- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors:M.E. Nakhchi;
M.E. Nakhchi
M.E. Nakhchi in OpenAIREJ.A. Esfahani;
J.A. Esfahani
J.A. Esfahani in OpenAIREAbstract This paper investigates the flow structure and thermal performance characteristics of the fluid flow through a heat exchanger tube fitted with perforated hollow cylinders (PHCs) under turbulent flow regime. The effects of the perforated index (0.08 ( 6000 Re 16000 ) on the thermal performance and heat transfer enhancement are investigated. The vortex flow generated near the holes leads to better fluid mixing between the tube wall and the core regions and this recirculating flow enhances the heat transfer rate in comparison with a plain tube. The numerical results indicate that the flow resistance can be reduced up to 86.2% with increasing the perforated index from 0.08 to 0.24. The maximum thermal performance value of 1.456 could be achieved for the case of d/D = 0.74 and PI = 24% at Re = 6000. The results show that the fluid mixing between the core region and the tube walls for the case of 0.7 is higher than the other cases. Therefore, the heat transfer rate is expected to be better for the case of PI = 0.08 and d/D = 0.7 due to the thermal boundary layer destruction caused by the PHCs.
International Journa... arrow_drop_down International Journal of Thermal SciencesArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijthermalsci.2019.106153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Thermal SciencesArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijthermalsci.2019.106153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors:M.E. Nakhchi;
M.E. Nakhchi
M.E. Nakhchi in OpenAIREJ.A. Esfahani;
J.A. Esfahani
J.A. Esfahani in OpenAIREAbstract This paper investigates the flow structure and thermal performance characteristics of the fluid flow through a heat exchanger tube fitted with perforated hollow cylinders (PHCs) under turbulent flow regime. The effects of the perforated index (0.08 ( 6000 Re 16000 ) on the thermal performance and heat transfer enhancement are investigated. The vortex flow generated near the holes leads to better fluid mixing between the tube wall and the core regions and this recirculating flow enhances the heat transfer rate in comparison with a plain tube. The numerical results indicate that the flow resistance can be reduced up to 86.2% with increasing the perforated index from 0.08 to 0.24. The maximum thermal performance value of 1.456 could be achieved for the case of d/D = 0.74 and PI = 24% at Re = 6000. The results show that the fluid mixing between the core region and the tube walls for the case of 0.7 is higher than the other cases. Therefore, the heat transfer rate is expected to be better for the case of PI = 0.08 and d/D = 0.7 due to the thermal boundary layer destruction caused by the PHCs.
International Journa... arrow_drop_down International Journal of Thermal SciencesArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijthermalsci.2019.106153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Thermal SciencesArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijthermalsci.2019.106153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Nuthvipa Jayranaiwachira;Pongjet Promvonge;
Paritkavin Tongyote; Sompol Skullong; +1 AuthorsPongjet Promvonge
Pongjet Promvonge in OpenAIRENuthvipa Jayranaiwachira;Pongjet Promvonge;
Paritkavin Tongyote; Sompol Skullong;Pongjet Promvonge
Pongjet Promvonge in OpenAIREMahdi Erfanian Nakhchi;
Mahdi Erfanian Nakhchi
Mahdi Erfanian Nakhchi in OpenAIREVortex generator is a device that shows promise in generating streamwise vortices that can be utilized for boosting the rate of heat transmission inside a cooling/heating system with a relatively smaller penalty in terms of friction loss. The primary goal of the current research is to maximize the comparative Nusselt number ratio (Nu/Nu0) to be as large as possible to lower the size of the system while keeping thermal performance as high as feasible to save more energy. Thus, in the current study, the impacts of inserting the flapped V-baffle vortex generator (FBVG) on the thermal effectiveness improvement of a round tube were experimentally investigated. At a fixed attack angle (α = 60°) and baffle blockage ratio (BR = b/D = 0.3), the geometrical behaviors of FBVGs placed periodically along two edges of a straight tape were six different flap angles (θ = 0°, 25°, 35°, 45°, 65° and 90°) and three ratios of baffle pitches (P/D = PR = 2.0, 1.5, and 1.0). The current V-baffles, which were positioned on both tape edges, were designed to reduce friction loss caused by interrupting the central core flow when placed on both tape sides. The measurement results focused on the friction loss and thermal behaviors, including exergy and entropy analyses for Reynolds number from 4750 to 29,270. In the findings, the Nusselt number and friction factor of FBVG at θ = 0° and PR = 1 are, respectively, up to 5.6 and 35.24 times larger than those of the smooth tube. The entropy generation (S˙gen′) seems to decline as θ and PR increase, with the smallest S˙gen′ found at θ = 0° and PR = 1 for lower Re. The FBVG has the greatest exergy efficiency (ηEx) at θ = 0° and PR = 1. To find the true benefits of FBVG, its thermal performance is estimated and seen to reach a maximum at about 2.44 with NuR = 4.65 at θ = 45° and PR = 1. The optimal scenario at θ = 25° and PR = 1 was preferred, however, since it yielded the largest NuR = 5.42 at TEF = 2.39.
Case Studies in Ther... arrow_drop_down Case Studies in Thermal EngineeringArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.csite.2024.104483&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Case Studies in Ther... arrow_drop_down Case Studies in Thermal EngineeringArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.csite.2024.104483&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Nuthvipa Jayranaiwachira;Pongjet Promvonge;
Paritkavin Tongyote; Sompol Skullong; +1 AuthorsPongjet Promvonge
Pongjet Promvonge in OpenAIRENuthvipa Jayranaiwachira;Pongjet Promvonge;
Paritkavin Tongyote; Sompol Skullong;Pongjet Promvonge
Pongjet Promvonge in OpenAIREMahdi Erfanian Nakhchi;
Mahdi Erfanian Nakhchi
Mahdi Erfanian Nakhchi in OpenAIREVortex generator is a device that shows promise in generating streamwise vortices that can be utilized for boosting the rate of heat transmission inside a cooling/heating system with a relatively smaller penalty in terms of friction loss. The primary goal of the current research is to maximize the comparative Nusselt number ratio (Nu/Nu0) to be as large as possible to lower the size of the system while keeping thermal performance as high as feasible to save more energy. Thus, in the current study, the impacts of inserting the flapped V-baffle vortex generator (FBVG) on the thermal effectiveness improvement of a round tube were experimentally investigated. At a fixed attack angle (α = 60°) and baffle blockage ratio (BR = b/D = 0.3), the geometrical behaviors of FBVGs placed periodically along two edges of a straight tape were six different flap angles (θ = 0°, 25°, 35°, 45°, 65° and 90°) and three ratios of baffle pitches (P/D = PR = 2.0, 1.5, and 1.0). The current V-baffles, which were positioned on both tape edges, were designed to reduce friction loss caused by interrupting the central core flow when placed on both tape sides. The measurement results focused on the friction loss and thermal behaviors, including exergy and entropy analyses for Reynolds number from 4750 to 29,270. In the findings, the Nusselt number and friction factor of FBVG at θ = 0° and PR = 1 are, respectively, up to 5.6 and 35.24 times larger than those of the smooth tube. The entropy generation (S˙gen′) seems to decline as θ and PR increase, with the smallest S˙gen′ found at θ = 0° and PR = 1 for lower Re. The FBVG has the greatest exergy efficiency (ηEx) at θ = 0° and PR = 1. To find the true benefits of FBVG, its thermal performance is estimated and seen to reach a maximum at about 2.44 with NuR = 4.65 at θ = 45° and PR = 1. The optimal scenario at θ = 25° and PR = 1 was preferred, however, since it yielded the largest NuR = 5.42 at TEF = 2.39.
Case Studies in Ther... arrow_drop_down Case Studies in Thermal EngineeringArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.csite.2024.104483&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Case Studies in Ther... arrow_drop_down Case Studies in Thermal EngineeringArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.csite.2024.104483&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Authors:M. E. Nakhchi;
M. E. Nakhchi
M. E. Nakhchi in OpenAIREM. T. Rahmati;
M. T. Rahmati
M. T. Rahmati in OpenAIREIn the present study, numerical simulations have been carried out on thermal characteristics and second-law analysis of turbulent Cu–H2O nanofluid flow with the nanoparticle volume fraction of 0<ϕ<1.5% inside heat exchangers fitted by transverse-cut twisted tapes (TCTTs) with alternate axis. The transverse-cut ratios are in the range of 0.7 < b/c < 0.9 and 2 < s/c < 2.5, and the Reynolds number is varied between 5000 and 15,000. The impacts of the design variables on the turbulent kinetic energy, temperature distribution, thermal and frictional entropy generations and Bejan number have been evaluated. The simulations show that the TCTTs with b/c = 0.7 generate higher turbulent kinetic energy compared to the b/c = 0.9 due to higher swirl generation and flow disturbance. The additional recirculating flow produced near the alternate edges is another main physical factor for heat transfer augmentation. It is found that raising the nanoparticles volume concentration reduces the thermal entropy generation which is attributed to the thermal conductivity enhancement of nanofluids. Besides, raising the nanoparticles volume concentration from 0 to 1.5% reduces the Ng,thermal by 23%.
Journal of Thermal A... arrow_drop_down Journal of Thermal Analysis and CalorimetryArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10973-020-09960-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 33 citations 33 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Thermal A... arrow_drop_down Journal of Thermal Analysis and CalorimetryArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10973-020-09960-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Authors:M. E. Nakhchi;
M. E. Nakhchi
M. E. Nakhchi in OpenAIREM. T. Rahmati;
M. T. Rahmati
M. T. Rahmati in OpenAIREIn the present study, numerical simulations have been carried out on thermal characteristics and second-law analysis of turbulent Cu–H2O nanofluid flow with the nanoparticle volume fraction of 0<ϕ<1.5% inside heat exchangers fitted by transverse-cut twisted tapes (TCTTs) with alternate axis. The transverse-cut ratios are in the range of 0.7 < b/c < 0.9 and 2 < s/c < 2.5, and the Reynolds number is varied between 5000 and 15,000. The impacts of the design variables on the turbulent kinetic energy, temperature distribution, thermal and frictional entropy generations and Bejan number have been evaluated. The simulations show that the TCTTs with b/c = 0.7 generate higher turbulent kinetic energy compared to the b/c = 0.9 due to higher swirl generation and flow disturbance. The additional recirculating flow produced near the alternate edges is another main physical factor for heat transfer augmentation. It is found that raising the nanoparticles volume concentration reduces the thermal entropy generation which is attributed to the thermal conductivity enhancement of nanofluids. Besides, raising the nanoparticles volume concentration from 0 to 1.5% reduces the Ng,thermal by 23%.
Journal of Thermal A... arrow_drop_down Journal of Thermal Analysis and CalorimetryArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10973-020-09960-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 33 citations 33 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Thermal A... arrow_drop_down Journal of Thermal Analysis and CalorimetryArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10973-020-09960-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors:Mahdi Erfanian Nakhchi;
Shine Win Naung;Mahdi Erfanian Nakhchi
Mahdi Erfanian Nakhchi in OpenAIREMohammad Rahmati;
Mohammad Rahmati
Mohammad Rahmati in OpenAIREdoi: 10.3390/en16062803
In the present work, direct numerical simulation is employed to investigate the unsteady flow characteristics and energy performance of low-pressure turbines (LPT) by considering the blades aeroelastic vibrations and inflow wakes. The effects of inflow disturbance (0 < φ < 0.91) and reduced blade vibration (0 < f < 250 Hz) on the turbulent flow behavior of LPTs are investigated for the first time. The transient governing equations on the vibrating blades are modelled by the high-order spectral/hp element method. The results revealed that by increasing the inflow disturbances, the separated bubbles tend to shrink, which has a noticeable influence on the pressure in the downstream region. The maximum wake loss value is reduced by 16.4% by increasing the φ from 0.31 to 0.91. The flow separation is majorly affected by inflow wakes and blade vibrations. The results revealed that the maximum pressure coefficient in the separated flow region of the vibrating blade has been increased by 108% by raising φ from 0 to 0.91. The blade vibration further intensifies the vortex generation process, adding more energy to the flow and the downstream vortex shedding. The vortex generation and shedding are intensified on the vibrating blade compared to the non-vibrating one that is subject to inflow wakes. The results and findings from this paper are also useful for the design and modeling of turbine blades that are prone to aeroelastic instabilities, such as large offshore wind turbine blades.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/6/2803/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16062803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/6/2803/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16062803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors:Mahdi Erfanian Nakhchi;
Shine Win Naung;Mahdi Erfanian Nakhchi
Mahdi Erfanian Nakhchi in OpenAIREMohammad Rahmati;
Mohammad Rahmati
Mohammad Rahmati in OpenAIREdoi: 10.3390/en16062803
In the present work, direct numerical simulation is employed to investigate the unsteady flow characteristics and energy performance of low-pressure turbines (LPT) by considering the blades aeroelastic vibrations and inflow wakes. The effects of inflow disturbance (0 < φ < 0.91) and reduced blade vibration (0 < f < 250 Hz) on the turbulent flow behavior of LPTs are investigated for the first time. The transient governing equations on the vibrating blades are modelled by the high-order spectral/hp element method. The results revealed that by increasing the inflow disturbances, the separated bubbles tend to shrink, which has a noticeable influence on the pressure in the downstream region. The maximum wake loss value is reduced by 16.4% by increasing the φ from 0.31 to 0.91. The flow separation is majorly affected by inflow wakes and blade vibrations. The results revealed that the maximum pressure coefficient in the separated flow region of the vibrating blade has been increased by 108% by raising φ from 0 to 0.91. The blade vibration further intensifies the vortex generation process, adding more energy to the flow and the downstream vortex shedding. The vortex generation and shedding are intensified on the vibrating blade compared to the non-vibrating one that is subject to inflow wakes. The results and findings from this paper are also useful for the design and modeling of turbine blades that are prone to aeroelastic instabilities, such as large offshore wind turbine blades.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/6/2803/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16062803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/6/2803/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16062803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors:M.E. Nakhchi;
M.E. Nakhchi
M.E. Nakhchi in OpenAIREM. Hatami;
M. Hatami
M. Hatami in OpenAIREM. Rahmati;
M. Rahmati
M. Rahmati in OpenAIREUsing nano-enhanced phase change materials is a widespread passive method to improve the melting performance, and also the storage capacity of the thermal energy storage units. In this study, the effects of CuO nanoparticles (0≤φ≤1.5%) and new proposed stair fins on the efficiency improvement of latent heat thermal energy storage units are investigated. The stair fins are arranged in both upward and downward directions from the heated walls and the stair ratio is in the range of 0.67≤b/c≤4.0. One of the vertical walls of the PCM enclosure is subject to uniform temperature and the other three walls are insulted. The numerical results show that by adding nanoparticles with volume concentration of φ=1.5% for b/c = 0.67 to the flow, the energy storage capacity is enhanced by 9.1% compared to the pure PCM with downward fins. The maximum energy storage capacity of 474.1 kJ is achieved by using descending stair fins with b/c = 4.0 and φ=1.5% which is much higher compared to the cases without nano additives. Besides, the melting performance is significantly improved by adding the nanoparticles. In fact, nanoparticles improve the thermal conductivity of the fluid and also act as a heat sink to absorb the heat from the fins. The downward fins with larger stair ratios (b/c = 4.0) perform significantly better than the upwards ones which is because of the free convection effects and the recirculations flows on the upper face of these fins.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors:M.E. Nakhchi;
M.E. Nakhchi
M.E. Nakhchi in OpenAIREM. Hatami;
M. Hatami
M. Hatami in OpenAIREM. Rahmati;
M. Rahmati
M. Rahmati in OpenAIREUsing nano-enhanced phase change materials is a widespread passive method to improve the melting performance, and also the storage capacity of the thermal energy storage units. In this study, the effects of CuO nanoparticles (0≤φ≤1.5%) and new proposed stair fins on the efficiency improvement of latent heat thermal energy storage units are investigated. The stair fins are arranged in both upward and downward directions from the heated walls and the stair ratio is in the range of 0.67≤b/c≤4.0. One of the vertical walls of the PCM enclosure is subject to uniform temperature and the other three walls are insulted. The numerical results show that by adding nanoparticles with volume concentration of φ=1.5% for b/c = 0.67 to the flow, the energy storage capacity is enhanced by 9.1% compared to the pure PCM with downward fins. The maximum energy storage capacity of 474.1 kJ is achieved by using descending stair fins with b/c = 4.0 and φ=1.5% which is much higher compared to the cases without nano additives. Besides, the melting performance is significantly improved by adding the nanoparticles. In fact, nanoparticles improve the thermal conductivity of the fluid and also act as a heat sink to absorb the heat from the fins. The downward fins with larger stair ratios (b/c = 4.0) perform significantly better than the upwards ones which is because of the free convection effects and the recirculations flows on the upper face of these fins.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Funded by:UKRI | Numerical Investigation o...UKRI| Numerical Investigation of Aero-elasticity in Modern Low-Pressure TurbinesAuthors:M.E. Nakhchi;
S. Win Naung;M.E. Nakhchi
M.E. Nakhchi in OpenAIREL. Dala;
M. Rahmati;
M. Rahmati
M. Rahmati in OpenAIREIn the present study, the aerodynamic performance of the horizontal-axis wind turbine blades by considering the flap-wise oscillations are numerically investigated by using direct numerical simulations (DNS). The details of flow structure can be analysed and predicted by performing DNS over an oscillating blade by considering the realistic behaviour of the wind turbine blade structure with natural vibration frequencies. In this study, the impact of vibrations on the flow separation point, laminar separation bubble (LSB) and stall over NACA-4412 aerofoil are investigated utilising the high-fidelity spectral-hp element methodology. The Reynolds number and angle of attack were selected in the range of and . It is found that the blade vibrations have a noticeable impact on the aerodynamic performance and delay the stall occurrence, and the lift remains high even at higher AoAs, in comparison with the stationary blade. The size of the flow separation is reduced by the blade oscillation and the vibration also affects the separation point. Due to the harmonic oscillation of the blade, the pressure signals are periodic, and the pressure fluctuations are amplified by the oscillations, especially in the flow separation region. The time-averaged lift coefficient is increased by 255.3% by raising the angle of attack, from 0° to 12° at Re = 75,000. Compared to Re = 50,000, the peak-to-peak amplitude for the angle of attack of 0° is higher, whereas that of 8° and 12° are slightly lower at Re = 75,000.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.04.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.04.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Funded by:UKRI | Numerical Investigation o...UKRI| Numerical Investigation of Aero-elasticity in Modern Low-Pressure TurbinesAuthors:M.E. Nakhchi;
S. Win Naung;M.E. Nakhchi
M.E. Nakhchi in OpenAIREL. Dala;
M. Rahmati;
M. Rahmati
M. Rahmati in OpenAIREIn the present study, the aerodynamic performance of the horizontal-axis wind turbine blades by considering the flap-wise oscillations are numerically investigated by using direct numerical simulations (DNS). The details of flow structure can be analysed and predicted by performing DNS over an oscillating blade by considering the realistic behaviour of the wind turbine blade structure with natural vibration frequencies. In this study, the impact of vibrations on the flow separation point, laminar separation bubble (LSB) and stall over NACA-4412 aerofoil are investigated utilising the high-fidelity spectral-hp element methodology. The Reynolds number and angle of attack were selected in the range of and . It is found that the blade vibrations have a noticeable impact on the aerodynamic performance and delay the stall occurrence, and the lift remains high even at higher AoAs, in comparison with the stationary blade. The size of the flow separation is reduced by the blade oscillation and the vibration also affects the separation point. Due to the harmonic oscillation of the blade, the pressure signals are periodic, and the pressure fluctuations are amplified by the oscillations, especially in the flow separation region. The time-averaged lift coefficient is increased by 255.3% by raising the angle of attack, from 0° to 12° at Re = 75,000. Compared to Re = 50,000, the peak-to-peak amplitude for the angle of attack of 0° is higher, whereas that of 8° and 12° are slightly lower at Re = 75,000.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.04.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.04.052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:ASME International Authors:Mohammad Rahmati;
Mohammad Rahmati
Mohammad Rahmati in OpenAIREM. Erfanian Nakhchi;
M. Erfanian Nakhchi
M. Erfanian Nakhchi in OpenAIREdoi: 10.1115/1.4047319
Abstract In this study, computational simulations have been performed to investigate the turbulent characteristics and energy consumption through heat exchanger tubes equipped by new perforated V-shaped rectangular winglet (PVRW) turbulators. The effects of the holes intensity on the velocity and temperature contours are additionally investigated. The Reynolds number, hole diameter ratio, and the number of holes selected are in the range of 5000 ≤ Re ≤ 18,000, 0 ≤ DR ≤ 0.40, and 0 ≤ N ≤ 14, respectively. Renormalization group (RNG) k–ε turbulent model which is a finite volume solver is utilized for the computational fluid dynamics (CFD) simulation. It was noticed that the proposed perforated turbulators could considerably intensify the thermal performance compared to typical VRW inserts. It is found that the recirculating flow generated by the PVRW augments the fluid mixing and transfers the heat from the pipe walls to the core of the tube. The simulations illustrate that the amount of heat transfer enhances 25.2% reducing the DR from 0.4 to 0.13 at Re = 18,000 and N = 14. Also, using PVRW turbulators with N = 7 and DR = 0.26 augments the average Nusselt number around 354.3% compared to the circular pipe without inserts. The highest thermal efficiency parameter of η = 2.25 could be obtained at Re = 5000 for the heat exchangers fitted by vortex generators with N = 14 and DR = 0.26.
Journal of Energy Re... arrow_drop_down Journal of Energy Resources TechnologyArticle . 2020 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4047319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Energy Re... arrow_drop_down Journal of Energy Resources TechnologyArticle . 2020 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4047319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:ASME International Authors:Mohammad Rahmati;
Mohammad Rahmati
Mohammad Rahmati in OpenAIREM. Erfanian Nakhchi;
M. Erfanian Nakhchi
M. Erfanian Nakhchi in OpenAIREdoi: 10.1115/1.4047319
Abstract In this study, computational simulations have been performed to investigate the turbulent characteristics and energy consumption through heat exchanger tubes equipped by new perforated V-shaped rectangular winglet (PVRW) turbulators. The effects of the holes intensity on the velocity and temperature contours are additionally investigated. The Reynolds number, hole diameter ratio, and the number of holes selected are in the range of 5000 ≤ Re ≤ 18,000, 0 ≤ DR ≤ 0.40, and 0 ≤ N ≤ 14, respectively. Renormalization group (RNG) k–ε turbulent model which is a finite volume solver is utilized for the computational fluid dynamics (CFD) simulation. It was noticed that the proposed perforated turbulators could considerably intensify the thermal performance compared to typical VRW inserts. It is found that the recirculating flow generated by the PVRW augments the fluid mixing and transfers the heat from the pipe walls to the core of the tube. The simulations illustrate that the amount of heat transfer enhances 25.2% reducing the DR from 0.4 to 0.13 at Re = 18,000 and N = 14. Also, using PVRW turbulators with N = 7 and DR = 0.26 augments the average Nusselt number around 354.3% compared to the circular pipe without inserts. The highest thermal efficiency parameter of η = 2.25 could be obtained at Re = 5000 for the heat exchangers fitted by vortex generators with N = 14 and DR = 0.26.
Journal of Energy Re... arrow_drop_down Journal of Energy Resources TechnologyArticle . 2020 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4047319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Energy Re... arrow_drop_down Journal of Energy Resources TechnologyArticle . 2020 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4047319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors:M.E. Nakhchi;
M.E. Nakhchi
M.E. Nakhchi in OpenAIREMohammad Rahmati;
Shine Win Naung;Mohammad Rahmati
Mohammad Rahmati in OpenAIREThis paper investigates the secondary vortex flows over an oscillating low-pressure turbine blade using a direct numerical simulation (DNS) method. The unsteady flow governing equations over the oscillating blade are discretized and solved using a spectral/hp element method. The method employs high-degree piecewise polynomial basis functions which results in a very high-order finite element approach. The results show that the blade oscillation can significantly influence the transitional flow structure and the wake profile. It was observed that the separation point over vibrating T106A blades was delayed 4.71% compared to the stationary one at Re = 51,800. Moreover, in the oscillating case, the separated shear layers roll up, break down and shed from the trailing edge. However, the blade vibration imposes additional flow disturbances on the suction surface of the blade before leaving from the trailing edge. Momentum thickness calculations revealed that after flow separation point, the momentum thickness grows rapidly which is due to the inverse flow gradients which generate vortex flows in this area. It was concluded that the additional vortex generations due to the blade vibrations cause higher momentum thickness increment compared to the conventional stationary LPT blade.
CORE arrow_drop_down International Journal of Heat and Fluid FlowArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatfluidflow.2020.108684&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down International Journal of Heat and Fluid FlowArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatfluidflow.2020.108684&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors:M.E. Nakhchi;
M.E. Nakhchi
M.E. Nakhchi in OpenAIREMohammad Rahmati;
Shine Win Naung;Mohammad Rahmati
Mohammad Rahmati in OpenAIREThis paper investigates the secondary vortex flows over an oscillating low-pressure turbine blade using a direct numerical simulation (DNS) method. The unsteady flow governing equations over the oscillating blade are discretized and solved using a spectral/hp element method. The method employs high-degree piecewise polynomial basis functions which results in a very high-order finite element approach. The results show that the blade oscillation can significantly influence the transitional flow structure and the wake profile. It was observed that the separation point over vibrating T106A blades was delayed 4.71% compared to the stationary one at Re = 51,800. Moreover, in the oscillating case, the separated shear layers roll up, break down and shed from the trailing edge. However, the blade vibration imposes additional flow disturbances on the suction surface of the blade before leaving from the trailing edge. Momentum thickness calculations revealed that after flow separation point, the momentum thickness grows rapidly which is due to the inverse flow gradients which generate vortex flows in this area. It was concluded that the additional vortex generations due to the blade vibrations cause higher momentum thickness increment compared to the conventional stationary LPT blade.
CORE arrow_drop_down International Journal of Heat and Fluid FlowArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatfluidflow.2020.108684&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down International Journal of Heat and Fluid FlowArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatfluidflow.2020.108684&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Part of book or chapter of book 2022Publisher:American Society of Mechanical Engineers Authors:Erfanian Nakhchi Toosi, Mahdi;
Erfanian Nakhchi Toosi, Mahdi
Erfanian Nakhchi Toosi, Mahdi in OpenAIRERahmati, Mohammad;
Rahmati, Mohammad
Rahmati, Mohammad in OpenAIREdoi: 10.1115/gt2022-81988
Abstract Aeroelasticity of modern wind turbines is a critical issue which can significantly affect the structural integrity and lifetime of the wind turbine blades. However, previous aeroelastic or aerodynamic studies were mostly concentrated on low-fidelity numerical methods, and the details of flow separation and vortex generation over wind turbine airfoils cannot be detected with these methods. In this study, a high-fidelity direct numerical model is used to investigate the details of flow separations and laminar separation bubbles (LSB) over a NACA-0012 wind turbine airfoil under oscillation. The simulations are conducted at Reynolds number of Re = 1.3 × 105 and the blade has harmonic pitch-wise oscillations at Mach number of Ma∞ = 0.4. Strong fluctuations are observed in the wake region of the vibrating wind turbine blade. The results show that the blade vibrations have a significant influence on vortex generation and separation point over wind turbine blades. details of flow structure over wind turbine blades compared to previously proposed models.
CORE arrow_drop_down https://doi.org/10.1115/gt2022...Conference object . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2022-81988&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down https://doi.org/10.1115/gt2022...Conference object . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2022-81988&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Part of book or chapter of book 2022Publisher:American Society of Mechanical Engineers Authors:Erfanian Nakhchi Toosi, Mahdi;
Erfanian Nakhchi Toosi, Mahdi
Erfanian Nakhchi Toosi, Mahdi in OpenAIRERahmati, Mohammad;
Rahmati, Mohammad
Rahmati, Mohammad in OpenAIREdoi: 10.1115/gt2022-81988
Abstract Aeroelasticity of modern wind turbines is a critical issue which can significantly affect the structural integrity and lifetime of the wind turbine blades. However, previous aeroelastic or aerodynamic studies were mostly concentrated on low-fidelity numerical methods, and the details of flow separation and vortex generation over wind turbine airfoils cannot be detected with these methods. In this study, a high-fidelity direct numerical model is used to investigate the details of flow separations and laminar separation bubbles (LSB) over a NACA-0012 wind turbine airfoil under oscillation. The simulations are conducted at Reynolds number of Re = 1.3 × 105 and the blade has harmonic pitch-wise oscillations at Mach number of Ma∞ = 0.4. Strong fluctuations are observed in the wake region of the vibrating wind turbine blade. The results show that the blade vibrations have a significant influence on vortex generation and separation point over wind turbine blades. details of flow structure over wind turbine blades compared to previously proposed models.
CORE arrow_drop_down https://doi.org/10.1115/gt2022...Conference object . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2022-81988&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down https://doi.org/10.1115/gt2022...Conference object . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2022-81988&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2022Publisher:American Society of Mechanical Engineers Authors:Erfanian Nakhchi Toosi, Mahdi;
Erfanian Nakhchi Toosi, Mahdi
Erfanian Nakhchi Toosi, Mahdi in OpenAIRERahmati, Mohammad;
Rahmati, Mohammad
Rahmati, Mohammad in OpenAIREAbstract The total power generation of a wind farm is significantly affected by the adverse wake generation of upstream wind turbines on the aerodynamic performance of the downstream wind turbines. This paper aims to provide a novel hybrid wake control strategy to improve the power generation of horizontal-axis wind turbines in a wind-farm layout. A numerical simulation based on the actuator line method with large eddy simulation (ALM-LES) is performed to investigate the airflow around three-dimensional NREL 5MW turbines in a three-by-one layout. The yaw angle (θ) and tilt angle (ϕ) of the wind turbines are in the range of (−30° < θ < 30°) and (0 < ϕ < 35°), respectively. Firstly, the combined effects of yaw-control and tilt-control methods on the velocity profile, vorticity generation and turbulent kinetic energy in the wake region of the multiscale wind farm are investigated. Afterwards, the total power generation of the wind farm is compared with previous wake control methods of wind turbines. It was observed that the proposed hybrid wake control method could improve the total power generation by 9.94% compared to the previous wind turbine wake control techniques. The hybrid control strategy can deviate the wake much better than typical single-control methods. An optimization analysis is also provided to find the most appropriate yaw angles and tilt angles of the wind turbines subject to varying wind speeds.
CORE arrow_drop_down https://doi.org/10.1115/gt2022...Conference object . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: CrossrefJournal of Engineering for Gas Turbines and PowerArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2022-81983&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down https://doi.org/10.1115/gt2022...Conference object . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: CrossrefJournal of Engineering for Gas Turbines and PowerArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2022-81983&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2022Publisher:American Society of Mechanical Engineers Authors:Erfanian Nakhchi Toosi, Mahdi;
Erfanian Nakhchi Toosi, Mahdi
Erfanian Nakhchi Toosi, Mahdi in OpenAIRERahmati, Mohammad;
Rahmati, Mohammad
Rahmati, Mohammad in OpenAIREAbstract The total power generation of a wind farm is significantly affected by the adverse wake generation of upstream wind turbines on the aerodynamic performance of the downstream wind turbines. This paper aims to provide a novel hybrid wake control strategy to improve the power generation of horizontal-axis wind turbines in a wind-farm layout. A numerical simulation based on the actuator line method with large eddy simulation (ALM-LES) is performed to investigate the airflow around three-dimensional NREL 5MW turbines in a three-by-one layout. The yaw angle (θ) and tilt angle (ϕ) of the wind turbines are in the range of (−30° < θ < 30°) and (0 < ϕ < 35°), respectively. Firstly, the combined effects of yaw-control and tilt-control methods on the velocity profile, vorticity generation and turbulent kinetic energy in the wake region of the multiscale wind farm are investigated. Afterwards, the total power generation of the wind farm is compared with previous wake control methods of wind turbines. It was observed that the proposed hybrid wake control method could improve the total power generation by 9.94% compared to the previous wind turbine wake control techniques. The hybrid control strategy can deviate the wake much better than typical single-control methods. An optimization analysis is also provided to find the most appropriate yaw angles and tilt angles of the wind turbines subject to varying wind speeds.
CORE arrow_drop_down https://doi.org/10.1115/gt2022...Conference object . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: CrossrefJournal of Engineering for Gas Turbines and PowerArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2022-81983&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down https://doi.org/10.1115/gt2022...Conference object . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: CrossrefJournal of Engineering for Gas Turbines and PowerArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2022-81983&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu