
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Increased Global Vegetation Productivity Despite Rising Atmospheric Dryness Over the Last Two Decades

doi: 10.1029/2021ef002634
handle: 1805/37307
AbstractRising atmospheric dryness [vapor pressure deficit (VPD)] can limit photosynthesis and thus reduce vegetation productivity. Meanwhile, plants can benefit from global warming and the fertilization effect of carbon dioxide (CO2). There are growing interests to study climate change impacts on terrestrial vegetation. However, global vegetation productivity responses to recent climate and CO2 trends remain to be fully understood. Here, we provide a comprehensive evaluation of the relative impacts of VPD, temperature, and atmospheric CO2 concentration on global vegetation productivity over the last two decades using a robust ensemble of solar‐induced chlorophyll fluorescence (SIF) and gross primary productivity (GPP) data. We document a significant increase in global vegetation productivity with rising VPD, temperature, and atmospheric CO2 concentration over this period. For global SIF (or GPP), the decrease due to rising VPD was comparable to the increase due to warming but far less than the increase due to elevated CO2 concentration. We found that rising VPD counteracted only a small proportion (approximately 8.1%–15.0%) of the warming and CO2‐induced increase in global SIF (or GPP). Despite the sharp rise in atmospheric dryness imposing a negative impact on plants, the warming and CO2 fertilization effects contributed to a persistent and widespread increase in vegetation productivity over the majority (approximately 66.5%–72.2%) of the globally vegetated areas. Overall, our findings provide a quantitative and comprehensive attribution of rising atmospheric dryness on global vegetation productivity under concurrent climate warming and CO2 increasing.
- Purdue University in Indianapolis United States
- China Agricultural University China (People's Republic of)
- Indiana University – Purdue University Indianapolis United States
- Purdue University in Indianapolis United States
- China Agricultural University China (People's Republic of)
CO2 fertilization effect, vapor pressure deficit (VPD), Ecology, vapor pressure deficit, global vegetation growth, climate warming, Environmental sciences, climate change, global vegetation productivity, CO2, GE1-350, atmospheric dryness, solar‐induced chlorophyll fluorescence, gross primary productivity, QH540-549.5
CO2 fertilization effect, vapor pressure deficit (VPD), Ecology, vapor pressure deficit, global vegetation growth, climate warming, Environmental sciences, climate change, global vegetation productivity, CO2, GE1-350, atmospheric dryness, solar‐induced chlorophyll fluorescence, gross primary productivity, QH540-549.5
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).52 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
