- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Elsevier BV Danfang Chen; Steffen Heyer; Suphunnika Ibbotson; Konstantinos Salonitis; Jón Garðar Steingrímsson; Sebastian Thiede;One of the hot topics currently in manufacturing domain is direct digital manufacturing. With introduction of cheap three-dimensional printers, the direct digital manufacturing seems to become a new manufacturing paradigm with an entirely different impact on society; nevertheless how this will impact the society and the differences between the paradigms are unclear. According to this background, this paper presents a comprehensive analysis of direct digital manufacturing from different perspectives in comparison to various traditional manufacturing paradigms. Authors are using a societal viewpoint to see, describe and analyse the subject instead of traditional manufacturing viewpoint. For the better understanding of direct digital manufacturing origins, a classification and historical background about available techniques are described. Furthermore, direct digital manufacturing as a paradigm is analysed and compared with craft production, mass production and mass customisation. Direct digital manufacturing's sustainability aspects related to social, economical and environmental dimensions are gathered and analysed for a better insight of this technique. A detailed case study demonstrates the energy use differences of direct digital manufacturing and mass production in depth. According to the present work, direct digital manufacturing has the possibility of combining the advantages of the other production paradigms and can have a positive impact on sustainable development; yet, there are several challenges to overcome both in technical and sociality aspects. A challenge within the social aspects can be the life style changes which can impact the job market, working environment, waste management and more.
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2015License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2015.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 374 citations 374 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 11visibility views 11 download downloads 330 Powered bymore_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2015License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2015.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Christoph Herrmann; Sebastian Thiede; Christine Schulze; Denis Kurle;AbstractIndustry releases vast amounts of heat energy as dissipative waste heat to the atmosphere. It is therefore necessary to acquire a better understanding of the waste heat potentials in manufacturing. The paper presents an integrated approach for identifying and quantifying waste heat potentials of different production processes. The identification is based on an estimation procedure followed by a simulative assessment of production processes to quantify and allocate waste heat over time. The approach further elaborates on a potential source and demand matching of heat streams. A case study from the automotive industry demonstrates the applicability of the approach.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.procir.2016.03.107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.procir.2016.03.107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2019Publisher:IEEE Christoph Herrmann; Rüdiger Daub; Thomas Komas; Sebastian Thiede; Muhammad Zeeshan Karamat;The development of lithium-ion batteries (LIBs) is characterized by a unique level of complexity in the manufacturing process. In particular, cause-effect relationships (CERs) between process parameters have a strong influence on the quality of a manufactured cell and thus on the ramp-up time. First approaches for discovery CERs in LIBs were expert-based and thus afflicted with a high degree of uncertainty. Therefore, data from a real battery production line has for the first time been systematically processed and analyzed using CRISP-DM. However, the approach shows shortcomings in the involvement of domain expert knowledge as well as in the accuracy of the applied models. Addressing these shortcomings, an interdisciplinary data analytics framework is presented using human-computer interaction (HCI). Moreover, the framework aims to improve data analysis with the help of expert knowledge and, conversely, sharpen the knowledge of experts through data analysis. Thus, the model provides a basis for automated fault detection, diagnostics, and prognostics. Implementation and validation of the framework was conducted using the data of an assembly line for prismatic LIBs at the BMW Group in Munich.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/coase....Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/coase.2019.8843185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/coase....Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/coase.2019.8843185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Christoph Herrmann; Malte Schönemann; Denis Kurle; Sebastian Thiede;AbstractValue stream mapping (VSM) has been a widely used method aiming at the elimination of inefficiencies in manufacturing systems. During the last few years VSM was extended towards the consideration of energy demands of processes and supporting services (EVSM), material use, multi-product perspective, as well as the impact of different product characteristics. However, since VSM is a static method, it is not possible to completely analyze the dynamic interrelations between jobs. This paper proposes a simulation tool which allows the analysis of multiple value streams for different products regarding lead times, as well as non-value adding times and energy demands.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.procir.2015.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.procir.2015.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Sebastian Thiede; Christoph Herrmann; Jan Beier;A central strategy for climate change mitigation is expanding electricity generation from renewable energy sources, with an increasing share of decentralized generation. Some of these sources are variable renewable energy (VRE) sources, such as wind and solar resources. Measures have to be enacted to integrate VRE into an existing power supply system. One approach is switching from grid electricity supply towards direct demand of VRE generation to reduce grid transportation requirements and variable electricity grid feed-in. Within this context, energy flexibility control of manufacturing systems can be used to match energy demand of manufacturing systems with on-site VRE generation. Nonetheless, due to their inherent dynamic behavior, interlinked manufacturing systems provide additional operational and technical challenges such as maintaining throughput when energy control actions are executed. Further, stochastic influences from, for example, VRE generation and manufacturing system behavior constitute the requirement for a real-time approach on the level of manufacturing execution systems. Consequently, this paper presents a method for real-time control of manufacturing systems with several processes and intermediate buffers to increase utilization of (on-site) generated VRE without compromising system throughput. An initial method for an energy flexibility control logic is presented and a simulation prototype to evaluate its effectiveness is implemented. A case study is used to demonstrate the effectiveness and to test sensitivities to system parameter changes. Impact on direct VRE demand and additional operational indicators is evaluated.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2016.09.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 85 citations 85 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2016.09.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Funded by:EC | EMC2-FACTORYEC| EMC2-FACTORYChristoph Herrmann; Gerrit Posselt; Sami Kara; Samira Alvandi; Sebastian Thiede; Tim Heinemann; Nils Weinert; Jan Fischer; Jan Fischer;AbstractEnergy value stream analysis is used to quickly evaluate the energetic performance of process chains within continuous improvement processes in production companies. Existing approaches focus mainly on capturing and allocation of direct energy demands induced by production machines. However, most approaches lack the holistic perspective, leading to neglect huge parts of the indirect energy demands, caused by the technical building services which are vital to maintain the production conditions. This paper presents an extended approach, targeting to fully distribute indirect energy demands upon specific entities of the value stream by presenting systematic allocation rules, which cause-dependently break down peripheral energy demands.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.procir.2014.06.067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.procir.2014.06.067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Wiley Kai Bockwinkel; Christine Nowak; Bastian Thiede; Markus Nöske; Franz Dietrich; Sebastian Thiede; Wolfgang Haselrieder; Klaus Dröder; Arno Kwade; Christoph Herrmann;Electrode manufacturing requires multiple process steps, e.g., dispersing and coating. In‐between these steps, intermediate products have to be transferred, stored, and handled. Especially for the development of new active materials or electrode formulations, the variety of parameters that need to be screened is enormous. In addition, these materials are initially tested in small batches, and it is not always possible to upscale the used processes. To evaluate the performance of different materials or differently processed materials, test cells are assembled. This usually requires manual work procedures, which are inherently sensitive to variations and untraceable errors. If the stochastic flaws are large enough, the effects of process variations are covered by these. It is therefore important to increase reproducibility in all process steps. Herein, new concepts for electrode production and automated sample preparation for highly reproducible production and more effective electrode development and screening of parameters are presented. A combined grinding and dispersion process for the production of silicon‐based anodes and an automated assembly system for efficient testing is presented. The processes are supported by methods of data mining to collect process data, ensure high reproducibility, and support research on new active materials.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201900133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201900133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Paul Sebastian Booij; J.E. Fransman; B.J.F. Driessen; Gerrit Posselt; Sebastian Thiede; Christoph Herrmann;Guaranteeing defined conditions, such as the temperature levels inside the factory's building shell, is often important to produce high-quality products. Heating, ventilation and air conditioning (HVAC) equipment, as part of the technical building services, is energy intensive and accounts for a major share of the factory's energy demand. For an effective utilisation, the HVAC system control has to compensate time dependent variations of building-internal loads and demands as well as changing weather conditions that can cause local temperature differences. In this paper, a computational fluid dynamic model, coupled with a wireless sensor network, is presented that allows the estimation of the temperature and air flows at every position in the factory building, in real-time. This can then be used to improve control strategies of HVAC systems towards a more energy efficient and demand oriented climate conditioning within factory building shells. © 2015 The Authors. Published by Elsevier B.V.
Procedia CIRP arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.procir.2015.02.178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Procedia CIRP arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.procir.2015.02.178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Christoph Herrmann; Sami Kara; Sebastian Thiede; Wen Li;Abstract Sustainability has become one of the competitive strategies for today's manufacturers who are proactively seeking solutions to evaluate and improve their performances from both economic and environmental perspectives. As a result, a number of researchers have proposed the concept of Energy Value Stream Mapping (EVSM). However, the economic and environmental aspects were previously evaluated and presented individually. Therefore, this paper presents the development of an integrated tool to evaluate and visualise complex flows in a manufacturing system from the energy, material and time perspectives. A generic Sankey diagram platform is built to connect with existing databases (e.g. ERP) for a continuous analysis. An Australian aluminium recycling company is presented to demonstrate the developed tool.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.procir.2016.11.174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.procir.2016.11.174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Conference object , Other literature type 2013 ItalyPublisher:Springer Singapore Funded by:EC | EMC2-FACTORYEC| EMC2-FACTORYFranco Cavadini Antonio; Alessandro Cannata; Andrea Cataldo; Sebastian Thiede; Florian Müller; Bojan Stahl; Marco Taisch; Christoph Herrmann;The paper describes a novel approach, Total Factory Simulation, for integration of energy and material flows in manufacturing as well as building simulation combined in a csolution to support planning and optimization of green factories. The first ready module of the approach based on PlantSimulation which explains the integration of energy flows based on programming and thermodynamic estimations within the application is in focus of this paper. A use case of the module in an Italian SME is presented for sequencing purposes taking into account environmental performances
CNR ExploRA arrow_drop_down https://doi.org/10.1007/978-98...Part of book or chapter of book . 2013 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-981-4451-48-2_80&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down https://doi.org/10.1007/978-98...Part of book or chapter of book . 2013 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-981-4451-48-2_80&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Elsevier BV Danfang Chen; Steffen Heyer; Suphunnika Ibbotson; Konstantinos Salonitis; Jón Garðar Steingrímsson; Sebastian Thiede;One of the hot topics currently in manufacturing domain is direct digital manufacturing. With introduction of cheap three-dimensional printers, the direct digital manufacturing seems to become a new manufacturing paradigm with an entirely different impact on society; nevertheless how this will impact the society and the differences between the paradigms are unclear. According to this background, this paper presents a comprehensive analysis of direct digital manufacturing from different perspectives in comparison to various traditional manufacturing paradigms. Authors are using a societal viewpoint to see, describe and analyse the subject instead of traditional manufacturing viewpoint. For the better understanding of direct digital manufacturing origins, a classification and historical background about available techniques are described. Furthermore, direct digital manufacturing as a paradigm is analysed and compared with craft production, mass production and mass customisation. Direct digital manufacturing's sustainability aspects related to social, economical and environmental dimensions are gathered and analysed for a better insight of this technique. A detailed case study demonstrates the energy use differences of direct digital manufacturing and mass production in depth. According to the present work, direct digital manufacturing has the possibility of combining the advantages of the other production paradigms and can have a positive impact on sustainable development; yet, there are several challenges to overcome both in technical and sociality aspects. A challenge within the social aspects can be the life style changes which can impact the job market, working environment, waste management and more.
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2015License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2015.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 374 citations 374 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 11visibility views 11 download downloads 330 Powered bymore_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2015License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2015.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Christoph Herrmann; Sebastian Thiede; Christine Schulze; Denis Kurle;AbstractIndustry releases vast amounts of heat energy as dissipative waste heat to the atmosphere. It is therefore necessary to acquire a better understanding of the waste heat potentials in manufacturing. The paper presents an integrated approach for identifying and quantifying waste heat potentials of different production processes. The identification is based on an estimation procedure followed by a simulative assessment of production processes to quantify and allocate waste heat over time. The approach further elaborates on a potential source and demand matching of heat streams. A case study from the automotive industry demonstrates the applicability of the approach.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.procir.2016.03.107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.procir.2016.03.107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2019Publisher:IEEE Christoph Herrmann; Rüdiger Daub; Thomas Komas; Sebastian Thiede; Muhammad Zeeshan Karamat;The development of lithium-ion batteries (LIBs) is characterized by a unique level of complexity in the manufacturing process. In particular, cause-effect relationships (CERs) between process parameters have a strong influence on the quality of a manufactured cell and thus on the ramp-up time. First approaches for discovery CERs in LIBs were expert-based and thus afflicted with a high degree of uncertainty. Therefore, data from a real battery production line has for the first time been systematically processed and analyzed using CRISP-DM. However, the approach shows shortcomings in the involvement of domain expert knowledge as well as in the accuracy of the applied models. Addressing these shortcomings, an interdisciplinary data analytics framework is presented using human-computer interaction (HCI). Moreover, the framework aims to improve data analysis with the help of expert knowledge and, conversely, sharpen the knowledge of experts through data analysis. Thus, the model provides a basis for automated fault detection, diagnostics, and prognostics. Implementation and validation of the framework was conducted using the data of an assembly line for prismatic LIBs at the BMW Group in Munich.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/coase....Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/coase.2019.8843185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/coase....Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/coase.2019.8843185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Christoph Herrmann; Malte Schönemann; Denis Kurle; Sebastian Thiede;AbstractValue stream mapping (VSM) has been a widely used method aiming at the elimination of inefficiencies in manufacturing systems. During the last few years VSM was extended towards the consideration of energy demands of processes and supporting services (EVSM), material use, multi-product perspective, as well as the impact of different product characteristics. However, since VSM is a static method, it is not possible to completely analyze the dynamic interrelations between jobs. This paper proposes a simulation tool which allows the analysis of multiple value streams for different products regarding lead times, as well as non-value adding times and energy demands.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.procir.2015.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.procir.2015.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Sebastian Thiede; Christoph Herrmann; Jan Beier;A central strategy for climate change mitigation is expanding electricity generation from renewable energy sources, with an increasing share of decentralized generation. Some of these sources are variable renewable energy (VRE) sources, such as wind and solar resources. Measures have to be enacted to integrate VRE into an existing power supply system. One approach is switching from grid electricity supply towards direct demand of VRE generation to reduce grid transportation requirements and variable electricity grid feed-in. Within this context, energy flexibility control of manufacturing systems can be used to match energy demand of manufacturing systems with on-site VRE generation. Nonetheless, due to their inherent dynamic behavior, interlinked manufacturing systems provide additional operational and technical challenges such as maintaining throughput when energy control actions are executed. Further, stochastic influences from, for example, VRE generation and manufacturing system behavior constitute the requirement for a real-time approach on the level of manufacturing execution systems. Consequently, this paper presents a method for real-time control of manufacturing systems with several processes and intermediate buffers to increase utilization of (on-site) generated VRE without compromising system throughput. An initial method for an energy flexibility control logic is presented and a simulation prototype to evaluate its effectiveness is implemented. A case study is used to demonstrate the effectiveness and to test sensitivities to system parameter changes. Impact on direct VRE demand and additional operational indicators is evaluated.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2016.09.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 85 citations 85 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2016.09.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Funded by:EC | EMC2-FACTORYEC| EMC2-FACTORYChristoph Herrmann; Gerrit Posselt; Sami Kara; Samira Alvandi; Sebastian Thiede; Tim Heinemann; Nils Weinert; Jan Fischer; Jan Fischer;AbstractEnergy value stream analysis is used to quickly evaluate the energetic performance of process chains within continuous improvement processes in production companies. Existing approaches focus mainly on capturing and allocation of direct energy demands induced by production machines. However, most approaches lack the holistic perspective, leading to neglect huge parts of the indirect energy demands, caused by the technical building services which are vital to maintain the production conditions. This paper presents an extended approach, targeting to fully distribute indirect energy demands upon specific entities of the value stream by presenting systematic allocation rules, which cause-dependently break down peripheral energy demands.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.procir.2014.06.067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.procir.2014.06.067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Wiley Kai Bockwinkel; Christine Nowak; Bastian Thiede; Markus Nöske; Franz Dietrich; Sebastian Thiede; Wolfgang Haselrieder; Klaus Dröder; Arno Kwade; Christoph Herrmann;Electrode manufacturing requires multiple process steps, e.g., dispersing and coating. In‐between these steps, intermediate products have to be transferred, stored, and handled. Especially for the development of new active materials or electrode formulations, the variety of parameters that need to be screened is enormous. In addition, these materials are initially tested in small batches, and it is not always possible to upscale the used processes. To evaluate the performance of different materials or differently processed materials, test cells are assembled. This usually requires manual work procedures, which are inherently sensitive to variations and untraceable errors. If the stochastic flaws are large enough, the effects of process variations are covered by these. It is therefore important to increase reproducibility in all process steps. Herein, new concepts for electrode production and automated sample preparation for highly reproducible production and more effective electrode development and screening of parameters are presented. A combined grinding and dispersion process for the production of silicon‐based anodes and an automated assembly system for efficient testing is presented. The processes are supported by methods of data mining to collect process data, ensure high reproducibility, and support research on new active materials.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201900133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201900133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Paul Sebastian Booij; J.E. Fransman; B.J.F. Driessen; Gerrit Posselt; Sebastian Thiede; Christoph Herrmann;Guaranteeing defined conditions, such as the temperature levels inside the factory's building shell, is often important to produce high-quality products. Heating, ventilation and air conditioning (HVAC) equipment, as part of the technical building services, is energy intensive and accounts for a major share of the factory's energy demand. For an effective utilisation, the HVAC system control has to compensate time dependent variations of building-internal loads and demands as well as changing weather conditions that can cause local temperature differences. In this paper, a computational fluid dynamic model, coupled with a wireless sensor network, is presented that allows the estimation of the temperature and air flows at every position in the factory building, in real-time. This can then be used to improve control strategies of HVAC systems towards a more energy efficient and demand oriented climate conditioning within factory building shells. © 2015 The Authors. Published by Elsevier B.V.
Procedia CIRP arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.procir.2015.02.178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Procedia CIRP arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.procir.2015.02.178&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Christoph Herrmann; Sami Kara; Sebastian Thiede; Wen Li;Abstract Sustainability has become one of the competitive strategies for today's manufacturers who are proactively seeking solutions to evaluate and improve their performances from both economic and environmental perspectives. As a result, a number of researchers have proposed the concept of Energy Value Stream Mapping (EVSM). However, the economic and environmental aspects were previously evaluated and presented individually. Therefore, this paper presents the development of an integrated tool to evaluate and visualise complex flows in a manufacturing system from the energy, material and time perspectives. A generic Sankey diagram platform is built to connect with existing databases (e.g. ERP) for a continuous analysis. An Australian aluminium recycling company is presented to demonstrate the developed tool.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.procir.2016.11.174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.procir.2016.11.174&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Conference object , Other literature type 2013 ItalyPublisher:Springer Singapore Funded by:EC | EMC2-FACTORYEC| EMC2-FACTORYFranco Cavadini Antonio; Alessandro Cannata; Andrea Cataldo; Sebastian Thiede; Florian Müller; Bojan Stahl; Marco Taisch; Christoph Herrmann;The paper describes a novel approach, Total Factory Simulation, for integration of energy and material flows in manufacturing as well as building simulation combined in a csolution to support planning and optimization of green factories. The first ready module of the approach based on PlantSimulation which explains the integration of energy flows based on programming and thermodynamic estimations within the application is in focus of this paper. A use case of the module in an Italian SME is presented for sequencing purposes taking into account environmental performances
CNR ExploRA arrow_drop_down https://doi.org/10.1007/978-98...Part of book or chapter of book . 2013 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-981-4451-48-2_80&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down https://doi.org/10.1007/978-98...Part of book or chapter of book . 2013 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-981-4451-48-2_80&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu