- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Jonathan D. Major; Ken Durose;Abstract The early stage growth mechanisms of sublimation-grown thin-film polycrystalline CdTe are evaluated by growth interrupts and ex-situ SEM/AFM analysis for growth under 100 Torr of inert gas. Development of island size, density and coverage demonstrates that growth proceeds by island nucleation, island growth and density increase, followed by coalescence, channel formation and secondary nucleation. Addition of material to the islands occurs partly by the ‘step-flow’ mechanism. Grains in the completed films are considered to arise from individual nuclei. Nucleation and coalescence models are used to explain the correlation between increased substrate temperature and increased CdTe grain size in sublimation deposited CdTe films.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2011.05.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2011.05.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Williams, B.L.; Major, J.D.; Bowen, L.; Phillips, L.; Zoppi, G.; Forbes, I.; Durose, K.;ITO/ZnO/CdS/CdTe/Mo solar cells have been grown in the substrate configuration by a combination of close-space sublimation and RF sputtering. A peak efficiency of 8.01% was achieved. A two stage CdCl2 annealing process was developed, with the first stage contributing to CdTe doping and the second being linked to CdTe/CdS interdiffusion by secondary ion mass spectrometry analysis. The inclusion of a ZnO layer between CdS and ITO layers improved performance significantly (from η=6% to η=8%) by increasing the shunt resistance, RSH, from 563 Ω cm2 to 881 Ω cm2. Cross-sectional scanning electron microscopy highlighted the importance of the resistive ZnO layer as numerous pinholes and voids exist in the CdS film. Solar cell performance was also investigated as a function of CdTe thickness, with optimal thicknesses being in the range 3–6 μm. All devices were deemed to be limited principally by a non-Ohmic back contact, the Schottky barrier height being determined to be 0.51 eV by temperature dependent J–V measurements. Modelling of device performance using SCAPS predicted efficiencies as high as 11.3% may be obtainable upon formation of an Ohmic back-contact. SCAPS modelling also demonstrated that a quasi-Ohmic back-contact may be achievable via inclusion of a highly p-doped (~1018 cm−3) buffer layer, between CdTe and Mo, which also has an optimal electron affinity (4.2 eV). The evaluation of device processing and the in-depth characterisation presented here provides a number of insights towards the continued improvement of substrate cell performance.
CORE arrow_drop_down Northumbria Research LinkArticle . 2014License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Durham Research OnlineArticle . 2014 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/25593/1/25593.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2014License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/25593/Data sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2014 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSolar Energy Materials and Solar CellsArticle . 2014License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2014.01.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Northumbria Research LinkArticle . 2014License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Durham Research OnlineArticle . 2014 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/25593/1/25593.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2014License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/25593/Data sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2014 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSolar Energy Materials and Solar CellsArticle . 2014License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2014.01.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Elsevier BV Funded by:UKRI | SUPERSOLAR Solar Energy H...UKRI| SUPERSOLAR Solar Energy HubMendis, B.G.; Howkins, A.; Stowe, D.; Major, J.D.; Durose, K.;pmid: 27163963
There is renewed interest in cathodoluminescence (CL) in the transmission electron microscope, since it can be combined with low energy loss spectroscopy measurements and can also be used to probe defects, such as grain boundaries and dislocations, at high spatial resolution. Transition radiation (TR), which is emitted when the incident electron crosses the vacuum-specimen interface, is however an important artefact that has received very little attention. The importance of TR is demonstrated on a wedge shaped CdTe specimen of varying thickness. For small specimen thicknesses (<250nm) grain boundaries are not visible in the panchromatic CL image. Grain boundary contrast is produced by electron-hole recombination within the foil, and a large fraction of that light is lost to multiple-beam interference, so that thicker specimens are required before the grain boundary signal is above the TR background. This is undesirable for high spatial resolution. Furthermore, the CL spectrum contains additional features due to TR which are not part of the 'bulk' specimen. Strategies to minimise the effects of TR are also discussed.
Durham Research Onli... arrow_drop_down Durham Research OnlineArticle . 2016 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/18703/1/18703.pdfData sources: Durham Research OnlineBrunel University London: Brunel University Research Archive (BURA)Article . 2016License: CC BY NC NDFull-Text: https://bura.brunel.ac.uk/handle/2438/29910Data sources: Bielefeld Academic Search Engine (BASE)Durham University: Durham Research OnlineArticle . 2016License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/18703/Data sources: Bielefeld Academic Search Engine (BASE)Brunel University Research ArchiveArticle . 2016License: CC BY NC NDData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ultramic.2016.05.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 10 citations 10 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Durham Research Onli... arrow_drop_down Durham Research OnlineArticle . 2016 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/18703/1/18703.pdfData sources: Durham Research OnlineBrunel University London: Brunel University Research Archive (BURA)Article . 2016License: CC BY NC NDFull-Text: https://bura.brunel.ac.uk/handle/2438/29910Data sources: Bielefeld Academic Search Engine (BASE)Durham University: Durham Research OnlineArticle . 2016License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/18703/Data sources: Bielefeld Academic Search Engine (BASE)Brunel University Research ArchiveArticle . 2016License: CC BY NC NDData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ultramic.2016.05.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Funded by:UKRI | SUPERSOLAR Solar Energy H..., UKRI | Capacitance spectroscopy ...UKRI| SUPERSOLAR Solar Energy Hub ,UKRI| Capacitance spectroscopy led process innovations to improve VOC in CdTe thin film solar cellsMajor, J.D.; Phillips, L.J.; Al Turkestani, M.; Bowen, L.; Whittles, T.J.; Dhanak, V.R.; Durose, K.;A new approach to back contacting CdTe solar cells that uses an organic poly(3-hexythiophene-2,5-diyl) (P3HT) back contact layer is reported. The most striking benefit of P3HT was demonstrated to be through a “pinhole blocking” effect, significantly improving performance uniformity. This was demonstrated through comparison of open circuit voltage values for a large sample set (600 cells) and through measurement of a device with a graded absorber layer thickness (0.7–1.9 µm). The conversion efficiency achievable and the electrical barrier height of the contacts to the CdTe were also investigated for P3HT/Au and Au control contacts – both being tested with and without additional Cu. Temperature dependent JV measurement showed the use of P3HT reduced the barrier to (0.29–0.33 eV) from the value achievable with Au (0.39–0.42 eV), but inclusion of Cu into either of the structures gave the lowest barriers (0.21–0.22 eV). For the data sets recorded, P3HT/Au yielded higher peak efficiencies than the Au control contact. However, when Cu was included the peak performance of devices having P3HT/Cu/Au and Cu/Au contacts were comparable at 14.7% respectively but the P3HT/Cu/Au contact displayed a significantly higher average performance through increased uniformity of the device response.
CORE arrow_drop_down Durham Research OnlineArticle . 2017 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/22475/1/22475.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2017License: CC BYFull-Text: http://dro.dur.ac.uk/22475/Data sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.07.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Durham Research OnlineArticle . 2017 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/22475/1/22475.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2017License: CC BYFull-Text: http://dro.dur.ac.uk/22475/Data sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.07.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2015Publisher:Institute of Electrical and Electronics Engineers (IEEE) Laurie J. Phillips; Robert E. Treharne; Jonathan D. Major; Leon Bowen; Ken Durose;The CdCl 2 treatment is a key step in CdTe solar cell fabrication. However, despite its near ubiquitous use, the process is nonideal as CdCl 2 is both expensive and potentially hazardous to utilize in processing. In this paper, we report on the development of a NH 4 Cl replacement to the CdCl 2 process, which is a low-cost noncarcinogenic alternative. Comparative cells were fabricated and compared via C -V, J-V, scanning electron microscopy, and external quantum efficiency analysis. Further process optimization led to device efficiencies of up to 11.5%, achieved using this new process, with V OC values of up to 832 mV, which is relatively high.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2015 . Peer-reviewedLicense: IEEE Open AccessData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2014.2362296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2015 . Peer-reviewedLicense: IEEE Open AccessData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2014.2362296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Elsevier BV E.T. Dağdeviren; M. Bayhan; Ken Durose; Habibe Bayhan; Jonathan D. Major; Şadan Özden;A simple approach, which can estimate the barrier height of non-Ohmic back contacts for CdS/CdTe solar cell by using its temperature dependent forward biased current-voltage data, is explained. The method involves modelling the forward J–V characteristics using a double exponential expression for the main junction and by a reverse biased Schottky barrier for the back contact. Cells processed with both CdCl2 and MgCl2 are compared, with the current transport phenomena in both kinds of cells also being analysed. Performance loss due to limitation of the forward bias hole current, and its dependence on the post-deposition chloride processing, is discussed. The forward current transport is mainly dominated by recombination at CdS/CdTe interfacial region with pronounced tunnelling effects. Classical Schottky-type conduction, as described by the Richardson-Schottky formula, is a good fit to the reverse biased current-voltage behaviour of an Au/CdTe junction above ∼240 K. Below this temperature, the current limiting effect due to the increasing contribution from interfacial defect states can be satisfactorily explained by Bardeen’s model for a modified Schottky type barrier at back contact interface.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2016.10.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2016.10.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 United KingdomPublisher:IOP Publishing Funded by:UKRI | Capacitance spectroscopy ..., UKRI | DTP 2016-2017 University ..., UKRI | X-RAY DIFFRACTION CAPABIL... +2 projectsUKRI| Capacitance spectroscopy led process innovations to improve VOC in CdTe thin film solar cells ,UKRI| DTP 2016-2017 University of Liverpool ,UKRI| X-RAY DIFFRACTION CAPABILITY FOR NANOSCALE AND THIN FILM STRUCTURE ,UKRI| Donor Design for Maximum Mobility TCOs ,UKRI| Overcoming the grain size limit to Voc in sustainable photovoltaicsHuw Shiel; Oliver S Hutter; Laurie J Phillips; Mohammed Al Turkestani; Vin R Dhanak; Tim D Veal; Ken Durose; Jonathan D Major;Abstract The effect of (NH4)2S and CS2 chemical etches on surface chemistry and contacting in Sb2Se3 solar cells was investigated via a combination of x-ray photoemission spectroscopy (XPS) and photovoltaic device analysis. Thin film solar cells were produced in superstrate configuration with an absorber layer deposited by close space sublimation. Devices of up to 5.7% efficiency were compared via current–voltage measurements (J–V) and temperature-dependent current–voltage (J–V–T) analysis. XPS analysis demonstrated that both etching processes were successful in removing Sb2O3 contamination, while there was no decrease in free elemental selenium content by either etch, in contrast to prior work. Using J–V–T analysis the removal of Sb2O3 at the back surface in etched samples was found to improve contacting by reducing the potential barrier at the back contact from 0.43 eV to 0.26 eV and lowering the series resistance. However, J–V data showed that due to the decrease in shunt resistance and short-circuit current as a result of etching, the devices show a lower efficiency following both etches, despite a lowering of the series resistance. Further optimisation of the etching process yielded an improved efficiency of 6.6%. This work elucidates the role of surface treatments in Sb2Se3 devices and resolves inconsistencies in previously published works.
CORE arrow_drop_down COREArticleFull-Text: http://livrepository.liverpool.ac.uk/3052252/1/author_accepted_manuscript_Sb2Se3_JPhysEnergy.pdfData sources: COREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7655/ab3c98&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down COREArticleFull-Text: http://livrepository.liverpool.ac.uk/3052252/1/author_accepted_manuscript_Sb2Se3_JPhysEnergy.pdfData sources: COREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7655/ab3c98&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:UKRI | Improved Understanding, D..., UKRI | Donor Design for Maximum ..., UKRI | Donor Design for Maximum ... +1 projectsUKRI| Improved Understanding, Development and Optimisation of Perovskite-based Solar Cells ,UKRI| Donor Design for Maximum Mobility TCOs ,UKRI| Donor Design for Maximum Mobility TCOs ,UKRI| SuperSolar Hub ExtensionLaurie J. Phillips; Christopher N. Savory; Oliver S. Hutter; Peter J. Yates; Huw Shiel; Silvia Mariotti; Leon Bowen; Max Birkett; Ken Durose; David O. Scanlon; Jonathan D. Major;Antimony selenide (Sb 2 Se 3 ) is an emerging chalcogenide photovoltaic absorber material that has been the subject of increasing interest in recent years, demonstrating rapid efficiency increases with a material that is simple, abundant, and stable. This paper examines the material from both a theoretical and practical standpoint. The theoretical viability of Sb 2 Se 3 as a solar photovoltaic material is assessed and the maximum spectroscopically limited performance is estimated, with a 200 nm film expected to be capable of achieving a photon conversion efficiency of up to 28.2%. By adapting an existing CdTe close-spaced sublimation (CSS) process, Sb 2 Se 3 material with large rhubarb-like grains is produced and solar cells are fabricated. We show that the established CdS window layer is unsuitable for use with CSS, due to intermixing during higher temperature processing. Substituting CdS with the more stable TiO 2 , a power conversion efficiency of 5.5% and an open-circuit voltage V oc of 0.45 V are achieved; the voltage exceeding current champion devices. This paper demonstrates the potential of CSS for scalable Sb 2 Se 3 deposition and highlights the promise of Sb 2 Se 3 as an abundant and low-toxicity material for solar applications.
CORE arrow_drop_down Durham Research OnlineArticle . 2019 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/27593/1/27593.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2019License: CC BYFull-Text: http://dro.dur.ac.uk/27593/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2018.2885836&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Durham Research OnlineArticle . 2019 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/27593/1/27593.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2019License: CC BYFull-Text: http://dro.dur.ac.uk/27593/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2018.2885836&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:AIP Publishing Funded by:DFG, UKRI | Overcoming the grain size..., UKRI | Bandgap engineering for o...DFG ,UKRI| Overcoming the grain size limit to Voc in sustainable photovoltaics ,UKRI| Bandgap engineering for optimal antimony chalcogenide solar cellsF. Herklotz; E. V. Lavrov; T. D. C. Hobson; J. D. Major; K. Durose;doi: 10.1063/5.0222193
The optical and electrical properties of n-type chlorine-doped Sb2Se3 single crystals, with free carrier concentrations above 1016 cm−3 at room temperature, have been studied. The experiments reveal a strongly polarized temperature-dependent long-wavelength infrared absorption attributable to conduction band electrons within the material. For wavelengths between 1.6 and 6 μm, the room temperature absorption varies as λ2.5±0.3, suggesting that longitudinal optical mode scattering is the dominant electron scattering mechanism. The results are most consistent with the hypothesis that electron transport in Sb2Se3 is band-like and not intrinsically limited by small-polaron self-trapping.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0222193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0222193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:IOP Publishing Authors: Williams, B.L.; Halliday, D.P.; Mendis, B.G.; Durose, K.;pmid: 23478397
Defects in Au-catalysed CdTe nanowires vapour-liquid-solid-grown on polycrystalline underlayers have been critically evaluated. Their low-temperature photoluminescence spectra were dominated by excitonic emission with rarely observed above-gap emission also being recorded. While acceptor bound exciton lines due to monovalent metallic impurities (Ag, Cu or Na) were seen, only deeper, donor-acceptor-pair emission could be attributed to the Au contamination that is expected from the catalyst. Annealing under nitrogen acted to enhance the single crystal-like PL emission, whilst oxidizing and reducing anneals of the type that is used in solar cell device processing caused it to degrade. The incidence of stacking faults, polytypes and twins was related only to the growth axes of the wires ( 50%, 30% and 20%), and was not influenced by annealing. The potential electrical activity of the point and extended defects, and the suitability of these nanowire materials (including processing steps) for solar cell applications, is discussed. Overall they have a quality that is superior to that of thin polycrystalline films, although questions remain about recombination due to Au.
Nanotechnology arrow_drop_down Durham University: Durham Research OnlineArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/0957-4484/24/13/135703&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 15 citations 15 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Nanotechnology arrow_drop_down Durham University: Durham Research OnlineArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/0957-4484/24/13/135703&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Jonathan D. Major; Ken Durose;Abstract The early stage growth mechanisms of sublimation-grown thin-film polycrystalline CdTe are evaluated by growth interrupts and ex-situ SEM/AFM analysis for growth under 100 Torr of inert gas. Development of island size, density and coverage demonstrates that growth proceeds by island nucleation, island growth and density increase, followed by coalescence, channel formation and secondary nucleation. Addition of material to the islands occurs partly by the ‘step-flow’ mechanism. Grains in the completed films are considered to arise from individual nuclei. Nucleation and coalescence models are used to explain the correlation between increased substrate temperature and increased CdTe grain size in sublimation deposited CdTe films.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2011.05.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2011.05.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Williams, B.L.; Major, J.D.; Bowen, L.; Phillips, L.; Zoppi, G.; Forbes, I.; Durose, K.;ITO/ZnO/CdS/CdTe/Mo solar cells have been grown in the substrate configuration by a combination of close-space sublimation and RF sputtering. A peak efficiency of 8.01% was achieved. A two stage CdCl2 annealing process was developed, with the first stage contributing to CdTe doping and the second being linked to CdTe/CdS interdiffusion by secondary ion mass spectrometry analysis. The inclusion of a ZnO layer between CdS and ITO layers improved performance significantly (from η=6% to η=8%) by increasing the shunt resistance, RSH, from 563 Ω cm2 to 881 Ω cm2. Cross-sectional scanning electron microscopy highlighted the importance of the resistive ZnO layer as numerous pinholes and voids exist in the CdS film. Solar cell performance was also investigated as a function of CdTe thickness, with optimal thicknesses being in the range 3–6 μm. All devices were deemed to be limited principally by a non-Ohmic back contact, the Schottky barrier height being determined to be 0.51 eV by temperature dependent J–V measurements. Modelling of device performance using SCAPS predicted efficiencies as high as 11.3% may be obtainable upon formation of an Ohmic back-contact. SCAPS modelling also demonstrated that a quasi-Ohmic back-contact may be achievable via inclusion of a highly p-doped (~1018 cm−3) buffer layer, between CdTe and Mo, which also has an optimal electron affinity (4.2 eV). The evaluation of device processing and the in-depth characterisation presented here provides a number of insights towards the continued improvement of substrate cell performance.
CORE arrow_drop_down Northumbria Research LinkArticle . 2014License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Durham Research OnlineArticle . 2014 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/25593/1/25593.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2014License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/25593/Data sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2014 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSolar Energy Materials and Solar CellsArticle . 2014License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2014.01.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Northumbria Research LinkArticle . 2014License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Durham Research OnlineArticle . 2014 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/25593/1/25593.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2014License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/25593/Data sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2014 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSolar Energy Materials and Solar CellsArticle . 2014License: CC BY NC NDData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2014.01.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Elsevier BV Funded by:UKRI | SUPERSOLAR Solar Energy H...UKRI| SUPERSOLAR Solar Energy HubMendis, B.G.; Howkins, A.; Stowe, D.; Major, J.D.; Durose, K.;pmid: 27163963
There is renewed interest in cathodoluminescence (CL) in the transmission electron microscope, since it can be combined with low energy loss spectroscopy measurements and can also be used to probe defects, such as grain boundaries and dislocations, at high spatial resolution. Transition radiation (TR), which is emitted when the incident electron crosses the vacuum-specimen interface, is however an important artefact that has received very little attention. The importance of TR is demonstrated on a wedge shaped CdTe specimen of varying thickness. For small specimen thicknesses (<250nm) grain boundaries are not visible in the panchromatic CL image. Grain boundary contrast is produced by electron-hole recombination within the foil, and a large fraction of that light is lost to multiple-beam interference, so that thicker specimens are required before the grain boundary signal is above the TR background. This is undesirable for high spatial resolution. Furthermore, the CL spectrum contains additional features due to TR which are not part of the 'bulk' specimen. Strategies to minimise the effects of TR are also discussed.
Durham Research Onli... arrow_drop_down Durham Research OnlineArticle . 2016 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/18703/1/18703.pdfData sources: Durham Research OnlineBrunel University London: Brunel University Research Archive (BURA)Article . 2016License: CC BY NC NDFull-Text: https://bura.brunel.ac.uk/handle/2438/29910Data sources: Bielefeld Academic Search Engine (BASE)Durham University: Durham Research OnlineArticle . 2016License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/18703/Data sources: Bielefeld Academic Search Engine (BASE)Brunel University Research ArchiveArticle . 2016License: CC BY NC NDData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ultramic.2016.05.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 10 citations 10 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Durham Research Onli... arrow_drop_down Durham Research OnlineArticle . 2016 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/18703/1/18703.pdfData sources: Durham Research OnlineBrunel University London: Brunel University Research Archive (BURA)Article . 2016License: CC BY NC NDFull-Text: https://bura.brunel.ac.uk/handle/2438/29910Data sources: Bielefeld Academic Search Engine (BASE)Durham University: Durham Research OnlineArticle . 2016License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/18703/Data sources: Bielefeld Academic Search Engine (BASE)Brunel University Research ArchiveArticle . 2016License: CC BY NC NDData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ultramic.2016.05.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Funded by:UKRI | SUPERSOLAR Solar Energy H..., UKRI | Capacitance spectroscopy ...UKRI| SUPERSOLAR Solar Energy Hub ,UKRI| Capacitance spectroscopy led process innovations to improve VOC in CdTe thin film solar cellsMajor, J.D.; Phillips, L.J.; Al Turkestani, M.; Bowen, L.; Whittles, T.J.; Dhanak, V.R.; Durose, K.;A new approach to back contacting CdTe solar cells that uses an organic poly(3-hexythiophene-2,5-diyl) (P3HT) back contact layer is reported. The most striking benefit of P3HT was demonstrated to be through a “pinhole blocking” effect, significantly improving performance uniformity. This was demonstrated through comparison of open circuit voltage values for a large sample set (600 cells) and through measurement of a device with a graded absorber layer thickness (0.7–1.9 µm). The conversion efficiency achievable and the electrical barrier height of the contacts to the CdTe were also investigated for P3HT/Au and Au control contacts – both being tested with and without additional Cu. Temperature dependent JV measurement showed the use of P3HT reduced the barrier to (0.29–0.33 eV) from the value achievable with Au (0.39–0.42 eV), but inclusion of Cu into either of the structures gave the lowest barriers (0.21–0.22 eV). For the data sets recorded, P3HT/Au yielded higher peak efficiencies than the Au control contact. However, when Cu was included the peak performance of devices having P3HT/Cu/Au and Cu/Au contacts were comparable at 14.7% respectively but the P3HT/Cu/Au contact displayed a significantly higher average performance through increased uniformity of the device response.
CORE arrow_drop_down Durham Research OnlineArticle . 2017 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/22475/1/22475.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2017License: CC BYFull-Text: http://dro.dur.ac.uk/22475/Data sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.07.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Durham Research OnlineArticle . 2017 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/22475/1/22475.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2017License: CC BYFull-Text: http://dro.dur.ac.uk/22475/Data sources: Bielefeld Academic Search Engine (BASE)Solar Energy Materials and Solar CellsArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2017.07.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2015Publisher:Institute of Electrical and Electronics Engineers (IEEE) Laurie J. Phillips; Robert E. Treharne; Jonathan D. Major; Leon Bowen; Ken Durose;The CdCl 2 treatment is a key step in CdTe solar cell fabrication. However, despite its near ubiquitous use, the process is nonideal as CdCl 2 is both expensive and potentially hazardous to utilize in processing. In this paper, we report on the development of a NH 4 Cl replacement to the CdCl 2 process, which is a low-cost noncarcinogenic alternative. Comparative cells were fabricated and compared via C -V, J-V, scanning electron microscopy, and external quantum efficiency analysis. Further process optimization led to device efficiencies of up to 11.5%, achieved using this new process, with V OC values of up to 832 mV, which is relatively high.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2015 . Peer-reviewedLicense: IEEE Open AccessData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2014.2362296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2015 . Peer-reviewedLicense: IEEE Open AccessData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2014.2362296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Elsevier BV E.T. Dağdeviren; M. Bayhan; Ken Durose; Habibe Bayhan; Jonathan D. Major; Şadan Özden;A simple approach, which can estimate the barrier height of non-Ohmic back contacts for CdS/CdTe solar cell by using its temperature dependent forward biased current-voltage data, is explained. The method involves modelling the forward J–V characteristics using a double exponential expression for the main junction and by a reverse biased Schottky barrier for the back contact. Cells processed with both CdCl2 and MgCl2 are compared, with the current transport phenomena in both kinds of cells also being analysed. Performance loss due to limitation of the forward bias hole current, and its dependence on the post-deposition chloride processing, is discussed. The forward current transport is mainly dominated by recombination at CdS/CdTe interfacial region with pronounced tunnelling effects. Classical Schottky-type conduction, as described by the Richardson-Schottky formula, is a good fit to the reverse biased current-voltage behaviour of an Au/CdTe junction above ∼240 K. Below this temperature, the current limiting effect due to the increasing contribution from interfacial defect states can be satisfactorily explained by Bardeen’s model for a modified Schottky type barrier at back contact interface.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2016.10.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2016.10.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 United KingdomPublisher:IOP Publishing Funded by:UKRI | Capacitance spectroscopy ..., UKRI | DTP 2016-2017 University ..., UKRI | X-RAY DIFFRACTION CAPABIL... +2 projectsUKRI| Capacitance spectroscopy led process innovations to improve VOC in CdTe thin film solar cells ,UKRI| DTP 2016-2017 University of Liverpool ,UKRI| X-RAY DIFFRACTION CAPABILITY FOR NANOSCALE AND THIN FILM STRUCTURE ,UKRI| Donor Design for Maximum Mobility TCOs ,UKRI| Overcoming the grain size limit to Voc in sustainable photovoltaicsHuw Shiel; Oliver S Hutter; Laurie J Phillips; Mohammed Al Turkestani; Vin R Dhanak; Tim D Veal; Ken Durose; Jonathan D Major;Abstract The effect of (NH4)2S and CS2 chemical etches on surface chemistry and contacting in Sb2Se3 solar cells was investigated via a combination of x-ray photoemission spectroscopy (XPS) and photovoltaic device analysis. Thin film solar cells were produced in superstrate configuration with an absorber layer deposited by close space sublimation. Devices of up to 5.7% efficiency were compared via current–voltage measurements (J–V) and temperature-dependent current–voltage (J–V–T) analysis. XPS analysis demonstrated that both etching processes were successful in removing Sb2O3 contamination, while there was no decrease in free elemental selenium content by either etch, in contrast to prior work. Using J–V–T analysis the removal of Sb2O3 at the back surface in etched samples was found to improve contacting by reducing the potential barrier at the back contact from 0.43 eV to 0.26 eV and lowering the series resistance. However, J–V data showed that due to the decrease in shunt resistance and short-circuit current as a result of etching, the devices show a lower efficiency following both etches, despite a lowering of the series resistance. Further optimisation of the etching process yielded an improved efficiency of 6.6%. This work elucidates the role of surface treatments in Sb2Se3 devices and resolves inconsistencies in previously published works.
CORE arrow_drop_down COREArticleFull-Text: http://livrepository.liverpool.ac.uk/3052252/1/author_accepted_manuscript_Sb2Se3_JPhysEnergy.pdfData sources: COREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7655/ab3c98&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down COREArticleFull-Text: http://livrepository.liverpool.ac.uk/3052252/1/author_accepted_manuscript_Sb2Se3_JPhysEnergy.pdfData sources: COREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/2515-7655/ab3c98&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:UKRI | Improved Understanding, D..., UKRI | Donor Design for Maximum ..., UKRI | Donor Design for Maximum ... +1 projectsUKRI| Improved Understanding, Development and Optimisation of Perovskite-based Solar Cells ,UKRI| Donor Design for Maximum Mobility TCOs ,UKRI| Donor Design for Maximum Mobility TCOs ,UKRI| SuperSolar Hub ExtensionLaurie J. Phillips; Christopher N. Savory; Oliver S. Hutter; Peter J. Yates; Huw Shiel; Silvia Mariotti; Leon Bowen; Max Birkett; Ken Durose; David O. Scanlon; Jonathan D. Major;Antimony selenide (Sb 2 Se 3 ) is an emerging chalcogenide photovoltaic absorber material that has been the subject of increasing interest in recent years, demonstrating rapid efficiency increases with a material that is simple, abundant, and stable. This paper examines the material from both a theoretical and practical standpoint. The theoretical viability of Sb 2 Se 3 as a solar photovoltaic material is assessed and the maximum spectroscopically limited performance is estimated, with a 200 nm film expected to be capable of achieving a photon conversion efficiency of up to 28.2%. By adapting an existing CdTe close-spaced sublimation (CSS) process, Sb 2 Se 3 material with large rhubarb-like grains is produced and solar cells are fabricated. We show that the established CdS window layer is unsuitable for use with CSS, due to intermixing during higher temperature processing. Substituting CdS with the more stable TiO 2 , a power conversion efficiency of 5.5% and an open-circuit voltage V oc of 0.45 V are achieved; the voltage exceeding current champion devices. This paper demonstrates the potential of CSS for scalable Sb 2 Se 3 deposition and highlights the promise of Sb 2 Se 3 as an abundant and low-toxicity material for solar applications.
CORE arrow_drop_down Durham Research OnlineArticle . 2019 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/27593/1/27593.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2019License: CC BYFull-Text: http://dro.dur.ac.uk/27593/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2018.2885836&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Durham Research OnlineArticle . 2019 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/27593/1/27593.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2019License: CC BYFull-Text: http://dro.dur.ac.uk/27593/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2018.2885836&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:AIP Publishing Funded by:DFG, UKRI | Overcoming the grain size..., UKRI | Bandgap engineering for o...DFG ,UKRI| Overcoming the grain size limit to Voc in sustainable photovoltaics ,UKRI| Bandgap engineering for optimal antimony chalcogenide solar cellsF. Herklotz; E. V. Lavrov; T. D. C. Hobson; J. D. Major; K. Durose;doi: 10.1063/5.0222193
The optical and electrical properties of n-type chlorine-doped Sb2Se3 single crystals, with free carrier concentrations above 1016 cm−3 at room temperature, have been studied. The experiments reveal a strongly polarized temperature-dependent long-wavelength infrared absorption attributable to conduction band electrons within the material. For wavelengths between 1.6 and 6 μm, the room temperature absorption varies as λ2.5±0.3, suggesting that longitudinal optical mode scattering is the dominant electron scattering mechanism. The results are most consistent with the hypothesis that electron transport in Sb2Se3 is band-like and not intrinsically limited by small-polaron self-trapping.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0222193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0222193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:IOP Publishing Authors: Williams, B.L.; Halliday, D.P.; Mendis, B.G.; Durose, K.;pmid: 23478397
Defects in Au-catalysed CdTe nanowires vapour-liquid-solid-grown on polycrystalline underlayers have been critically evaluated. Their low-temperature photoluminescence spectra were dominated by excitonic emission with rarely observed above-gap emission also being recorded. While acceptor bound exciton lines due to monovalent metallic impurities (Ag, Cu or Na) were seen, only deeper, donor-acceptor-pair emission could be attributed to the Au contamination that is expected from the catalyst. Annealing under nitrogen acted to enhance the single crystal-like PL emission, whilst oxidizing and reducing anneals of the type that is used in solar cell device processing caused it to degrade. The incidence of stacking faults, polytypes and twins was related only to the growth axes of the wires ( 50%, 30% and 20%), and was not influenced by annealing. The potential electrical activity of the point and extended defects, and the suitability of these nanowire materials (including processing steps) for solar cell applications, is discussed. Overall they have a quality that is superior to that of thin polycrystalline films, although questions remain about recombination due to Au.
Nanotechnology arrow_drop_down Durham University: Durham Research OnlineArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/0957-4484/24/13/135703&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 15 citations 15 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Nanotechnology arrow_drop_down Durham University: Durham Research OnlineArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/0957-4484/24/13/135703&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu