- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Paweł Ocłon; Monika Rerak; Ravipudi Venkata Rao; Piotr Cisek; Andrea Vallati; Dariusz Jakubek; Bartosz Rozegnał;handle: 11573/1451232
Abstract This paper presents a modified Jaya algorithm (MJaya) for optimizing the material costs and electric-thermal performance of an Underground Power Cable System (UPCS). Three power cables arranged in flat formation are considered. Three XLPE high voltage cables are situated in the thermal backfill layer for ensuring the optimal thermal performance of the cable system. The cable backfill dimensions, cable backfill material, and cable conductor area are selected as design variables in the optimization problem. In the study, the Finite Element Method model is validated experimentally. The Particle Swarm Optimization (PSO), Jaya, and MJaya algorithms are used for multiobjective optimization in order to design a cable system in such a way to minimize the cable backfill costs and maximize the allowable electric current flowing through the cables. For the case study, calculations performed using the Jaya algorithm indicated 1.7 mln Euro cable system costs while cable ampacity is equal to I = 1460 A. The calculations are performed for the objective function values equal to w1 = 0.5 and w2 = 0.5. Such an optimization parameters set allow obtaining low costs of UPCS alongside with reasonable cable line ampacity. What is more, the results of the optimization obtained by Jaya, MJaya, and PSO algorithms are compared. Therefore, Coverage and Hypervolume metrics are incorporated. It is concluded that both the Jaya and MJaya algorithms performed better when compared to the PSO algorithm.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Paweł Ocłon; Monika Rerak; Ravipudi Venkata Rao; Piotr Cisek; Andrea Vallati; Dariusz Jakubek; Bartosz Rozegnał;handle: 11573/1451232
Abstract This paper presents a modified Jaya algorithm (MJaya) for optimizing the material costs and electric-thermal performance of an Underground Power Cable System (UPCS). Three power cables arranged in flat formation are considered. Three XLPE high voltage cables are situated in the thermal backfill layer for ensuring the optimal thermal performance of the cable system. The cable backfill dimensions, cable backfill material, and cable conductor area are selected as design variables in the optimization problem. In the study, the Finite Element Method model is validated experimentally. The Particle Swarm Optimization (PSO), Jaya, and MJaya algorithms are used for multiobjective optimization in order to design a cable system in such a way to minimize the cable backfill costs and maximize the allowable electric current flowing through the cables. For the case study, calculations performed using the Jaya algorithm indicated 1.7 mln Euro cable system costs while cable ampacity is equal to I = 1460 A. The calculations are performed for the objective function values equal to w1 = 0.5 and w2 = 0.5. Such an optimization parameters set allow obtaining low costs of UPCS alongside with reasonable cable line ampacity. What is more, the results of the optimization obtained by Jaya, MJaya, and PSO algorithms are compared. Therefore, Coverage and Hypervolume metrics are incorporated. It is concluded that both the Jaya and MJaya algorithms performed better when compared to the PSO algorithm.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Dariusz Jakubek; Paweł Ocłoń; Marzena Nowak-Ocłoń; Maciej Sułowicz; Petar Sabev Varbanov; Jiří Jaromír Klemeš;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.126460&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.126460&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Dariusz Jakubek; Paweł Ocłoń; Marzena Nowak-Ocłoń; Maciej Sułowicz; Petar Sabev Varbanov; Jiří Jaromír Klemeš;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.126460&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.126460&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Paweł Ocłon; Monika Rerak; Ravipudi Venkata Rao; Piotr Cisek; Andrea Vallati; Dariusz Jakubek; Bartosz Rozegnał;handle: 11573/1451232
Abstract This paper presents a modified Jaya algorithm (MJaya) for optimizing the material costs and electric-thermal performance of an Underground Power Cable System (UPCS). Three power cables arranged in flat formation are considered. Three XLPE high voltage cables are situated in the thermal backfill layer for ensuring the optimal thermal performance of the cable system. The cable backfill dimensions, cable backfill material, and cable conductor area are selected as design variables in the optimization problem. In the study, the Finite Element Method model is validated experimentally. The Particle Swarm Optimization (PSO), Jaya, and MJaya algorithms are used for multiobjective optimization in order to design a cable system in such a way to minimize the cable backfill costs and maximize the allowable electric current flowing through the cables. For the case study, calculations performed using the Jaya algorithm indicated 1.7 mln Euro cable system costs while cable ampacity is equal to I = 1460 A. The calculations are performed for the objective function values equal to w1 = 0.5 and w2 = 0.5. Such an optimization parameters set allow obtaining low costs of UPCS alongside with reasonable cable line ampacity. What is more, the results of the optimization obtained by Jaya, MJaya, and PSO algorithms are compared. Therefore, Coverage and Hypervolume metrics are incorporated. It is concluded that both the Jaya and MJaya algorithms performed better when compared to the PSO algorithm.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Paweł Ocłon; Monika Rerak; Ravipudi Venkata Rao; Piotr Cisek; Andrea Vallati; Dariusz Jakubek; Bartosz Rozegnał;handle: 11573/1451232
Abstract This paper presents a modified Jaya algorithm (MJaya) for optimizing the material costs and electric-thermal performance of an Underground Power Cable System (UPCS). Three power cables arranged in flat formation are considered. Three XLPE high voltage cables are situated in the thermal backfill layer for ensuring the optimal thermal performance of the cable system. The cable backfill dimensions, cable backfill material, and cable conductor area are selected as design variables in the optimization problem. In the study, the Finite Element Method model is validated experimentally. The Particle Swarm Optimization (PSO), Jaya, and MJaya algorithms are used for multiobjective optimization in order to design a cable system in such a way to minimize the cable backfill costs and maximize the allowable electric current flowing through the cables. For the case study, calculations performed using the Jaya algorithm indicated 1.7 mln Euro cable system costs while cable ampacity is equal to I = 1460 A. The calculations are performed for the objective function values equal to w1 = 0.5 and w2 = 0.5. Such an optimization parameters set allow obtaining low costs of UPCS alongside with reasonable cable line ampacity. What is more, the results of the optimization obtained by Jaya, MJaya, and PSO algorithms are compared. Therefore, Coverage and Hypervolume metrics are incorporated. It is concluded that both the Jaya and MJaya algorithms performed better when compared to the PSO algorithm.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.119089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Dariusz Jakubek; Paweł Ocłoń; Marzena Nowak-Ocłoń; Maciej Sułowicz; Petar Sabev Varbanov; Jiří Jaromír Klemeš;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.126460&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.126460&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Dariusz Jakubek; Paweł Ocłoń; Marzena Nowak-Ocłoń; Maciej Sułowicz; Petar Sabev Varbanov; Jiří Jaromír Klemeš;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.126460&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.126460&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu