipitation estimates can vary by 70% during summer. This may be partly attributed to underestimation and lack of knowledge of the exact influence of the Atlantic Ocean on precipitation over the region. The current study models trajectories of precipitation events sampled from Windhoek (2012–2016), coupled with isotopes (δ18O, δ2H, δ17O, d, and δ′17O‐δ′18O) to determine key local drivers of isotope compositions as well as infer source evaporative conditions. Multiple linear regression analyses suggest that key drivers of isotope compositions (relative humidity, precipitation amount, and air temperature) account for 47–53% of δ18O, δ2H, and δ17O variability. Surprisingly, precipitation δ18O, δ2H, and δ17O were independent of precipitation type (stratiform versus convective), and this may be attributed to greater modification of stratiform compared to convective raindrops, leading to convergence of isotopes from these precipitation types. Trajectory analyses showed that 78% and 21% of precipitation events during the period originated from the Indian and South Atlantic Oceans, respectively. Although precipitation from the Atlantic Ocean was significantly enriched compared to that from the Indian Ocean (p < 0.05), d was similar, suggesting significant local modification (up to 55% of d variability). Therefore, d may not be a conservative tracer of evaporation conditions at the source, at least for Windhoek. The δ′17O‐δ′18O appeared to be a better alternative to d, consistent with trajectory analyses, and appeared to differentiate El Niño from non‐El Niño droughts. Thus, δ′17O‐δ′18O could be a novel tool to identify drought mechanisms.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2018License: rioxx All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)UWE Research RepositoryArticle . 2018License: rioxx All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)Journal of Geophysical Research AtmospheresArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018jd028470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2018License: rioxx All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)UWE Research RepositoryArticle . 2018License: rioxx All Rights ReservedData sources: CORE (RIOXX-UK Aggregator)Journal of Geophysical Research AtmospheresArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018jd028470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:American Geophysical Union (AGU) Funded by:NSF | The Management and Operat...NSF| The Management and Operation of the National Center for Atmoshperic Research (NCAR)Darren L. Ficklin; Danielle Touma; Benjamin I. Cook; Scott M. Robeson; Taehee Hwang; Jacob Scheff; A. Park Williams; Harper Watson; Ben Livneh; Mari R. Tye; Lixin Wang;doi: 10.1029/2024ef004661
AbstractFuture flood risk assessment has primarily focused on heavy rainfall as the main driver, with the assumption that projected increases in extreme rain events will lead to subsequent flooding. However, the presence of and changes in vegetation have long been known to influence the relationship between rainfall and runoff. Here, we extract historical (1850–1880) and projected (2070–2100) daily extreme rainfall events, the corresponding runoff, and antecedent conditions simulated in a prominent large Earth system model ensemble to examine the shifting extreme rainfall and runoff relationship. Even with widespread projected increases in the magnitude (78% of the land surface) and number (72%) of extreme rainfall events, we find projected declines in event‐based runoff ratio (runoff/rainfall) for a majority (57%) of the Earth surface. Runoff ratio declines are linked with decreases in antecedent soil water driven by greater transpiration and canopy evaporation (both linked to vegetation greening) compared to areas with runoff ratio increases. Using a machine learning regression tree approach, we find that changes in canopy evaporation is the most important variable related to changes in antecedent soil water content in areas of decreased runoff ratios (with minimal changes in antecedent rainfall) while antecedent ground evaporation is the most important variable in areas of increased runoff ratios. Our results suggest that simulated interactions between vegetation greening, increasing evaporative demand, and antecedent soil drying are projected to diminish runoff associated with extreme rainfall events, with important implications for society.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024ef004661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024ef004661&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United StatesPublisher:Springer Science and Business Media LLC Wenzhe Jiao; Lixin Wang; William K. Smith; Qing Chang; Honglang Wang; Paolo D’Odorico;AbstractDespite the growing interest in predicting global and regional trends in vegetation productivity in response to a changing climate, changes in water constraint on vegetation productivity (i.e., water limitations on vegetation growth) remain poorly understood. Here we conduct a comprehensive evaluation of changes in water constraint on vegetation growth in the extratropical Northern Hemisphere between 1982 and 2015. We document a significant increase in vegetation water constraint over this period. Remarkably divergent trends were found with vegetation water deficit areas significantly expanding, and water surplus areas significantly shrinking. The increase in water constraints associated with water deficit was also consistent with a decreasing response time to water scarcity, suggesting a stronger susceptibility of vegetation to drought. We also observed shortened water surplus period for water surplus areas, suggesting a shortened exposure to water surplus associated with humid conditions. These observed changes were found to be attributable to trends in temperature, solar radiation, precipitation, and atmospheric CO2. Our findings highlight the need for a more explicit consideration of the influence of water constraints on regional and global vegetation under a warming climate.
Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-24016-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 387 citations 387 popularity Top 0.1% influence Top 10% impulse Top 0.01% Powered by BIP!
more_vert Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-24016-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu