- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019 Czech Republic, HungaryPublisher:Elsevier BV Authors: Urbán, András; Malý, Milan; Józsa, Viktor; Jedelský, Jan;handle: 11012/195643
Abstract Airblast atomization is a suitable model platform to understand atomization physics since the atomizer geometry has an insignificant influence on the spray formation. Besides its theoretical relevance, this configuration is used in several practical applications ranging from healthcare to combustion. Presently, a plain-jet airblast atomizer has been investigated experimentally under atmospheric conditions at various atomizing pressures and liquid preheating temperatures. To cover a wide range of liquids by viscosity and surface tension, water, diesel oil, light heating oil, and crude rapeseed oil were atomized to evaluate the droplet size-velocity correlations when the spray is fully developed. Increasing the temperature of high-viscosity liquids prior to atomization improves the spray characteristics until their kinematic viscosity decreases to a certain value that is newly introduced as a limiting viscosity. Further preheating has a marginal effect on droplet size-velocity plots, and the spray becomes more homogeneous. Several SMD-estimating formulae were analyzed and improved to consider the effect of liquid preheating and to extend their range of validity. When the kinematic viscosity exceeded the limiting viscosity, the part containing the Weber number was corrected linearly by the preheating temperature. The coefficient of the Ohnesorge number was corrected by the inverse of the kinematic viscosity, without considering the limiting viscosity. The above results help to correct the SMD of atmospheric measurements to elevated liquid temperatures and to contribute to advanced atomization models for numerical software.
Experimental Thermal... arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2018.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Experimental Thermal... arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2018.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Czech Republic, HungaryPublisher:Elsevier BV Authors: Urbán, András; Malý, Milan; Józsa, Viktor; Jedelský, Jan;handle: 11012/195643
Abstract Airblast atomization is a suitable model platform to understand atomization physics since the atomizer geometry has an insignificant influence on the spray formation. Besides its theoretical relevance, this configuration is used in several practical applications ranging from healthcare to combustion. Presently, a plain-jet airblast atomizer has been investigated experimentally under atmospheric conditions at various atomizing pressures and liquid preheating temperatures. To cover a wide range of liquids by viscosity and surface tension, water, diesel oil, light heating oil, and crude rapeseed oil were atomized to evaluate the droplet size-velocity correlations when the spray is fully developed. Increasing the temperature of high-viscosity liquids prior to atomization improves the spray characteristics until their kinematic viscosity decreases to a certain value that is newly introduced as a limiting viscosity. Further preheating has a marginal effect on droplet size-velocity plots, and the spray becomes more homogeneous. Several SMD-estimating formulae were analyzed and improved to consider the effect of liquid preheating and to extend their range of validity. When the kinematic viscosity exceeded the limiting viscosity, the part containing the Weber number was corrected linearly by the preheating temperature. The coefficient of the Ohnesorge number was corrected by the inverse of the kinematic viscosity, without considering the limiting viscosity. The above results help to correct the SMD of atmospheric measurements to elevated liquid temperatures and to contribute to advanced atomization models for numerical software.
Experimental Thermal... arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2018.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Experimental Thermal... arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2018.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:AIP Publishing Erika Rácz; Milan Malý; Ondřej Cejpek; Jan Jedelský; Viktor Józsa;doi: 10.1063/5.0203085
Rotary atomization is used in a wide variety of fields, exploiting the external control option of the spray while no high-pressure fluid is needed. Most papers on rotary atomization deal with liquid jet breakup, while external spray characteristics are rarely evaluated; this is performed currently. The water spray was measured by a two-component phase Doppler anemometer. The optical setup requires a special measurement chamber to avoid spray deposition on the optical components. Therefore, the first goal was to find a proper filter that enables the removal of biased droplets by secondary flows. Since most droplets have a similar radial-to-tangential velocity ratio at each measurement point, i.e., scattering around a line, this was the first component of the best filter. The second component was the need for a positive radial velocity component. This filter efficiently removed droplets originating from alternative processes, increasing the R2 of the line fit. The physical soundness of this filter was checked by evaluating the effect of filtering on the angle of the velocity components of each droplet at a given measurement point. The proposed filter efficiently detected recirculation, a secondary effect of the measurement setup with less regular dataset shapes. Finally, the slope and intercept values of the fitted lines were evaluated and presented. The mean of the former followed the same trend irrespective of the rotational speed and the mass flow rate; it was principally dependent on the radial distance from the atomizer. The intercept showed a regular but less universal behavior.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0203085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0203085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:AIP Publishing Erika Rácz; Milan Malý; Ondřej Cejpek; Jan Jedelský; Viktor Józsa;doi: 10.1063/5.0203085
Rotary atomization is used in a wide variety of fields, exploiting the external control option of the spray while no high-pressure fluid is needed. Most papers on rotary atomization deal with liquid jet breakup, while external spray characteristics are rarely evaluated; this is performed currently. The water spray was measured by a two-component phase Doppler anemometer. The optical setup requires a special measurement chamber to avoid spray deposition on the optical components. Therefore, the first goal was to find a proper filter that enables the removal of biased droplets by secondary flows. Since most droplets have a similar radial-to-tangential velocity ratio at each measurement point, i.e., scattering around a line, this was the first component of the best filter. The second component was the need for a positive radial velocity component. This filter efficiently removed droplets originating from alternative processes, increasing the R2 of the line fit. The physical soundness of this filter was checked by evaluating the effect of filtering on the angle of the velocity components of each droplet at a given measurement point. The proposed filter efficiently detected recirculation, a secondary effect of the measurement setup with less regular dataset shapes. Finally, the slope and intercept values of the fitted lines were evaluated and presented. The mean of the former followed the same trend irrespective of the rotational speed and the mass flow rate; it was principally dependent on the radial distance from the atomizer. The intercept showed a regular but less universal behavior.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0203085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0203085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United Kingdom, Slovenia, Slovenia, Hungary, HungaryPublisher:Elsevier BV Steven Lim; Cheng Tung Chong; Jo-Han Ng; Tine Seljak; Veeramuthu Ashokkumar; Hwai Chyuan Ong; Bo Tian; Bo Tian; Brandon Han Hoe Goh; Viktor Józsa; Yuqi Ge;Abstract The increase in human consumption of plant and animal oils has led to the rise in waste cooking oil (WCO) production. Instead of disposing the used cooking oil as waste, recent technological advance has enabled the use of WCO as a sustainable feedstock for biofuels production, thereby maximising the value of biowastes via energy recovery while concomitantly solving the disposal issue. The current regulatory frameworks for WCO collection and recycling practices imposed by major WCO producing countries are reviewed, followed by the overview of the progress in biodiesel conversion techniques, along with novel methods to improve the feasibility for upscaling. The factors which influence the efficiency of the reactions such as properties of feedstock, heterogenous catalytic processes, cost effectiveness and selectivity of reaction product are discussed. Ultrasonic-assisted transesterification is found to be the least energy intensive method for producing biodiesel. The production of bio-jet fuels from WCO, while scarce, provide diversity in waste utilisation if problems such as carbon chain length, requirements of bio-jet fuel properties, extreme reaction conditions and effectiveness of selected catalyst-support system can be solved. Technoeconomic studies revealed that WCO biofuels is financially viable with benefit of mitigating carbon emissions, provided that the price gap between the produced fuel and commercial fuels, sufficient supply of WCO and variation in the oil properties are addressed. This review shows that WCO is a biowaste with high potential for advanced transportation fuel production for ground and aviation industries. The advancement in fuel production technology and relevant policies would accelerate the application of sustainable WCO biofuels.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefResearch at Derby (University of Derby)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.113296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu201 citations 201 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefResearch at Derby (University of Derby)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.113296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United Kingdom, Slovenia, Slovenia, Hungary, HungaryPublisher:Elsevier BV Steven Lim; Cheng Tung Chong; Jo-Han Ng; Tine Seljak; Veeramuthu Ashokkumar; Hwai Chyuan Ong; Bo Tian; Bo Tian; Brandon Han Hoe Goh; Viktor Józsa; Yuqi Ge;Abstract The increase in human consumption of plant and animal oils has led to the rise in waste cooking oil (WCO) production. Instead of disposing the used cooking oil as waste, recent technological advance has enabled the use of WCO as a sustainable feedstock for biofuels production, thereby maximising the value of biowastes via energy recovery while concomitantly solving the disposal issue. The current regulatory frameworks for WCO collection and recycling practices imposed by major WCO producing countries are reviewed, followed by the overview of the progress in biodiesel conversion techniques, along with novel methods to improve the feasibility for upscaling. The factors which influence the efficiency of the reactions such as properties of feedstock, heterogenous catalytic processes, cost effectiveness and selectivity of reaction product are discussed. Ultrasonic-assisted transesterification is found to be the least energy intensive method for producing biodiesel. The production of bio-jet fuels from WCO, while scarce, provide diversity in waste utilisation if problems such as carbon chain length, requirements of bio-jet fuel properties, extreme reaction conditions and effectiveness of selected catalyst-support system can be solved. Technoeconomic studies revealed that WCO biofuels is financially viable with benefit of mitigating carbon emissions, provided that the price gap between the produced fuel and commercial fuels, sufficient supply of WCO and variation in the oil properties are addressed. This review shows that WCO is a biowaste with high potential for advanced transportation fuel production for ground and aviation industries. The advancement in fuel production technology and relevant policies would accelerate the application of sustainable WCO biofuels.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefResearch at Derby (University of Derby)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.113296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu201 citations 201 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefResearch at Derby (University of Derby)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.113296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Dávid Csemány; Osama DarAli; Syed Ali Hamza Rizvi; Viktor Józsa;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.122909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.122909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Dávid Csemány; Osama DarAli; Syed Ali Hamza Rizvi; Viktor Józsa;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.122909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.122909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Gyöngyvér Hidegh; Viktor Józsa;Abstract Real-time combustion and emission control is an ongoing challenge in combustion technology and science. Hence, the scope of the present paper is the investigation of the relationship between the chemiluminescent signal and the CO and NOX emissions. Flame emission spectrometry measurements were carried out to determine the characteristic free radicals of the spectra. For the experiments, a lean premixed liquid fuel burner equipped with an airblast atomizer was used in a test rig at 15 kW combustion power. The following measurement parameters were modified: combustion air flow rate, atomizing pressure, and the vertical alignment of the spectrometer. Furthermore, various half-cone angle quarls were mounted on the burner lip to extend the lean flame blowout stability limit. The CO and NOX emissions and the chemiluminescence intensity ratios of the strongest peaks of OH*, CH*, C2*, HCO*, and CH2O* were evaluated separately at first. Then a correlation analysis of the intensity ratios and the pollutant emission components was carried out. A notable linear correlation was found between both the HCO*/C2* and OH*/C2* intensity ratios and the CO emission in certain parameter combinations.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/j.joei...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joei.2020.01.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/j.joei...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joei.2020.01.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Gyöngyvér Hidegh; Viktor Józsa;Abstract Real-time combustion and emission control is an ongoing challenge in combustion technology and science. Hence, the scope of the present paper is the investigation of the relationship between the chemiluminescent signal and the CO and NOX emissions. Flame emission spectrometry measurements were carried out to determine the characteristic free radicals of the spectra. For the experiments, a lean premixed liquid fuel burner equipped with an airblast atomizer was used in a test rig at 15 kW combustion power. The following measurement parameters were modified: combustion air flow rate, atomizing pressure, and the vertical alignment of the spectrometer. Furthermore, various half-cone angle quarls were mounted on the burner lip to extend the lean flame blowout stability limit. The CO and NOX emissions and the chemiluminescence intensity ratios of the strongest peaks of OH*, CH*, C2*, HCO*, and CH2O* were evaluated separately at first. Then a correlation analysis of the intensity ratios and the pollutant emission components was carried out. A notable linear correlation was found between both the HCO*/C2* and OH*/C2* intensity ratios and the CO emission in certain parameter combinations.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/j.joei...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joei.2020.01.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/j.joei...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joei.2020.01.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2020Publisher:Elsevier BV Authors: Viktor Józsa;Mixture Temperature-Controlled (MTC) combustion is a novel concept, offering 50% reduction in NOx emission compared to V-shaped flames without a known compromise. The flame was stable up to an equivalence ratio of 0.57, which was followed by blowout as the lean flammability limit was approached. Lean combustion also means reduced flame propagation speed, being another key feature to keep the flame lifted and facilitating homogeneous mixture formation. It was observed that distributed combustion was easier to achieve under leaner conditions. Unlike flameless combustion or exhaust gas recirculation techniques, such as MILD combustion, the oxidizer can be ambient air, offering robust realization in practical applications. The distributed flame is characterized by low flame luminosity and noise. Its acoustic spectrum contains geometry-related components principally. Hence, it is hypothesized that this concept also has a lower tendency to thermoacoustic instabilities than V-shaped flames. 24 pages, double line, 7 figures, 4 tables, original research paper, prepared for submission to an Elsevier journal
Fuel arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.120200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Fuel arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.120200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2020Publisher:Elsevier BV Authors: Viktor Józsa;Mixture Temperature-Controlled (MTC) combustion is a novel concept, offering 50% reduction in NOx emission compared to V-shaped flames without a known compromise. The flame was stable up to an equivalence ratio of 0.57, which was followed by blowout as the lean flammability limit was approached. Lean combustion also means reduced flame propagation speed, being another key feature to keep the flame lifted and facilitating homogeneous mixture formation. It was observed that distributed combustion was easier to achieve under leaner conditions. Unlike flameless combustion or exhaust gas recirculation techniques, such as MILD combustion, the oxidizer can be ambient air, offering robust realization in practical applications. The distributed flame is characterized by low flame luminosity and noise. Its acoustic spectrum contains geometry-related components principally. Hence, it is hypothesized that this concept also has a lower tendency to thermoacoustic instabilities than V-shaped flames. 24 pages, double line, 7 figures, 4 tables, original research paper, prepared for submission to an Elsevier journal
Fuel arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.120200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Fuel arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.120200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Gyöngyvér Hidegh; Dávid Csemány; János Vámos; László Kavas; Viktor Józsa;Abstract Mixture Temperature-Controlled combustion is a novel concept featuring ultra-low pollutant emission. Since the resulting distributed combustion is highly homogeneous, NOX emission can be kept below 10 ppm. The available renewable fuels worldwide vary a lot in their characteristics. Three renewable hydrocarbon fuels: coconut oil, palm oil, and waste cooking oil-rapeseed oil methyl esters were tested along with three conventional fuels: standard jet fuel (JP-8), standard diesel oil, and natural gas. The ultimate goal of the present study was the comparison of the flame structures, chemiluminescent, and pollutant emissions of various fuels, exploiting distributed combustion offered by the novel burner concept. As mixture preparation is highly sensitive to fuel vaporization, distillation curves of the five investigated liquid fuels were measured and evaluated. Density, surface tension, and viscosity were also measured to compare the estimated atomization characteristics. The tests were uniformly performed at 13.3 kW thermal power and an equivalence ratio of 0.8, varying atomizing pressure and air preheating temperature. It was found that jet fuel, diesel fuel, and coconut biodiesel bear the highest potential for distributed combustion in gas turbines, while incorrect burner setup may lead to unacceptably high emissions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.121219&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.121219&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Gyöngyvér Hidegh; Dávid Csemány; János Vámos; László Kavas; Viktor Józsa;Abstract Mixture Temperature-Controlled combustion is a novel concept featuring ultra-low pollutant emission. Since the resulting distributed combustion is highly homogeneous, NOX emission can be kept below 10 ppm. The available renewable fuels worldwide vary a lot in their characteristics. Three renewable hydrocarbon fuels: coconut oil, palm oil, and waste cooking oil-rapeseed oil methyl esters were tested along with three conventional fuels: standard jet fuel (JP-8), standard diesel oil, and natural gas. The ultimate goal of the present study was the comparison of the flame structures, chemiluminescent, and pollutant emissions of various fuels, exploiting distributed combustion offered by the novel burner concept. As mixture preparation is highly sensitive to fuel vaporization, distillation curves of the five investigated liquid fuels were measured and evaluated. Density, surface tension, and viscosity were also measured to compare the estimated atomization characteristics. The tests were uniformly performed at 13.3 kW thermal power and an equivalence ratio of 0.8, varying atomizing pressure and air preheating temperature. It was found that jet fuel, diesel fuel, and coconut biodiesel bear the highest potential for distributed combustion in gas turbines, while incorrect burner setup may lead to unacceptably high emissions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.121219&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.121219&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Czech RepublicPublisher:Elsevier BV Réka Anna Kardos; Erika Rácz; Milan Malý; Jan Jedelský; Viktor Józsa;Understanding spray evolution in a reacting environment is critical to designing advanced, clean combustion systems. The processes in the upstream region determine flame shape, stability, ignition characteristics, pollutant emission, and combustion efficiency. The developed spray is never achieved in combustion since the early regions feature primary and secondary atomization, while droplets evaporate as they approach the flame. Consequently, there is no thermodynamic equilibrium before the flame front. The principal goal of this paper is to provide detailed information to model developers on various sprays measured by a Phase Doppler Anemometer; the processed measurement data is available as supplementary material, while the raw data will be provided upon request. Four different fuels were tested: diesel fuel, aviation kerosene type JP-8, biodiesel, and a 50 % biodiesel-diesel blend by volume. The plain -jet airblast atomizer was tested at four atomization gauge pressures (0.3, 0.45, 0.6, 0.75 barg). Therefore, sixteen different sprays were measured along one spray diameter at each of four downstream distances of 15, 25, 35, and 45 mm, measured from the nozzle tip. The paper details the droplet size distribution, droplet axial velocity, fluctuations, and correlation between size and velocity to facilitate a comprehensive understanding of liquid fuel sprays. This latter measure helps identify the overshooting phenomenon, i.e., localizing the regions where the large droplets move faster than the gas phase.
International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2024.125548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2024.125548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Czech RepublicPublisher:Elsevier BV Réka Anna Kardos; Erika Rácz; Milan Malý; Jan Jedelský; Viktor Józsa;Understanding spray evolution in a reacting environment is critical to designing advanced, clean combustion systems. The processes in the upstream region determine flame shape, stability, ignition characteristics, pollutant emission, and combustion efficiency. The developed spray is never achieved in combustion since the early regions feature primary and secondary atomization, while droplets evaporate as they approach the flame. Consequently, there is no thermodynamic equilibrium before the flame front. The principal goal of this paper is to provide detailed information to model developers on various sprays measured by a Phase Doppler Anemometer; the processed measurement data is available as supplementary material, while the raw data will be provided upon request. Four different fuels were tested: diesel fuel, aviation kerosene type JP-8, biodiesel, and a 50 % biodiesel-diesel blend by volume. The plain -jet airblast atomizer was tested at four atomization gauge pressures (0.3, 0.45, 0.6, 0.75 barg). Therefore, sixteen different sprays were measured along one spray diameter at each of four downstream distances of 15, 25, 35, and 45 mm, measured from the nozzle tip. The paper details the droplet size distribution, droplet axial velocity, fluctuations, and correlation between size and velocity to facilitate a comprehensive understanding of liquid fuel sprays. This latter measure helps identify the overshooting phenomenon, i.e., localizing the regions where the large droplets move faster than the gas phase.
International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2024.125548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2024.125548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 HungaryPublisher:Elsevier BV Viktor Józsa; Gyöngyvér Hidegh; Attila Kun-Balog; Jo-Han Ng; Cheng Tung Chong;Abstract Liquid fuels are likely to remain the main energy source in long-range transportation and aviation for several decades. To reduce our dependence on fossil fuels, liquid biofuels can be blended to fossil fuels – or used purely. In this paper, coconut methyl ester, standard diesel fuel (EN590:2017), and their blends were investigated in 25 V/V% steps. A novel turbulent combustion chamber was developed to facilitate combustion in a large volume that leads to ultra-low emissions. The combustion power of the swirl burner was 13.3 kW, and the air-to-fuel equivalence ratio was 1.25. Two parameters, combustion air preheating temperature and atomizing air pressure were adjusted in the range of 150–350 °C and 0.3–0.9 bar, respectively. Both straight and lifted flames were observed. The closed, atmospheric combustion chamber resulted in CO emission below 10 ppm in the majority of the cases. NO emission varied between 60 and 183 ppm at straight flame cases and decreased below 20 ppm when the flame was lifted since the combustion occurred in a large volume. This operation mode fulfills the 2015/2193/EU directive for gas combustion by 25%, which is twice as strict as liquid fuel combustion regulations. The 90% NO emission reduction was also concluded when compared to a lean premixed prevaporized burner under similar conditions. This favorable operation mode was named as Mixture Temperature-Controlled (MTC) Combustion. The chemiluminescent emission of lifted flames was also low, however, the OH* emission of straight flames was clearly observable and followed the trends of NO emission. The MTC mode may lead to significantly decreased pollutant emission of steady-operating devices like boilers, furnaces, and both aviation and industrial gas turbines, meaning an outstanding contribution to more environmentally friendly technologies.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 HungaryPublisher:Elsevier BV Viktor Józsa; Gyöngyvér Hidegh; Attila Kun-Balog; Jo-Han Ng; Cheng Tung Chong;Abstract Liquid fuels are likely to remain the main energy source in long-range transportation and aviation for several decades. To reduce our dependence on fossil fuels, liquid biofuels can be blended to fossil fuels – or used purely. In this paper, coconut methyl ester, standard diesel fuel (EN590:2017), and their blends were investigated in 25 V/V% steps. A novel turbulent combustion chamber was developed to facilitate combustion in a large volume that leads to ultra-low emissions. The combustion power of the swirl burner was 13.3 kW, and the air-to-fuel equivalence ratio was 1.25. Two parameters, combustion air preheating temperature and atomizing air pressure were adjusted in the range of 150–350 °C and 0.3–0.9 bar, respectively. Both straight and lifted flames were observed. The closed, atmospheric combustion chamber resulted in CO emission below 10 ppm in the majority of the cases. NO emission varied between 60 and 183 ppm at straight flame cases and decreased below 20 ppm when the flame was lifted since the combustion occurred in a large volume. This operation mode fulfills the 2015/2193/EU directive for gas combustion by 25%, which is twice as strict as liquid fuel combustion regulations. The 90% NO emission reduction was also concluded when compared to a lean premixed prevaporized burner under similar conditions. This favorable operation mode was named as Mixture Temperature-Controlled (MTC) Combustion. The chemiluminescent emission of lifted flames was also low, however, the OH* emission of straight flames was clearly observable and followed the trends of NO emission. The MTC mode may lead to significantly decreased pollutant emission of steady-operating devices like boilers, furnaces, and both aviation and industrial gas turbines, meaning an outstanding contribution to more environmentally friendly technologies.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Attila Kun-Balog; Viktor Józsa; Krisztián Sztankó;Abstract Hydrous ethanol is produced to the largest extent among all renewable liquid fuels. The utilization of aqueous ethanol, however, seems to be a more economical solution due to considerable savings on the production costs while the combustion performance is affected slightly. In the present paper, the energy balance of aqueous bioethanol distillation was analyzed using a 12% ethanol-water solution by volume as feed. The results showed that the distillation energy-to-lower heating value ratio of 92–52% solutions are only 0.394 of that of hydrous ethanol. Combustion tests were performed at 15 kW combustion power and an air-to-fuel equivalence ratio of 1.17, utilizing 96–50% ethanol-water solutions by volume injected in both gaseous and liquid form. From a pollutant emissions perspective, all the tested alcohols are in line with the present Hungarian standard. Considering the upcoming regulations of 2018, 90–50% liquid alcohols and 80–50% evaporated alcohols already fulfill the stricter limitations.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.03.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.03.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Attila Kun-Balog; Viktor Józsa; Krisztián Sztankó;Abstract Hydrous ethanol is produced to the largest extent among all renewable liquid fuels. The utilization of aqueous ethanol, however, seems to be a more economical solution due to considerable savings on the production costs while the combustion performance is affected slightly. In the present paper, the energy balance of aqueous bioethanol distillation was analyzed using a 12% ethanol-water solution by volume as feed. The results showed that the distillation energy-to-lower heating value ratio of 92–52% solutions are only 0.394 of that of hydrous ethanol. Combustion tests were performed at 15 kW combustion power and an air-to-fuel equivalence ratio of 1.17, utilizing 96–50% ethanol-water solutions by volume injected in both gaseous and liquid form. From a pollutant emissions perspective, all the tested alcohols are in line with the present Hungarian standard. Considering the upcoming regulations of 2018, 90–50% liquid alcohols and 80–50% evaporated alcohols already fulfill the stricter limitations.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.03.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.03.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 Czech Republic, HungaryPublisher:Elsevier BV Authors: Urbán, András; Malý, Milan; Józsa, Viktor; Jedelský, Jan;handle: 11012/195643
Abstract Airblast atomization is a suitable model platform to understand atomization physics since the atomizer geometry has an insignificant influence on the spray formation. Besides its theoretical relevance, this configuration is used in several practical applications ranging from healthcare to combustion. Presently, a plain-jet airblast atomizer has been investigated experimentally under atmospheric conditions at various atomizing pressures and liquid preheating temperatures. To cover a wide range of liquids by viscosity and surface tension, water, diesel oil, light heating oil, and crude rapeseed oil were atomized to evaluate the droplet size-velocity correlations when the spray is fully developed. Increasing the temperature of high-viscosity liquids prior to atomization improves the spray characteristics until their kinematic viscosity decreases to a certain value that is newly introduced as a limiting viscosity. Further preheating has a marginal effect on droplet size-velocity plots, and the spray becomes more homogeneous. Several SMD-estimating formulae were analyzed and improved to consider the effect of liquid preheating and to extend their range of validity. When the kinematic viscosity exceeded the limiting viscosity, the part containing the Weber number was corrected linearly by the preheating temperature. The coefficient of the Ohnesorge number was corrected by the inverse of the kinematic viscosity, without considering the limiting viscosity. The above results help to correct the SMD of atmospheric measurements to elevated liquid temperatures and to contribute to advanced atomization models for numerical software.
Experimental Thermal... arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2018.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Experimental Thermal... arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2018.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Czech Republic, HungaryPublisher:Elsevier BV Authors: Urbán, András; Malý, Milan; Józsa, Viktor; Jedelský, Jan;handle: 11012/195643
Abstract Airblast atomization is a suitable model platform to understand atomization physics since the atomizer geometry has an insignificant influence on the spray formation. Besides its theoretical relevance, this configuration is used in several practical applications ranging from healthcare to combustion. Presently, a plain-jet airblast atomizer has been investigated experimentally under atmospheric conditions at various atomizing pressures and liquid preheating temperatures. To cover a wide range of liquids by viscosity and surface tension, water, diesel oil, light heating oil, and crude rapeseed oil were atomized to evaluate the droplet size-velocity correlations when the spray is fully developed. Increasing the temperature of high-viscosity liquids prior to atomization improves the spray characteristics until their kinematic viscosity decreases to a certain value that is newly introduced as a limiting viscosity. Further preheating has a marginal effect on droplet size-velocity plots, and the spray becomes more homogeneous. Several SMD-estimating formulae were analyzed and improved to consider the effect of liquid preheating and to extend their range of validity. When the kinematic viscosity exceeded the limiting viscosity, the part containing the Weber number was corrected linearly by the preheating temperature. The coefficient of the Ohnesorge number was corrected by the inverse of the kinematic viscosity, without considering the limiting viscosity. The above results help to correct the SMD of atmospheric measurements to elevated liquid temperatures and to contribute to advanced atomization models for numerical software.
Experimental Thermal... arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2018.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Experimental Thermal... arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2018.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:AIP Publishing Erika Rácz; Milan Malý; Ondřej Cejpek; Jan Jedelský; Viktor Józsa;doi: 10.1063/5.0203085
Rotary atomization is used in a wide variety of fields, exploiting the external control option of the spray while no high-pressure fluid is needed. Most papers on rotary atomization deal with liquid jet breakup, while external spray characteristics are rarely evaluated; this is performed currently. The water spray was measured by a two-component phase Doppler anemometer. The optical setup requires a special measurement chamber to avoid spray deposition on the optical components. Therefore, the first goal was to find a proper filter that enables the removal of biased droplets by secondary flows. Since most droplets have a similar radial-to-tangential velocity ratio at each measurement point, i.e., scattering around a line, this was the first component of the best filter. The second component was the need for a positive radial velocity component. This filter efficiently removed droplets originating from alternative processes, increasing the R2 of the line fit. The physical soundness of this filter was checked by evaluating the effect of filtering on the angle of the velocity components of each droplet at a given measurement point. The proposed filter efficiently detected recirculation, a secondary effect of the measurement setup with less regular dataset shapes. Finally, the slope and intercept values of the fitted lines were evaluated and presented. The mean of the former followed the same trend irrespective of the rotational speed and the mass flow rate; it was principally dependent on the radial distance from the atomizer. The intercept showed a regular but less universal behavior.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0203085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0203085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:AIP Publishing Erika Rácz; Milan Malý; Ondřej Cejpek; Jan Jedelský; Viktor Józsa;doi: 10.1063/5.0203085
Rotary atomization is used in a wide variety of fields, exploiting the external control option of the spray while no high-pressure fluid is needed. Most papers on rotary atomization deal with liquid jet breakup, while external spray characteristics are rarely evaluated; this is performed currently. The water spray was measured by a two-component phase Doppler anemometer. The optical setup requires a special measurement chamber to avoid spray deposition on the optical components. Therefore, the first goal was to find a proper filter that enables the removal of biased droplets by secondary flows. Since most droplets have a similar radial-to-tangential velocity ratio at each measurement point, i.e., scattering around a line, this was the first component of the best filter. The second component was the need for a positive radial velocity component. This filter efficiently removed droplets originating from alternative processes, increasing the R2 of the line fit. The physical soundness of this filter was checked by evaluating the effect of filtering on the angle of the velocity components of each droplet at a given measurement point. The proposed filter efficiently detected recirculation, a secondary effect of the measurement setup with less regular dataset shapes. Finally, the slope and intercept values of the fitted lines were evaluated and presented. The mean of the former followed the same trend irrespective of the rotational speed and the mass flow rate; it was principally dependent on the radial distance from the atomizer. The intercept showed a regular but less universal behavior.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0203085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0203085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United Kingdom, Slovenia, Slovenia, Hungary, HungaryPublisher:Elsevier BV Steven Lim; Cheng Tung Chong; Jo-Han Ng; Tine Seljak; Veeramuthu Ashokkumar; Hwai Chyuan Ong; Bo Tian; Bo Tian; Brandon Han Hoe Goh; Viktor Józsa; Yuqi Ge;Abstract The increase in human consumption of plant and animal oils has led to the rise in waste cooking oil (WCO) production. Instead of disposing the used cooking oil as waste, recent technological advance has enabled the use of WCO as a sustainable feedstock for biofuels production, thereby maximising the value of biowastes via energy recovery while concomitantly solving the disposal issue. The current regulatory frameworks for WCO collection and recycling practices imposed by major WCO producing countries are reviewed, followed by the overview of the progress in biodiesel conversion techniques, along with novel methods to improve the feasibility for upscaling. The factors which influence the efficiency of the reactions such as properties of feedstock, heterogenous catalytic processes, cost effectiveness and selectivity of reaction product are discussed. Ultrasonic-assisted transesterification is found to be the least energy intensive method for producing biodiesel. The production of bio-jet fuels from WCO, while scarce, provide diversity in waste utilisation if problems such as carbon chain length, requirements of bio-jet fuel properties, extreme reaction conditions and effectiveness of selected catalyst-support system can be solved. Technoeconomic studies revealed that WCO biofuels is financially viable with benefit of mitigating carbon emissions, provided that the price gap between the produced fuel and commercial fuels, sufficient supply of WCO and variation in the oil properties are addressed. This review shows that WCO is a biowaste with high potential for advanced transportation fuel production for ground and aviation industries. The advancement in fuel production technology and relevant policies would accelerate the application of sustainable WCO biofuels.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefResearch at Derby (University of Derby)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.113296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu201 citations 201 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefResearch at Derby (University of Derby)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.113296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United Kingdom, Slovenia, Slovenia, Hungary, HungaryPublisher:Elsevier BV Steven Lim; Cheng Tung Chong; Jo-Han Ng; Tine Seljak; Veeramuthu Ashokkumar; Hwai Chyuan Ong; Bo Tian; Bo Tian; Brandon Han Hoe Goh; Viktor Józsa; Yuqi Ge;Abstract The increase in human consumption of plant and animal oils has led to the rise in waste cooking oil (WCO) production. Instead of disposing the used cooking oil as waste, recent technological advance has enabled the use of WCO as a sustainable feedstock for biofuels production, thereby maximising the value of biowastes via energy recovery while concomitantly solving the disposal issue. The current regulatory frameworks for WCO collection and recycling practices imposed by major WCO producing countries are reviewed, followed by the overview of the progress in biodiesel conversion techniques, along with novel methods to improve the feasibility for upscaling. The factors which influence the efficiency of the reactions such as properties of feedstock, heterogenous catalytic processes, cost effectiveness and selectivity of reaction product are discussed. Ultrasonic-assisted transesterification is found to be the least energy intensive method for producing biodiesel. The production of bio-jet fuels from WCO, while scarce, provide diversity in waste utilisation if problems such as carbon chain length, requirements of bio-jet fuel properties, extreme reaction conditions and effectiveness of selected catalyst-support system can be solved. Technoeconomic studies revealed that WCO biofuels is financially viable with benefit of mitigating carbon emissions, provided that the price gap between the produced fuel and commercial fuels, sufficient supply of WCO and variation in the oil properties are addressed. This review shows that WCO is a biowaste with high potential for advanced transportation fuel production for ground and aviation industries. The advancement in fuel production technology and relevant policies would accelerate the application of sustainable WCO biofuels.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefResearch at Derby (University of Derby)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.113296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu201 citations 201 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefResearch at Derby (University of Derby)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.113296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Dávid Csemány; Osama DarAli; Syed Ali Hamza Rizvi; Viktor Józsa;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.122909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.122909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Dávid Csemány; Osama DarAli; Syed Ali Hamza Rizvi; Viktor Józsa;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.122909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.122909&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Gyöngyvér Hidegh; Viktor Józsa;Abstract Real-time combustion and emission control is an ongoing challenge in combustion technology and science. Hence, the scope of the present paper is the investigation of the relationship between the chemiluminescent signal and the CO and NOX emissions. Flame emission spectrometry measurements were carried out to determine the characteristic free radicals of the spectra. For the experiments, a lean premixed liquid fuel burner equipped with an airblast atomizer was used in a test rig at 15 kW combustion power. The following measurement parameters were modified: combustion air flow rate, atomizing pressure, and the vertical alignment of the spectrometer. Furthermore, various half-cone angle quarls were mounted on the burner lip to extend the lean flame blowout stability limit. The CO and NOX emissions and the chemiluminescence intensity ratios of the strongest peaks of OH*, CH*, C2*, HCO*, and CH2O* were evaluated separately at first. Then a correlation analysis of the intensity ratios and the pollutant emission components was carried out. A notable linear correlation was found between both the HCO*/C2* and OH*/C2* intensity ratios and the CO emission in certain parameter combinations.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/j.joei...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joei.2020.01.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/j.joei...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joei.2020.01.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Gyöngyvér Hidegh; Viktor Józsa;Abstract Real-time combustion and emission control is an ongoing challenge in combustion technology and science. Hence, the scope of the present paper is the investigation of the relationship between the chemiluminescent signal and the CO and NOX emissions. Flame emission spectrometry measurements were carried out to determine the characteristic free radicals of the spectra. For the experiments, a lean premixed liquid fuel burner equipped with an airblast atomizer was used in a test rig at 15 kW combustion power. The following measurement parameters were modified: combustion air flow rate, atomizing pressure, and the vertical alignment of the spectrometer. Furthermore, various half-cone angle quarls were mounted on the burner lip to extend the lean flame blowout stability limit. The CO and NOX emissions and the chemiluminescence intensity ratios of the strongest peaks of OH*, CH*, C2*, HCO*, and CH2O* were evaluated separately at first. Then a correlation analysis of the intensity ratios and the pollutant emission components was carried out. A notable linear correlation was found between both the HCO*/C2* and OH*/C2* intensity ratios and the CO emission in certain parameter combinations.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/j.joei...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joei.2020.01.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1016/j.joei...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.joei.2020.01.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2020Publisher:Elsevier BV Authors: Viktor Józsa;Mixture Temperature-Controlled (MTC) combustion is a novel concept, offering 50% reduction in NOx emission compared to V-shaped flames without a known compromise. The flame was stable up to an equivalence ratio of 0.57, which was followed by blowout as the lean flammability limit was approached. Lean combustion also means reduced flame propagation speed, being another key feature to keep the flame lifted and facilitating homogeneous mixture formation. It was observed that distributed combustion was easier to achieve under leaner conditions. Unlike flameless combustion or exhaust gas recirculation techniques, such as MILD combustion, the oxidizer can be ambient air, offering robust realization in practical applications. The distributed flame is characterized by low flame luminosity and noise. Its acoustic spectrum contains geometry-related components principally. Hence, it is hypothesized that this concept also has a lower tendency to thermoacoustic instabilities than V-shaped flames. 24 pages, double line, 7 figures, 4 tables, original research paper, prepared for submission to an Elsevier journal
Fuel arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.120200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Fuel arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.120200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2020Publisher:Elsevier BV Authors: Viktor Józsa;Mixture Temperature-Controlled (MTC) combustion is a novel concept, offering 50% reduction in NOx emission compared to V-shaped flames without a known compromise. The flame was stable up to an equivalence ratio of 0.57, which was followed by blowout as the lean flammability limit was approached. Lean combustion also means reduced flame propagation speed, being another key feature to keep the flame lifted and facilitating homogeneous mixture formation. It was observed that distributed combustion was easier to achieve under leaner conditions. Unlike flameless combustion or exhaust gas recirculation techniques, such as MILD combustion, the oxidizer can be ambient air, offering robust realization in practical applications. The distributed flame is characterized by low flame luminosity and noise. Its acoustic spectrum contains geometry-related components principally. Hence, it is hypothesized that this concept also has a lower tendency to thermoacoustic instabilities than V-shaped flames. 24 pages, double line, 7 figures, 4 tables, original research paper, prepared for submission to an Elsevier journal
Fuel arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.120200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Fuel arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.120200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Gyöngyvér Hidegh; Dávid Csemány; János Vámos; László Kavas; Viktor Józsa;Abstract Mixture Temperature-Controlled combustion is a novel concept featuring ultra-low pollutant emission. Since the resulting distributed combustion is highly homogeneous, NOX emission can be kept below 10 ppm. The available renewable fuels worldwide vary a lot in their characteristics. Three renewable hydrocarbon fuels: coconut oil, palm oil, and waste cooking oil-rapeseed oil methyl esters were tested along with three conventional fuels: standard jet fuel (JP-8), standard diesel oil, and natural gas. The ultimate goal of the present study was the comparison of the flame structures, chemiluminescent, and pollutant emissions of various fuels, exploiting distributed combustion offered by the novel burner concept. As mixture preparation is highly sensitive to fuel vaporization, distillation curves of the five investigated liquid fuels were measured and evaluated. Density, surface tension, and viscosity were also measured to compare the estimated atomization characteristics. The tests were uniformly performed at 13.3 kW thermal power and an equivalence ratio of 0.8, varying atomizing pressure and air preheating temperature. It was found that jet fuel, diesel fuel, and coconut biodiesel bear the highest potential for distributed combustion in gas turbines, while incorrect burner setup may lead to unacceptably high emissions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.121219&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.121219&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Gyöngyvér Hidegh; Dávid Csemány; János Vámos; László Kavas; Viktor Józsa;Abstract Mixture Temperature-Controlled combustion is a novel concept featuring ultra-low pollutant emission. Since the resulting distributed combustion is highly homogeneous, NOX emission can be kept below 10 ppm. The available renewable fuels worldwide vary a lot in their characteristics. Three renewable hydrocarbon fuels: coconut oil, palm oil, and waste cooking oil-rapeseed oil methyl esters were tested along with three conventional fuels: standard jet fuel (JP-8), standard diesel oil, and natural gas. The ultimate goal of the present study was the comparison of the flame structures, chemiluminescent, and pollutant emissions of various fuels, exploiting distributed combustion offered by the novel burner concept. As mixture preparation is highly sensitive to fuel vaporization, distillation curves of the five investigated liquid fuels were measured and evaluated. Density, surface tension, and viscosity were also measured to compare the estimated atomization characteristics. The tests were uniformly performed at 13.3 kW thermal power and an equivalence ratio of 0.8, varying atomizing pressure and air preheating temperature. It was found that jet fuel, diesel fuel, and coconut biodiesel bear the highest potential for distributed combustion in gas turbines, while incorrect burner setup may lead to unacceptably high emissions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.121219&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.121219&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Czech RepublicPublisher:Elsevier BV Réka Anna Kardos; Erika Rácz; Milan Malý; Jan Jedelský; Viktor Józsa;Understanding spray evolution in a reacting environment is critical to designing advanced, clean combustion systems. The processes in the upstream region determine flame shape, stability, ignition characteristics, pollutant emission, and combustion efficiency. The developed spray is never achieved in combustion since the early regions feature primary and secondary atomization, while droplets evaporate as they approach the flame. Consequently, there is no thermodynamic equilibrium before the flame front. The principal goal of this paper is to provide detailed information to model developers on various sprays measured by a Phase Doppler Anemometer; the processed measurement data is available as supplementary material, while the raw data will be provided upon request. Four different fuels were tested: diesel fuel, aviation kerosene type JP-8, biodiesel, and a 50 % biodiesel-diesel blend by volume. The plain -jet airblast atomizer was tested at four atomization gauge pressures (0.3, 0.45, 0.6, 0.75 barg). Therefore, sixteen different sprays were measured along one spray diameter at each of four downstream distances of 15, 25, 35, and 45 mm, measured from the nozzle tip. The paper details the droplet size distribution, droplet axial velocity, fluctuations, and correlation between size and velocity to facilitate a comprehensive understanding of liquid fuel sprays. This latter measure helps identify the overshooting phenomenon, i.e., localizing the regions where the large droplets move faster than the gas phase.
International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2024.125548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2024.125548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Czech RepublicPublisher:Elsevier BV Réka Anna Kardos; Erika Rácz; Milan Malý; Jan Jedelský; Viktor Józsa;Understanding spray evolution in a reacting environment is critical to designing advanced, clean combustion systems. The processes in the upstream region determine flame shape, stability, ignition characteristics, pollutant emission, and combustion efficiency. The developed spray is never achieved in combustion since the early regions feature primary and secondary atomization, while droplets evaporate as they approach the flame. Consequently, there is no thermodynamic equilibrium before the flame front. The principal goal of this paper is to provide detailed information to model developers on various sprays measured by a Phase Doppler Anemometer; the processed measurement data is available as supplementary material, while the raw data will be provided upon request. Four different fuels were tested: diesel fuel, aviation kerosene type JP-8, biodiesel, and a 50 % biodiesel-diesel blend by volume. The plain -jet airblast atomizer was tested at four atomization gauge pressures (0.3, 0.45, 0.6, 0.75 barg). Therefore, sixteen different sprays were measured along one spray diameter at each of four downstream distances of 15, 25, 35, and 45 mm, measured from the nozzle tip. The paper details the droplet size distribution, droplet axial velocity, fluctuations, and correlation between size and velocity to facilitate a comprehensive understanding of liquid fuel sprays. This latter measure helps identify the overshooting phenomenon, i.e., localizing the regions where the large droplets move faster than the gas phase.
International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2024.125548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2024.125548&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 HungaryPublisher:Elsevier BV Viktor Józsa; Gyöngyvér Hidegh; Attila Kun-Balog; Jo-Han Ng; Cheng Tung Chong;Abstract Liquid fuels are likely to remain the main energy source in long-range transportation and aviation for several decades. To reduce our dependence on fossil fuels, liquid biofuels can be blended to fossil fuels – or used purely. In this paper, coconut methyl ester, standard diesel fuel (EN590:2017), and their blends were investigated in 25 V/V% steps. A novel turbulent combustion chamber was developed to facilitate combustion in a large volume that leads to ultra-low emissions. The combustion power of the swirl burner was 13.3 kW, and the air-to-fuel equivalence ratio was 1.25. Two parameters, combustion air preheating temperature and atomizing air pressure were adjusted in the range of 150–350 °C and 0.3–0.9 bar, respectively. Both straight and lifted flames were observed. The closed, atmospheric combustion chamber resulted in CO emission below 10 ppm in the majority of the cases. NO emission varied between 60 and 183 ppm at straight flame cases and decreased below 20 ppm when the flame was lifted since the combustion occurred in a large volume. This operation mode fulfills the 2015/2193/EU directive for gas combustion by 25%, which is twice as strict as liquid fuel combustion regulations. The 90% NO emission reduction was also concluded when compared to a lean premixed prevaporized burner under similar conditions. This favorable operation mode was named as Mixture Temperature-Controlled (MTC) Combustion. The chemiluminescent emission of lifted flames was also low, however, the OH* emission of straight flames was clearly observable and followed the trends of NO emission. The MTC mode may lead to significantly decreased pollutant emission of steady-operating devices like boilers, furnaces, and both aviation and industrial gas turbines, meaning an outstanding contribution to more environmentally friendly technologies.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 HungaryPublisher:Elsevier BV Viktor Józsa; Gyöngyvér Hidegh; Attila Kun-Balog; Jo-Han Ng; Cheng Tung Chong;Abstract Liquid fuels are likely to remain the main energy source in long-range transportation and aviation for several decades. To reduce our dependence on fossil fuels, liquid biofuels can be blended to fossil fuels – or used purely. In this paper, coconut methyl ester, standard diesel fuel (EN590:2017), and their blends were investigated in 25 V/V% steps. A novel turbulent combustion chamber was developed to facilitate combustion in a large volume that leads to ultra-low emissions. The combustion power of the swirl burner was 13.3 kW, and the air-to-fuel equivalence ratio was 1.25. Two parameters, combustion air preheating temperature and atomizing air pressure were adjusted in the range of 150–350 °C and 0.3–0.9 bar, respectively. Both straight and lifted flames were observed. The closed, atmospheric combustion chamber resulted in CO emission below 10 ppm in the majority of the cases. NO emission varied between 60 and 183 ppm at straight flame cases and decreased below 20 ppm when the flame was lifted since the combustion occurred in a large volume. This operation mode fulfills the 2015/2193/EU directive for gas combustion by 25%, which is twice as strict as liquid fuel combustion regulations. The 90% NO emission reduction was also concluded when compared to a lean premixed prevaporized burner under similar conditions. This favorable operation mode was named as Mixture Temperature-Controlled (MTC) Combustion. The chemiluminescent emission of lifted flames was also low, however, the OH* emission of straight flames was clearly observable and followed the trends of NO emission. The MTC mode may lead to significantly decreased pollutant emission of steady-operating devices like boilers, furnaces, and both aviation and industrial gas turbines, meaning an outstanding contribution to more environmentally friendly technologies.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Attila Kun-Balog; Viktor Józsa; Krisztián Sztankó;Abstract Hydrous ethanol is produced to the largest extent among all renewable liquid fuels. The utilization of aqueous ethanol, however, seems to be a more economical solution due to considerable savings on the production costs while the combustion performance is affected slightly. In the present paper, the energy balance of aqueous bioethanol distillation was analyzed using a 12% ethanol-water solution by volume as feed. The results showed that the distillation energy-to-lower heating value ratio of 92–52% solutions are only 0.394 of that of hydrous ethanol. Combustion tests were performed at 15 kW combustion power and an air-to-fuel equivalence ratio of 1.17, utilizing 96–50% ethanol-water solutions by volume injected in both gaseous and liquid form. From a pollutant emissions perspective, all the tested alcohols are in line with the present Hungarian standard. Considering the upcoming regulations of 2018, 90–50% liquid alcohols and 80–50% evaporated alcohols already fulfill the stricter limitations.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.03.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.03.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Attila Kun-Balog; Viktor Józsa; Krisztián Sztankó;Abstract Hydrous ethanol is produced to the largest extent among all renewable liquid fuels. The utilization of aqueous ethanol, however, seems to be a more economical solution due to considerable savings on the production costs while the combustion performance is affected slightly. In the present paper, the energy balance of aqueous bioethanol distillation was analyzed using a 12% ethanol-water solution by volume as feed. The results showed that the distillation energy-to-lower heating value ratio of 92–52% solutions are only 0.394 of that of hydrous ethanol. Combustion tests were performed at 15 kW combustion power and an air-to-fuel equivalence ratio of 1.17, utilizing 96–50% ethanol-water solutions by volume injected in both gaseous and liquid form. From a pollutant emissions perspective, all the tested alcohols are in line with the present Hungarian standard. Considering the upcoming regulations of 2018, 90–50% liquid alcohols and 80–50% evaporated alcohols already fulfill the stricter limitations.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.03.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.03.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu