- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Preprint 2024Publisher:American Chemical Society (ACS) Funded by:UKRI | Harnessing vibration-indu..., EC | RoLA-FLEX, UKRI | Flexible Hybrid Thermoele... +3 projectsUKRI| Harnessing vibration-induced enhancement of transport in functional materials with soft structural dynamics ,EC| RoLA-FLEX ,UKRI| Flexible Hybrid Thermoelectric Materials ,EC| CITYSOLAR ,EC| BOOSTER ,EC| EUTOPIA-SIFWu, Xiaocui; Moro, Stefania; Marks, Adam; Alsufyani, Maryam; Yu, Zidi; Perdigão, Luís; Chen, Xingxing; Luci, Alexander; Crockford, Callum; Spencer, Simon; Fox, David; Pei, Jian; McCulloch, Iain; Costantini, Giovanni;Aldol condensation is a crucial synthetic reaction in organic chemistry, particularly valued for fabricating conjugated polymers without the use of metals or toxic organostannanes. However, due to the lack of reliable and precise analytical methods, no direct evidence of the microstructure and sequence of synthesised polymers has been obtained, limiting control over their structure and performance. Here, by combining electrospray deposition and scanning tunnelling microscopy (ESD-STM), we analyse sub-monomer resolution images of four different n-type polymers produced via aldol condensation, revealing unexpected defects in both the sequence of (co)monomers and their coupling. These defects, observed across all polymer samples, indicate alternative side reaction pathways inherent to aldol condensation, affecting both polymerisation and small-molecule reactions. Our findings not only uncover the reaction mechanism responsible for these defects but also bring new insights for the design of more effective synthetic pathways to minimise structural defects in conjugated polymers.
http://dx.doi.org/10... arrow_drop_down https://doi.org/10.26434/chemr...Article . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26434/chemrxiv-2024-mjnc4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid more_vert http://dx.doi.org/10... arrow_drop_down https://doi.org/10.26434/chemr...Article . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26434/chemrxiv-2024-mjnc4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Publisher:American Chemical Society (ACS) Funded by:UKRI | Harnessing vibration-indu..., EC | RoLA-FLEX, UKRI | Flexible Hybrid Thermoele... +3 projectsUKRI| Harnessing vibration-induced enhancement of transport in functional materials with soft structural dynamics ,EC| RoLA-FLEX ,UKRI| Flexible Hybrid Thermoelectric Materials ,EC| CITYSOLAR ,EC| BOOSTER ,EC| EUTOPIA-SIFWu, Xiaocui; Moro, Stefania; Marks, Adam; Alsufyani, Maryam; Yu, Zidi; Perdigão, Luís; Chen, Xingxing; Luci, Alexander; Crockford, Callum; Spencer, Simon; Fox, David; Pei, Jian; McCulloch, Iain; Costantini, Giovanni;Aldol condensation is a crucial synthetic reaction in organic chemistry, particularly valued for fabricating conjugated polymers without the use of metals or toxic organostannanes. However, due to the lack of reliable and precise analytical methods, no direct evidence of the microstructure and sequence of synthesised polymers has been obtained, limiting control over their structure and performance. Here, by combining electrospray deposition and scanning tunnelling microscopy (ESD-STM), we analyse sub-monomer resolution images of four different n-type polymers produced via aldol condensation, revealing unexpected defects in both the sequence of (co)monomers and their coupling. These defects, observed across all polymer samples, indicate alternative side reaction pathways inherent to aldol condensation, affecting both polymerisation and small-molecule reactions. Our findings not only uncover the reaction mechanism responsible for these defects but also bring new insights for the design of more effective synthetic pathways to minimise structural defects in conjugated polymers.
http://dx.doi.org/10... arrow_drop_down https://doi.org/10.26434/chemr...Article . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26434/chemrxiv-2024-mjnc4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid more_vert http://dx.doi.org/10... arrow_drop_down https://doi.org/10.26434/chemr...Article . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26434/chemrxiv-2024-mjnc4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Saudi Arabia, Saudi Arabia, ItalyPublisher:Springer Science and Business Media LLC Shofarul Wustoni; Sahika Inal; Iuliana P. Maria; Iain McCulloch; Iain McCulloch; Enzo Di Fabrizio; Xingxing Chen; Georgios Nikiforidis; Tamilarasan Palanisamy; Tamilarasan Palanisamy; Andrea Giugni; Achilleas Savva; Pedro M. F. J. Da Costa; David Ohayon;A promising class of materials for applications that rely on electron transfer for signal generation are the n-type semiconducting polymers. Here we demonstrate the integration of an n-type conjugated polymer with a redox enzyme for the autonomous detection of glucose and power generation from bodily fluids. The reversible, mediator-free, miniaturized glucose sensor is an enzyme-coupled organic electrochemical transistor with a detection range of six orders of magnitude. This n-type polymer is also used as an anode and paired with a polymeric cathode in an enzymatic fuel cell to convert the chemical energy of glucose and oxygen into electrical power. The all-polymer biofuel cell shows a performance that scales with the glucose content in the solution and a stability that exceeds 30 days. Moreover, at physiologically relevant glucose concentrations and from fluids such as human saliva, it generates enough power to operate an organic electrochemical transistor, thus contributes to the technological advancement of self-powered micrometre-scale sensors and actuators that run on metabolites produced in the body.
Archivio Istituziona... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41563-019-0556-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 244 citations 244 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41563-019-0556-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Saudi Arabia, Saudi Arabia, ItalyPublisher:Springer Science and Business Media LLC Shofarul Wustoni; Sahika Inal; Iuliana P. Maria; Iain McCulloch; Iain McCulloch; Enzo Di Fabrizio; Xingxing Chen; Georgios Nikiforidis; Tamilarasan Palanisamy; Tamilarasan Palanisamy; Andrea Giugni; Achilleas Savva; Pedro M. F. J. Da Costa; David Ohayon;A promising class of materials for applications that rely on electron transfer for signal generation are the n-type semiconducting polymers. Here we demonstrate the integration of an n-type conjugated polymer with a redox enzyme for the autonomous detection of glucose and power generation from bodily fluids. The reversible, mediator-free, miniaturized glucose sensor is an enzyme-coupled organic electrochemical transistor with a detection range of six orders of magnitude. This n-type polymer is also used as an anode and paired with a polymeric cathode in an enzymatic fuel cell to convert the chemical energy of glucose and oxygen into electrical power. The all-polymer biofuel cell shows a performance that scales with the glucose content in the solution and a stability that exceeds 30 days. Moreover, at physiologically relevant glucose concentrations and from fluids such as human saliva, it generates enough power to operate an organic electrochemical transistor, thus contributes to the technological advancement of self-powered micrometre-scale sensors and actuators that run on metabolites produced in the body.
Archivio Istituziona... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41563-019-0556-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 244 citations 244 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41563-019-0556-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Saudi ArabiaPublisher:American Chemical Society (ACS) Funded by:EC | SC2EC| SC2Siew Ting Melissa Tan; Tyler J. Quill; Maximilian Moser; Garrett LeCroy; Xingxing Chen; Yilei Wu; Christopher J. Takacs; Alberto Salleo; Alexander Giovannitti;handle: 10754/671136
A.G. and A.S. acknowledge funding from the TomKat Center for Sustainable Energy at Stanford University and the StorageX initiative. A.S. and S.T.M.T. gratefully acknowledge support from the National Science Foundation Award CBET #1804915. T.J.Q. and G.L. acknowledge support from the NSF Graduate Research Fellowship Program under grant DGE-1656518. Part of this work was performed at the Stanford Nanofabrication Facilities (SNF) and Stanford Nano Shared Facilities (SNSF), supported by the National Science Foundation as part of the National Nanotechnology Coordinated Infrastructure under award ECCS-1542152. The authors acknowledge financial support from KAUST, including the Office of Sponsored Research (OSR) award nos. OSR-2018-CRG/CCF-3079, OSR-2019-CRG8-4086, and OSR-2018-CRG7-3749. The authors acknowledge funding from an ERC Synergy Grant SC2 (610115). Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF00515.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.1c01625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.1c01625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Saudi ArabiaPublisher:American Chemical Society (ACS) Funded by:EC | SC2EC| SC2Siew Ting Melissa Tan; Tyler J. Quill; Maximilian Moser; Garrett LeCroy; Xingxing Chen; Yilei Wu; Christopher J. Takacs; Alberto Salleo; Alexander Giovannitti;handle: 10754/671136
A.G. and A.S. acknowledge funding from the TomKat Center for Sustainable Energy at Stanford University and the StorageX initiative. A.S. and S.T.M.T. gratefully acknowledge support from the National Science Foundation Award CBET #1804915. T.J.Q. and G.L. acknowledge support from the NSF Graduate Research Fellowship Program under grant DGE-1656518. Part of this work was performed at the Stanford Nanofabrication Facilities (SNF) and Stanford Nano Shared Facilities (SNSF), supported by the National Science Foundation as part of the National Nanotechnology Coordinated Infrastructure under award ECCS-1542152. The authors acknowledge financial support from KAUST, including the Office of Sponsored Research (OSR) award nos. OSR-2018-CRG/CCF-3079, OSR-2019-CRG8-4086, and OSR-2018-CRG7-3749. The authors acknowledge funding from an ERC Synergy Grant SC2 (610115). Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF00515.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.1c01625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.1c01625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Saudi ArabiaPublisher:American Chemical Society (ACS) Funded by:EC | RoLA-FLEX, UKRI | High resolution mapping o..., EC | SC2 +6 projectsEC| RoLA-FLEX ,UKRI| High resolution mapping of performance and degradation mechanisms in printable photovoltaic devices ,EC| SC2 ,EC| CAPaCITy ,NSF| CAREER: Understanding the Role of Structure on Ionic/Electronic Properties in Polymeric Mixed Conductors ,UKRI| Flexible Hybrid Thermoelectric Materials ,NSF| NNCI: Soft Hybrid Nanotechnology Experimental (SHyNE) Resource ,EC| BOOSTER ,NSF| MRSEC: Center for Multifunctional MaterialsReem B. Rashid; Achilleas Savva; Sophie Griggs; Sophie Griggs; Alexander Giovannitti; Alexander Giovannitti; J. Tyler Mefford; Sahika Inal; Xingxing Chen; Jenny Nelson; Davide Moia; Iuliana P. Maria; Iuliana P. Maria; Bryan D. Paulsen; Anna A. Szumska; David S. Ginger; Adam Marks; Adam Marks; Jokubas Surgailis; Lucas Q. Flagg;Conjugated polymers achieve redox activity in electrochemical devices by combining redox-active, electronically conducting backbones with ion-transporting side chains that can be tuned for different electrolytes. In aqueous electrolytes, redox activity can be accomplished by attaching hydrophilic side chains to the polymer backbone, which enables ionic transport and allows volumetric charging of polymer electrodes. While this approach has been beneficial for achieving fast electrochemical charging in aqueous solutions, little is known about the relationship between water uptake by the polymers during electrochemical charging and the stability and redox potentials of the electrodes, particularly for electron-transporting conjugated polymers. We find that excessive water uptake during the electrochemical charging of polymer electrodes harms the reversibility of electrochemical processes and results in irreversible swelling of the polymer. We show that small changes of the side chain composition can significantly increase the reversibility of the redox behavior of the materials in aqueous electrolytes, improving the capacity of the polymer by more than one order of magnitude. Finally, we show that tuning the local environment of the redox-active polymer by attaching hydrophilic side chains can help to reach high fractions of the theoretical capacity for single-phase electrodes in aqueous electrolytes. Our work shows the importance of chemical design strategies for achieving high electrochemical stability for conjugated polymers in aqueous electrolytes.
Journal of the Ameri... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Journal of the American Chemical SocietyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of the American Chemical SocietyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jacs.1c06713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 87 citations 87 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of the Ameri... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Journal of the American Chemical SocietyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of the American Chemical SocietyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jacs.1c06713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Saudi ArabiaPublisher:American Chemical Society (ACS) Funded by:EC | RoLA-FLEX, UKRI | High resolution mapping o..., EC | SC2 +6 projectsEC| RoLA-FLEX ,UKRI| High resolution mapping of performance and degradation mechanisms in printable photovoltaic devices ,EC| SC2 ,EC| CAPaCITy ,NSF| CAREER: Understanding the Role of Structure on Ionic/Electronic Properties in Polymeric Mixed Conductors ,UKRI| Flexible Hybrid Thermoelectric Materials ,NSF| NNCI: Soft Hybrid Nanotechnology Experimental (SHyNE) Resource ,EC| BOOSTER ,NSF| MRSEC: Center for Multifunctional MaterialsReem B. Rashid; Achilleas Savva; Sophie Griggs; Sophie Griggs; Alexander Giovannitti; Alexander Giovannitti; J. Tyler Mefford; Sahika Inal; Xingxing Chen; Jenny Nelson; Davide Moia; Iuliana P. Maria; Iuliana P. Maria; Bryan D. Paulsen; Anna A. Szumska; David S. Ginger; Adam Marks; Adam Marks; Jokubas Surgailis; Lucas Q. Flagg;Conjugated polymers achieve redox activity in electrochemical devices by combining redox-active, electronically conducting backbones with ion-transporting side chains that can be tuned for different electrolytes. In aqueous electrolytes, redox activity can be accomplished by attaching hydrophilic side chains to the polymer backbone, which enables ionic transport and allows volumetric charging of polymer electrodes. While this approach has been beneficial for achieving fast electrochemical charging in aqueous solutions, little is known about the relationship between water uptake by the polymers during electrochemical charging and the stability and redox potentials of the electrodes, particularly for electron-transporting conjugated polymers. We find that excessive water uptake during the electrochemical charging of polymer electrodes harms the reversibility of electrochemical processes and results in irreversible swelling of the polymer. We show that small changes of the side chain composition can significantly increase the reversibility of the redox behavior of the materials in aqueous electrolytes, improving the capacity of the polymer by more than one order of magnitude. Finally, we show that tuning the local environment of the redox-active polymer by attaching hydrophilic side chains can help to reach high fractions of the theoretical capacity for single-phase electrodes in aqueous electrolytes. Our work shows the importance of chemical design strategies for achieving high electrochemical stability for conjugated polymers in aqueous electrolytes.
Journal of the Ameri... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Journal of the American Chemical SocietyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of the American Chemical SocietyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jacs.1c06713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 87 citations 87 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of the Ameri... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Journal of the American Chemical SocietyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of the American Chemical SocietyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jacs.1c06713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Royal Society of Chemistry (RSC) Funded by:EC | CAPaCITyEC| CAPaCITyAna De La Fuente Durán; Allen Yu-Lun Liang; Ilaria Denti; Hang Yu; Drew Pearce; Adam Marks; Emily Penn; Jeremy Treiber; Karrie Weaver; Lily Turaski; Iuliana P. Maria; Sophie Griggs; Xingxing Chen; Alberto Salleo; William C. Chueh; Jenny Nelson; Alexander Giovannitti; J. Tyler Mefford;doi: 10.1039/d3ee02102e
Through experiment and theory, this work explains how a set of OMIEC polymer electrodes selectively reduce oxygen to hydrogen peroxide.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee02102e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee02102e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Royal Society of Chemistry (RSC) Funded by:EC | CAPaCITyEC| CAPaCITyAna De La Fuente Durán; Allen Yu-Lun Liang; Ilaria Denti; Hang Yu; Drew Pearce; Adam Marks; Emily Penn; Jeremy Treiber; Karrie Weaver; Lily Turaski; Iuliana P. Maria; Sophie Griggs; Xingxing Chen; Alberto Salleo; William C. Chueh; Jenny Nelson; Alexander Giovannitti; J. Tyler Mefford;doi: 10.1039/d3ee02102e
Through experiment and theory, this work explains how a set of OMIEC polymer electrodes selectively reduce oxygen to hydrogen peroxide.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee02102e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee02102e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Saudi Arabia, SwedenPublisher:American Chemical Society (ACS) Funded by:EC | BOOSTER, EC | RoLA-FLEX, EC | EUTOPIA-SIF +4 projectsEC| BOOSTER ,EC| RoLA-FLEX ,EC| EUTOPIA-SIF ,EC| HORATES ,UKRI| Flexible Hybrid Thermoelectric Materials ,EC| SC2 ,NSF| CAREER: Understanding the Role of Structure on Ionic/Electronic Properties in Polymeric Mixed ConductorsMarks, Adam; Chen, Xingxing; Wu, Ruiheng; Rashid, Reem B.; Jin, Wenlong; Paulsen, Bryan D.; Moser, Maximilian; Ji, Xudong; Griggs, Sophie; Meli, Dilara; Wu, Xiaocui; Bristow, Helen; Strzalka, Joseph; Gasparini, Nicola; Costantini, Giovanni; Fabiano, Simone; Rivnay, Jonathan; McCulloch, Iain;A series of fully fused n-type mixed conduction lactam polymers p(g7NCnN), systematically increasing the alkyl side chain content, are synthesized via an inexpensive, nontoxic, precious-metal-free aldol polycondensation. Employing these polymers as channel materials in organic electrochemical transistors (OECTs) affords state-of-the-art n-type performance with p(g7NC10N) recording an OECT electron mobility of 1.20 × 10-2 cm2 V-1 s-1 and a μC* figure of merit of 1.83 F cm-1 V-1 s-1. In parallel to high OECT performance, upon solution doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl)dimethylamine (N-DMBI), the highest thermoelectric performance is observed for p(g7NC4N), with a maximum electrical conductivity of 7.67 S cm-1 and a power factor of 10.4 μW m-1 K-2. These results are among the highest reported for n-type polymers. Importantly, while this series of fused polylactam organic mixed ionic-electronic conductors (OMIECs) highlights that synthetic molecular design strategies to bolster OECT performance can be translated to also achieve high organic thermoelectric (OTE) performance, a nuanced synthetic approach must be used to optimize performance. Herein, we outline the performance metrics and provide new insights into the molecular design guidelines for the next generation of high-performance n-type materials for mixed conduction applications, presenting for the first time the results of a single polymer series within both OECT and OTE applications.
CORE arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of the American Chemical SocietyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationer från Linköpings universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Linköpings universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedJournal of the American Chemical SocietyArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jacs.2c00735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of the American Chemical SocietyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationer från Linköpings universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Linköpings universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedJournal of the American Chemical SocietyArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jacs.2c00735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Saudi Arabia, SwedenPublisher:American Chemical Society (ACS) Funded by:EC | BOOSTER, EC | RoLA-FLEX, EC | EUTOPIA-SIF +4 projectsEC| BOOSTER ,EC| RoLA-FLEX ,EC| EUTOPIA-SIF ,EC| HORATES ,UKRI| Flexible Hybrid Thermoelectric Materials ,EC| SC2 ,NSF| CAREER: Understanding the Role of Structure on Ionic/Electronic Properties in Polymeric Mixed ConductorsMarks, Adam; Chen, Xingxing; Wu, Ruiheng; Rashid, Reem B.; Jin, Wenlong; Paulsen, Bryan D.; Moser, Maximilian; Ji, Xudong; Griggs, Sophie; Meli, Dilara; Wu, Xiaocui; Bristow, Helen; Strzalka, Joseph; Gasparini, Nicola; Costantini, Giovanni; Fabiano, Simone; Rivnay, Jonathan; McCulloch, Iain;A series of fully fused n-type mixed conduction lactam polymers p(g7NCnN), systematically increasing the alkyl side chain content, are synthesized via an inexpensive, nontoxic, precious-metal-free aldol polycondensation. Employing these polymers as channel materials in organic electrochemical transistors (OECTs) affords state-of-the-art n-type performance with p(g7NC10N) recording an OECT electron mobility of 1.20 × 10-2 cm2 V-1 s-1 and a μC* figure of merit of 1.83 F cm-1 V-1 s-1. In parallel to high OECT performance, upon solution doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl)dimethylamine (N-DMBI), the highest thermoelectric performance is observed for p(g7NC4N), with a maximum electrical conductivity of 7.67 S cm-1 and a power factor of 10.4 μW m-1 K-2. These results are among the highest reported for n-type polymers. Importantly, while this series of fused polylactam organic mixed ionic-electronic conductors (OMIECs) highlights that synthetic molecular design strategies to bolster OECT performance can be translated to also achieve high organic thermoelectric (OTE) performance, a nuanced synthetic approach must be used to optimize performance. Herein, we outline the performance metrics and provide new insights into the molecular design guidelines for the next generation of high-performance n-type materials for mixed conduction applications, presenting for the first time the results of a single polymer series within both OECT and OTE applications.
CORE arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of the American Chemical SocietyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationer från Linköpings universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Linköpings universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedJournal of the American Chemical SocietyArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jacs.2c00735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of the American Chemical SocietyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationer från Linköpings universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Linköpings universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedJournal of the American Chemical SocietyArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jacs.2c00735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Saudi Arabia, United Kingdom, Saudi ArabiaPublisher:Wiley Funded by:EC | RoLA-FLEX, NSF | CAREER: Understanding the..., EC | HORATES +2 projectsEC| RoLA-FLEX ,NSF| CAREER: Understanding the Role of Structure on Ionic/Electronic Properties in Polymeric Mixed Conductors ,EC| HORATES ,EC| BOOSTER ,EC| SC2Maryam Alsufyani; Marc‐Antoine Stoeckel; Xingxing Chen; Karl Thorley; Rawad K. Hallani; Yuttapoom Puttisong; Xudong Ji; Dilara Meli; Bryan D. Paulsen; Joseph Strzalka; Khrystyna Regeta; Craig Combe; Hu Chen; Junfu Tian; Jonathan Rivnay; Simone Fabiano; Iain McCulloch;AbstractThree lactone‐based rigid semiconducting polymers were designed to overcome major limitations in the development of n‐type organic thermoelectrics, namely electrical conductivity and air stability. Experimental and theoretical investigations demonstrated that increasing the lactone group density by increasing the benzene content from 0 % benzene (P‐0), to 50 % (P‐50), and 75 % (P‐75) resulted in progressively larger electron affinities (up to 4.37 eV), suggesting a more favorable doping process, when employing (N‐DMBI) as the dopant. Larger polaron delocalization was also evident, due to the more planarized conformation, which is proposed to lead to a lower hopping energy barrier. As a consequence, the electrical conductivity increased by three orders of magnitude, to achieve values of up to 12 S cm and Power factors of 13.2 μWm−1 K−2were thereby enabled. These findings present new insights into material design guidelines for the future development of air stable n‐type organic thermoelectrics.
Oxford University Re... arrow_drop_down Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedAngewandte ChemieArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAngewandte Chemie International EditionArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAngewandte Chemie International EditionArticleLicense: Wiley Online Library User AgreementData sources: SygmaKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ange.202113078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 42 citations 42 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Oxford University Re... arrow_drop_down Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedAngewandte ChemieArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAngewandte Chemie International EditionArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAngewandte Chemie International EditionArticleLicense: Wiley Online Library User AgreementData sources: SygmaKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ange.202113078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Saudi Arabia, United Kingdom, Saudi ArabiaPublisher:Wiley Funded by:EC | RoLA-FLEX, NSF | CAREER: Understanding the..., EC | HORATES +2 projectsEC| RoLA-FLEX ,NSF| CAREER: Understanding the Role of Structure on Ionic/Electronic Properties in Polymeric Mixed Conductors ,EC| HORATES ,EC| BOOSTER ,EC| SC2Maryam Alsufyani; Marc‐Antoine Stoeckel; Xingxing Chen; Karl Thorley; Rawad K. Hallani; Yuttapoom Puttisong; Xudong Ji; Dilara Meli; Bryan D. Paulsen; Joseph Strzalka; Khrystyna Regeta; Craig Combe; Hu Chen; Junfu Tian; Jonathan Rivnay; Simone Fabiano; Iain McCulloch;AbstractThree lactone‐based rigid semiconducting polymers were designed to overcome major limitations in the development of n‐type organic thermoelectrics, namely electrical conductivity and air stability. Experimental and theoretical investigations demonstrated that increasing the lactone group density by increasing the benzene content from 0 % benzene (P‐0), to 50 % (P‐50), and 75 % (P‐75) resulted in progressively larger electron affinities (up to 4.37 eV), suggesting a more favorable doping process, when employing (N‐DMBI) as the dopant. Larger polaron delocalization was also evident, due to the more planarized conformation, which is proposed to lead to a lower hopping energy barrier. As a consequence, the electrical conductivity increased by three orders of magnitude, to achieve values of up to 12 S cm and Power factors of 13.2 μWm−1 K−2were thereby enabled. These findings present new insights into material design guidelines for the future development of air stable n‐type organic thermoelectrics.
Oxford University Re... arrow_drop_down Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedAngewandte ChemieArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAngewandte Chemie International EditionArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAngewandte Chemie International EditionArticleLicense: Wiley Online Library User AgreementData sources: SygmaKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ange.202113078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 42 citations 42 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Oxford University Re... arrow_drop_down Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedAngewandte ChemieArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAngewandte Chemie International EditionArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAngewandte Chemie International EditionArticleLicense: Wiley Online Library User AgreementData sources: SygmaKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ange.202113078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Preprint 2024Publisher:American Chemical Society (ACS) Funded by:UKRI | Harnessing vibration-indu..., EC | RoLA-FLEX, UKRI | Flexible Hybrid Thermoele... +3 projectsUKRI| Harnessing vibration-induced enhancement of transport in functional materials with soft structural dynamics ,EC| RoLA-FLEX ,UKRI| Flexible Hybrid Thermoelectric Materials ,EC| CITYSOLAR ,EC| BOOSTER ,EC| EUTOPIA-SIFWu, Xiaocui; Moro, Stefania; Marks, Adam; Alsufyani, Maryam; Yu, Zidi; Perdigão, Luís; Chen, Xingxing; Luci, Alexander; Crockford, Callum; Spencer, Simon; Fox, David; Pei, Jian; McCulloch, Iain; Costantini, Giovanni;Aldol condensation is a crucial synthetic reaction in organic chemistry, particularly valued for fabricating conjugated polymers without the use of metals or toxic organostannanes. However, due to the lack of reliable and precise analytical methods, no direct evidence of the microstructure and sequence of synthesised polymers has been obtained, limiting control over their structure and performance. Here, by combining electrospray deposition and scanning tunnelling microscopy (ESD-STM), we analyse sub-monomer resolution images of four different n-type polymers produced via aldol condensation, revealing unexpected defects in both the sequence of (co)monomers and their coupling. These defects, observed across all polymer samples, indicate alternative side reaction pathways inherent to aldol condensation, affecting both polymerisation and small-molecule reactions. Our findings not only uncover the reaction mechanism responsible for these defects but also bring new insights for the design of more effective synthetic pathways to minimise structural defects in conjugated polymers.
http://dx.doi.org/10... arrow_drop_down https://doi.org/10.26434/chemr...Article . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26434/chemrxiv-2024-mjnc4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid more_vert http://dx.doi.org/10... arrow_drop_down https://doi.org/10.26434/chemr...Article . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26434/chemrxiv-2024-mjnc4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Publisher:American Chemical Society (ACS) Funded by:UKRI | Harnessing vibration-indu..., EC | RoLA-FLEX, UKRI | Flexible Hybrid Thermoele... +3 projectsUKRI| Harnessing vibration-induced enhancement of transport in functional materials with soft structural dynamics ,EC| RoLA-FLEX ,UKRI| Flexible Hybrid Thermoelectric Materials ,EC| CITYSOLAR ,EC| BOOSTER ,EC| EUTOPIA-SIFWu, Xiaocui; Moro, Stefania; Marks, Adam; Alsufyani, Maryam; Yu, Zidi; Perdigão, Luís; Chen, Xingxing; Luci, Alexander; Crockford, Callum; Spencer, Simon; Fox, David; Pei, Jian; McCulloch, Iain; Costantini, Giovanni;Aldol condensation is a crucial synthetic reaction in organic chemistry, particularly valued for fabricating conjugated polymers without the use of metals or toxic organostannanes. However, due to the lack of reliable and precise analytical methods, no direct evidence of the microstructure and sequence of synthesised polymers has been obtained, limiting control over their structure and performance. Here, by combining electrospray deposition and scanning tunnelling microscopy (ESD-STM), we analyse sub-monomer resolution images of four different n-type polymers produced via aldol condensation, revealing unexpected defects in both the sequence of (co)monomers and their coupling. These defects, observed across all polymer samples, indicate alternative side reaction pathways inherent to aldol condensation, affecting both polymerisation and small-molecule reactions. Our findings not only uncover the reaction mechanism responsible for these defects but also bring new insights for the design of more effective synthetic pathways to minimise structural defects in conjugated polymers.
http://dx.doi.org/10... arrow_drop_down https://doi.org/10.26434/chemr...Article . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26434/chemrxiv-2024-mjnc4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid more_vert http://dx.doi.org/10... arrow_drop_down https://doi.org/10.26434/chemr...Article . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26434/chemrxiv-2024-mjnc4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Saudi Arabia, Saudi Arabia, ItalyPublisher:Springer Science and Business Media LLC Shofarul Wustoni; Sahika Inal; Iuliana P. Maria; Iain McCulloch; Iain McCulloch; Enzo Di Fabrizio; Xingxing Chen; Georgios Nikiforidis; Tamilarasan Palanisamy; Tamilarasan Palanisamy; Andrea Giugni; Achilleas Savva; Pedro M. F. J. Da Costa; David Ohayon;A promising class of materials for applications that rely on electron transfer for signal generation are the n-type semiconducting polymers. Here we demonstrate the integration of an n-type conjugated polymer with a redox enzyme for the autonomous detection of glucose and power generation from bodily fluids. The reversible, mediator-free, miniaturized glucose sensor is an enzyme-coupled organic electrochemical transistor with a detection range of six orders of magnitude. This n-type polymer is also used as an anode and paired with a polymeric cathode in an enzymatic fuel cell to convert the chemical energy of glucose and oxygen into electrical power. The all-polymer biofuel cell shows a performance that scales with the glucose content in the solution and a stability that exceeds 30 days. Moreover, at physiologically relevant glucose concentrations and from fluids such as human saliva, it generates enough power to operate an organic electrochemical transistor, thus contributes to the technological advancement of self-powered micrometre-scale sensors and actuators that run on metabolites produced in the body.
Archivio Istituziona... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41563-019-0556-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 244 citations 244 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41563-019-0556-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Saudi Arabia, Saudi Arabia, ItalyPublisher:Springer Science and Business Media LLC Shofarul Wustoni; Sahika Inal; Iuliana P. Maria; Iain McCulloch; Iain McCulloch; Enzo Di Fabrizio; Xingxing Chen; Georgios Nikiforidis; Tamilarasan Palanisamy; Tamilarasan Palanisamy; Andrea Giugni; Achilleas Savva; Pedro M. F. J. Da Costa; David Ohayon;A promising class of materials for applications that rely on electron transfer for signal generation are the n-type semiconducting polymers. Here we demonstrate the integration of an n-type conjugated polymer with a redox enzyme for the autonomous detection of glucose and power generation from bodily fluids. The reversible, mediator-free, miniaturized glucose sensor is an enzyme-coupled organic electrochemical transistor with a detection range of six orders of magnitude. This n-type polymer is also used as an anode and paired with a polymeric cathode in an enzymatic fuel cell to convert the chemical energy of glucose and oxygen into electrical power. The all-polymer biofuel cell shows a performance that scales with the glucose content in the solution and a stability that exceeds 30 days. Moreover, at physiologically relevant glucose concentrations and from fluids such as human saliva, it generates enough power to operate an organic electrochemical transistor, thus contributes to the technological advancement of self-powered micrometre-scale sensors and actuators that run on metabolites produced in the body.
Archivio Istituziona... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41563-019-0556-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 244 citations 244 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41563-019-0556-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Saudi ArabiaPublisher:American Chemical Society (ACS) Funded by:EC | SC2EC| SC2Siew Ting Melissa Tan; Tyler J. Quill; Maximilian Moser; Garrett LeCroy; Xingxing Chen; Yilei Wu; Christopher J. Takacs; Alberto Salleo; Alexander Giovannitti;handle: 10754/671136
A.G. and A.S. acknowledge funding from the TomKat Center for Sustainable Energy at Stanford University and the StorageX initiative. A.S. and S.T.M.T. gratefully acknowledge support from the National Science Foundation Award CBET #1804915. T.J.Q. and G.L. acknowledge support from the NSF Graduate Research Fellowship Program under grant DGE-1656518. Part of this work was performed at the Stanford Nanofabrication Facilities (SNF) and Stanford Nano Shared Facilities (SNSF), supported by the National Science Foundation as part of the National Nanotechnology Coordinated Infrastructure under award ECCS-1542152. The authors acknowledge financial support from KAUST, including the Office of Sponsored Research (OSR) award nos. OSR-2018-CRG/CCF-3079, OSR-2019-CRG8-4086, and OSR-2018-CRG7-3749. The authors acknowledge funding from an ERC Synergy Grant SC2 (610115). Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF00515.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.1c01625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.1c01625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Saudi ArabiaPublisher:American Chemical Society (ACS) Funded by:EC | SC2EC| SC2Siew Ting Melissa Tan; Tyler J. Quill; Maximilian Moser; Garrett LeCroy; Xingxing Chen; Yilei Wu; Christopher J. Takacs; Alberto Salleo; Alexander Giovannitti;handle: 10754/671136
A.G. and A.S. acknowledge funding from the TomKat Center for Sustainable Energy at Stanford University and the StorageX initiative. A.S. and S.T.M.T. gratefully acknowledge support from the National Science Foundation Award CBET #1804915. T.J.Q. and G.L. acknowledge support from the NSF Graduate Research Fellowship Program under grant DGE-1656518. Part of this work was performed at the Stanford Nanofabrication Facilities (SNF) and Stanford Nano Shared Facilities (SNSF), supported by the National Science Foundation as part of the National Nanotechnology Coordinated Infrastructure under award ECCS-1542152. The authors acknowledge financial support from KAUST, including the Office of Sponsored Research (OSR) award nos. OSR-2018-CRG/CCF-3079, OSR-2019-CRG8-4086, and OSR-2018-CRG7-3749. The authors acknowledge funding from an ERC Synergy Grant SC2 (610115). Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF00515.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.1c01625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 1753License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsenergylett.1c01625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Saudi ArabiaPublisher:American Chemical Society (ACS) Funded by:EC | RoLA-FLEX, UKRI | High resolution mapping o..., EC | SC2 +6 projectsEC| RoLA-FLEX ,UKRI| High resolution mapping of performance and degradation mechanisms in printable photovoltaic devices ,EC| SC2 ,EC| CAPaCITy ,NSF| CAREER: Understanding the Role of Structure on Ionic/Electronic Properties in Polymeric Mixed Conductors ,UKRI| Flexible Hybrid Thermoelectric Materials ,NSF| NNCI: Soft Hybrid Nanotechnology Experimental (SHyNE) Resource ,EC| BOOSTER ,NSF| MRSEC: Center for Multifunctional MaterialsReem B. Rashid; Achilleas Savva; Sophie Griggs; Sophie Griggs; Alexander Giovannitti; Alexander Giovannitti; J. Tyler Mefford; Sahika Inal; Xingxing Chen; Jenny Nelson; Davide Moia; Iuliana P. Maria; Iuliana P. Maria; Bryan D. Paulsen; Anna A. Szumska; David S. Ginger; Adam Marks; Adam Marks; Jokubas Surgailis; Lucas Q. Flagg;Conjugated polymers achieve redox activity in electrochemical devices by combining redox-active, electronically conducting backbones with ion-transporting side chains that can be tuned for different electrolytes. In aqueous electrolytes, redox activity can be accomplished by attaching hydrophilic side chains to the polymer backbone, which enables ionic transport and allows volumetric charging of polymer electrodes. While this approach has been beneficial for achieving fast electrochemical charging in aqueous solutions, little is known about the relationship between water uptake by the polymers during electrochemical charging and the stability and redox potentials of the electrodes, particularly for electron-transporting conjugated polymers. We find that excessive water uptake during the electrochemical charging of polymer electrodes harms the reversibility of electrochemical processes and results in irreversible swelling of the polymer. We show that small changes of the side chain composition can significantly increase the reversibility of the redox behavior of the materials in aqueous electrolytes, improving the capacity of the polymer by more than one order of magnitude. Finally, we show that tuning the local environment of the redox-active polymer by attaching hydrophilic side chains can help to reach high fractions of the theoretical capacity for single-phase electrodes in aqueous electrolytes. Our work shows the importance of chemical design strategies for achieving high electrochemical stability for conjugated polymers in aqueous electrolytes.
Journal of the Ameri... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Journal of the American Chemical SocietyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of the American Chemical SocietyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jacs.1c06713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 87 citations 87 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of the Ameri... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Journal of the American Chemical SocietyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of the American Chemical SocietyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jacs.1c06713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Saudi ArabiaPublisher:American Chemical Society (ACS) Funded by:EC | RoLA-FLEX, UKRI | High resolution mapping o..., EC | SC2 +6 projectsEC| RoLA-FLEX ,UKRI| High resolution mapping of performance and degradation mechanisms in printable photovoltaic devices ,EC| SC2 ,EC| CAPaCITy ,NSF| CAREER: Understanding the Role of Structure on Ionic/Electronic Properties in Polymeric Mixed Conductors ,UKRI| Flexible Hybrid Thermoelectric Materials ,NSF| NNCI: Soft Hybrid Nanotechnology Experimental (SHyNE) Resource ,EC| BOOSTER ,NSF| MRSEC: Center for Multifunctional MaterialsReem B. Rashid; Achilleas Savva; Sophie Griggs; Sophie Griggs; Alexander Giovannitti; Alexander Giovannitti; J. Tyler Mefford; Sahika Inal; Xingxing Chen; Jenny Nelson; Davide Moia; Iuliana P. Maria; Iuliana P. Maria; Bryan D. Paulsen; Anna A. Szumska; David S. Ginger; Adam Marks; Adam Marks; Jokubas Surgailis; Lucas Q. Flagg;Conjugated polymers achieve redox activity in electrochemical devices by combining redox-active, electronically conducting backbones with ion-transporting side chains that can be tuned for different electrolytes. In aqueous electrolytes, redox activity can be accomplished by attaching hydrophilic side chains to the polymer backbone, which enables ionic transport and allows volumetric charging of polymer electrodes. While this approach has been beneficial for achieving fast electrochemical charging in aqueous solutions, little is known about the relationship between water uptake by the polymers during electrochemical charging and the stability and redox potentials of the electrodes, particularly for electron-transporting conjugated polymers. We find that excessive water uptake during the electrochemical charging of polymer electrodes harms the reversibility of electrochemical processes and results in irreversible swelling of the polymer. We show that small changes of the side chain composition can significantly increase the reversibility of the redox behavior of the materials in aqueous electrolytes, improving the capacity of the polymer by more than one order of magnitude. Finally, we show that tuning the local environment of the redox-active polymer by attaching hydrophilic side chains can help to reach high fractions of the theoretical capacity for single-phase electrodes in aqueous electrolytes. Our work shows the importance of chemical design strategies for achieving high electrochemical stability for conjugated polymers in aqueous electrolytes.
Journal of the Ameri... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Journal of the American Chemical SocietyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of the American Chemical SocietyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jacs.1c06713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 87 citations 87 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of the Ameri... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Journal of the American Chemical SocietyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of the American Chemical SocietyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jacs.1c06713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Royal Society of Chemistry (RSC) Funded by:EC | CAPaCITyEC| CAPaCITyAna De La Fuente Durán; Allen Yu-Lun Liang; Ilaria Denti; Hang Yu; Drew Pearce; Adam Marks; Emily Penn; Jeremy Treiber; Karrie Weaver; Lily Turaski; Iuliana P. Maria; Sophie Griggs; Xingxing Chen; Alberto Salleo; William C. Chueh; Jenny Nelson; Alexander Giovannitti; J. Tyler Mefford;doi: 10.1039/d3ee02102e
Through experiment and theory, this work explains how a set of OMIEC polymer electrodes selectively reduce oxygen to hydrogen peroxide.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee02102e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee02102e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Royal Society of Chemistry (RSC) Funded by:EC | CAPaCITyEC| CAPaCITyAna De La Fuente Durán; Allen Yu-Lun Liang; Ilaria Denti; Hang Yu; Drew Pearce; Adam Marks; Emily Penn; Jeremy Treiber; Karrie Weaver; Lily Turaski; Iuliana P. Maria; Sophie Griggs; Xingxing Chen; Alberto Salleo; William C. Chueh; Jenny Nelson; Alexander Giovannitti; J. Tyler Mefford;doi: 10.1039/d3ee02102e
Through experiment and theory, this work explains how a set of OMIEC polymer electrodes selectively reduce oxygen to hydrogen peroxide.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee02102e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3ee02102e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Saudi Arabia, SwedenPublisher:American Chemical Society (ACS) Funded by:EC | BOOSTER, EC | RoLA-FLEX, EC | EUTOPIA-SIF +4 projectsEC| BOOSTER ,EC| RoLA-FLEX ,EC| EUTOPIA-SIF ,EC| HORATES ,UKRI| Flexible Hybrid Thermoelectric Materials ,EC| SC2 ,NSF| CAREER: Understanding the Role of Structure on Ionic/Electronic Properties in Polymeric Mixed ConductorsMarks, Adam; Chen, Xingxing; Wu, Ruiheng; Rashid, Reem B.; Jin, Wenlong; Paulsen, Bryan D.; Moser, Maximilian; Ji, Xudong; Griggs, Sophie; Meli, Dilara; Wu, Xiaocui; Bristow, Helen; Strzalka, Joseph; Gasparini, Nicola; Costantini, Giovanni; Fabiano, Simone; Rivnay, Jonathan; McCulloch, Iain;A series of fully fused n-type mixed conduction lactam polymers p(g7NCnN), systematically increasing the alkyl side chain content, are synthesized via an inexpensive, nontoxic, precious-metal-free aldol polycondensation. Employing these polymers as channel materials in organic electrochemical transistors (OECTs) affords state-of-the-art n-type performance with p(g7NC10N) recording an OECT electron mobility of 1.20 × 10-2 cm2 V-1 s-1 and a μC* figure of merit of 1.83 F cm-1 V-1 s-1. In parallel to high OECT performance, upon solution doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl)dimethylamine (N-DMBI), the highest thermoelectric performance is observed for p(g7NC4N), with a maximum electrical conductivity of 7.67 S cm-1 and a power factor of 10.4 μW m-1 K-2. These results are among the highest reported for n-type polymers. Importantly, while this series of fused polylactam organic mixed ionic-electronic conductors (OMIECs) highlights that synthetic molecular design strategies to bolster OECT performance can be translated to also achieve high organic thermoelectric (OTE) performance, a nuanced synthetic approach must be used to optimize performance. Herein, we outline the performance metrics and provide new insights into the molecular design guidelines for the next generation of high-performance n-type materials for mixed conduction applications, presenting for the first time the results of a single polymer series within both OECT and OTE applications.
CORE arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of the American Chemical SocietyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationer från Linköpings universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Linköpings universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedJournal of the American Chemical SocietyArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jacs.2c00735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of the American Chemical SocietyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationer från Linköpings universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Linköpings universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedJournal of the American Chemical SocietyArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jacs.2c00735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Saudi Arabia, SwedenPublisher:American Chemical Society (ACS) Funded by:EC | BOOSTER, EC | RoLA-FLEX, EC | EUTOPIA-SIF +4 projectsEC| BOOSTER ,EC| RoLA-FLEX ,EC| EUTOPIA-SIF ,EC| HORATES ,UKRI| Flexible Hybrid Thermoelectric Materials ,EC| SC2 ,NSF| CAREER: Understanding the Role of Structure on Ionic/Electronic Properties in Polymeric Mixed ConductorsMarks, Adam; Chen, Xingxing; Wu, Ruiheng; Rashid, Reem B.; Jin, Wenlong; Paulsen, Bryan D.; Moser, Maximilian; Ji, Xudong; Griggs, Sophie; Meli, Dilara; Wu, Xiaocui; Bristow, Helen; Strzalka, Joseph; Gasparini, Nicola; Costantini, Giovanni; Fabiano, Simone; Rivnay, Jonathan; McCulloch, Iain;A series of fully fused n-type mixed conduction lactam polymers p(g7NCnN), systematically increasing the alkyl side chain content, are synthesized via an inexpensive, nontoxic, precious-metal-free aldol polycondensation. Employing these polymers as channel materials in organic electrochemical transistors (OECTs) affords state-of-the-art n-type performance with p(g7NC10N) recording an OECT electron mobility of 1.20 × 10-2 cm2 V-1 s-1 and a μC* figure of merit of 1.83 F cm-1 V-1 s-1. In parallel to high OECT performance, upon solution doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl)dimethylamine (N-DMBI), the highest thermoelectric performance is observed for p(g7NC4N), with a maximum electrical conductivity of 7.67 S cm-1 and a power factor of 10.4 μW m-1 K-2. These results are among the highest reported for n-type polymers. Importantly, while this series of fused polylactam organic mixed ionic-electronic conductors (OMIECs) highlights that synthetic molecular design strategies to bolster OECT performance can be translated to also achieve high organic thermoelectric (OTE) performance, a nuanced synthetic approach must be used to optimize performance. Herein, we outline the performance metrics and provide new insights into the molecular design guidelines for the next generation of high-performance n-type materials for mixed conduction applications, presenting for the first time the results of a single polymer series within both OECT and OTE applications.
CORE arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of the American Chemical SocietyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationer från Linköpings universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Linköpings universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedJournal of the American Chemical SocietyArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jacs.2c00735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of the American Chemical SocietyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationer från Linköpings universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Linköpings universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedJournal of the American Chemical SocietyArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jacs.2c00735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Saudi Arabia, United Kingdom, Saudi ArabiaPublisher:Wiley Funded by:EC | RoLA-FLEX, NSF | CAREER: Understanding the..., EC | HORATES +2 projectsEC| RoLA-FLEX ,NSF| CAREER: Understanding the Role of Structure on Ionic/Electronic Properties in Polymeric Mixed Conductors ,EC| HORATES ,EC| BOOSTER ,EC| SC2Maryam Alsufyani; Marc‐Antoine Stoeckel; Xingxing Chen; Karl Thorley; Rawad K. Hallani; Yuttapoom Puttisong; Xudong Ji; Dilara Meli; Bryan D. Paulsen; Joseph Strzalka; Khrystyna Regeta; Craig Combe; Hu Chen; Junfu Tian; Jonathan Rivnay; Simone Fabiano; Iain McCulloch;AbstractThree lactone‐based rigid semiconducting polymers were designed to overcome major limitations in the development of n‐type organic thermoelectrics, namely electrical conductivity and air stability. Experimental and theoretical investigations demonstrated that increasing the lactone group density by increasing the benzene content from 0 % benzene (P‐0), to 50 % (P‐50), and 75 % (P‐75) resulted in progressively larger electron affinities (up to 4.37 eV), suggesting a more favorable doping process, when employing (N‐DMBI) as the dopant. Larger polaron delocalization was also evident, due to the more planarized conformation, which is proposed to lead to a lower hopping energy barrier. As a consequence, the electrical conductivity increased by three orders of magnitude, to achieve values of up to 12 S cm and Power factors of 13.2 μWm−1 K−2were thereby enabled. These findings present new insights into material design guidelines for the future development of air stable n‐type organic thermoelectrics.
Oxford University Re... arrow_drop_down Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedAngewandte ChemieArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAngewandte Chemie International EditionArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAngewandte Chemie International EditionArticleLicense: Wiley Online Library User AgreementData sources: SygmaKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ange.202113078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 42 citations 42 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Oxford University Re... arrow_drop_down Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedAngewandte ChemieArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAngewandte Chemie International EditionArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAngewandte Chemie International EditionArticleLicense: Wiley Online Library User AgreementData sources: SygmaKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ange.202113078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Saudi Arabia, United Kingdom, Saudi ArabiaPublisher:Wiley Funded by:EC | RoLA-FLEX, NSF | CAREER: Understanding the..., EC | HORATES +2 projectsEC| RoLA-FLEX ,NSF| CAREER: Understanding the Role of Structure on Ionic/Electronic Properties in Polymeric Mixed Conductors ,EC| HORATES ,EC| BOOSTER ,EC| SC2Maryam Alsufyani; Marc‐Antoine Stoeckel; Xingxing Chen; Karl Thorley; Rawad K. Hallani; Yuttapoom Puttisong; Xudong Ji; Dilara Meli; Bryan D. Paulsen; Joseph Strzalka; Khrystyna Regeta; Craig Combe; Hu Chen; Junfu Tian; Jonathan Rivnay; Simone Fabiano; Iain McCulloch;AbstractThree lactone‐based rigid semiconducting polymers were designed to overcome major limitations in the development of n‐type organic thermoelectrics, namely electrical conductivity and air stability. Experimental and theoretical investigations demonstrated that increasing the lactone group density by increasing the benzene content from 0 % benzene (P‐0), to 50 % (P‐50), and 75 % (P‐75) resulted in progressively larger electron affinities (up to 4.37 eV), suggesting a more favorable doping process, when employing (N‐DMBI) as the dopant. Larger polaron delocalization was also evident, due to the more planarized conformation, which is proposed to lead to a lower hopping energy barrier. As a consequence, the electrical conductivity increased by three orders of magnitude, to achieve values of up to 12 S cm and Power factors of 13.2 μWm−1 K−2were thereby enabled. These findings present new insights into material design guidelines for the future development of air stable n‐type organic thermoelectrics.
Oxford University Re... arrow_drop_down Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedAngewandte ChemieArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAngewandte Chemie International EditionArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAngewandte Chemie International EditionArticleLicense: Wiley Online Library User AgreementData sources: SygmaKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ange.202113078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 42 citations 42 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Oxford University Re... arrow_drop_down Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedAngewandte ChemieArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAngewandte Chemie International EditionArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAngewandte Chemie International EditionArticleLicense: Wiley Online Library User AgreementData sources: SygmaKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ange.202113078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu