Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
  • Source
  • Research community
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zhe Gong; Bjorn A. C. van de Ven; Kshitij M. Gupta; Carlos da Silva; +4 Authors

    Electric vehicle battery performance near end-of-life is limited by mismatched cell degradation, leading to an estimated 5-10% cell capacity variation across the pack. Active cell balancing hardware architectures incorporating a Low-Voltage (LV) bus supply have been introduced to unlock lost capacity due to cell imbalance at reduced cost, through elimination of the vehicle's 400-to-12V dc-dc converter. In this work, a hierarchical model-predictive control scheme is applied to a time-shared isolated converter active balancing architecture that incorporates LV bus supply. The proposed controller efficiently divides computation among the battery management system hardware components. The energy-buffering capability of the lead-acid battery, which is connected to the LV bus, is used to trade-off balancing and bus regulation objectives, reducing peak power and improving the system cost-effectiveness. Simultaneous state-of-charge balancing and LV bus regulation is verified in simulation and experiment using real-world drive and LV load data collected from a GM Bolt electric vehicle. Similar controller performance compared to a central scheme is achieved in simulation. The experimental setup includes a custom 12S2P, 3.9kWh, liquid-cooled Lithium Nickel Manganese Cobalt battery module with embedded battery management system. The controller performance is evaluated with an initial maximum state-of-charge imbalance of 6.8%.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Transactions on Industrial Electronics
    Article . 2020 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    20
    citations20
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zhe Gong; Bjorn A. C. van de Ven; Kshitij M. Gupta; Carlos da Silva; +4 Authors

    Electric vehicle battery performance near end-of-life is limited by mismatched cell degradation, leading to an estimated 5-10% cell capacity variation across the pack. Active cell balancing hardware architectures incorporating a Low-Voltage (LV) bus supply have been introduced to unlock lost capacity due to cell imbalance at reduced cost, through elimination of the vehicle's 400-to-12V dc-dc converter. In this work, a hierarchical model-predictive control scheme is applied to a time-shared isolated converter active balancing architecture that incorporates LV bus supply. The proposed controller efficiently divides computation among the battery management system hardware components. The energy-buffering capability of the lead-acid battery, which is connected to the LV bus, is used to trade-off balancing and bus regulation objectives, reducing peak power and improving the system cost-effectiveness. Simultaneous state-of-charge balancing and LV bus regulation is verified in simulation and experiment using real-world drive and LV load data collected from a GM Bolt electric vehicle. Similar controller performance compared to a central scheme is achieved in simulation. The experimental setup includes a custom 12S2P, 3.9kWh, liquid-cooled Lithium Nickel Manganese Cobalt battery module with embedded battery management system. The controller performance is evaluated with an initial maximum state-of-charge imbalance of 6.8%.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Transactions on Industrial Electronics
    Article . 2020 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    20
    citations20
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
Powered by OpenAIRE graph