- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023 United Kingdom, ItalyPublisher:Elsevier BV Funded by:EC | THERMOSSEC| THERMOSSAuthors: Manfren, Massimiliano; James, Patrick AB; Aragon, Victoria; Tronchin, Lamberto;handle: 11585/943393
The transition to low carbon energy systems poses challenges in terms of energy efficiency. In building refurbishment projects, efficient technologies such as smart controls and heat pumps are increasingly being used as a substitute for conventional technologies with the aim of reducing carbon emissions and determining operational energy and cost savings, together with other benefits. Measured building performance, however, often reveals a significant gap between the predicted energy use (design stage) and actual energy use (operation stage). For this reason, lean and interpretable digital twins are needed for building energy monitoring aimed at persistence of savings and continuous performance improvement. In this research, interpretable regression models are built with data at multiple temporal resolutions (monthly, daily and hourly) and seamlessly integrated with the goal of verifying the performance improvements due to Smart thermostatic radiator valves (TRVs) and gas absorption heat pumps (GAHPs) as well as giving insights on the performance of the building as a whole. Further, as part of modelling research, time of week and temperature (TOWT) approach is reformulated and benchmarked against its original implementation. The case study chosen is Hale Court sheltered housing, located in the city of Portsmouth (UK). This building has been used for the field-testing of innovative technologies such as TRVs and GAHPs within the EU Horizon 2020 project THERMOSS. The results obtained are used to illustrate possible extensions of the use of energy signature modelling, highlighting implications for energy management and innovative building technologies development.
Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyai.2023.100304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyai.2023.100304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United Kingdom, ItalyPublisher:Elsevier BV Funded by:EC | THERMOSSEC| THERMOSSAuthors: Manfren, Massimiliano; James, Patrick AB; Aragon, Victoria; Tronchin, Lamberto;handle: 11585/943393
The transition to low carbon energy systems poses challenges in terms of energy efficiency. In building refurbishment projects, efficient technologies such as smart controls and heat pumps are increasingly being used as a substitute for conventional technologies with the aim of reducing carbon emissions and determining operational energy and cost savings, together with other benefits. Measured building performance, however, often reveals a significant gap between the predicted energy use (design stage) and actual energy use (operation stage). For this reason, lean and interpretable digital twins are needed for building energy monitoring aimed at persistence of savings and continuous performance improvement. In this research, interpretable regression models are built with data at multiple temporal resolutions (monthly, daily and hourly) and seamlessly integrated with the goal of verifying the performance improvements due to Smart thermostatic radiator valves (TRVs) and gas absorption heat pumps (GAHPs) as well as giving insights on the performance of the building as a whole. Further, as part of modelling research, time of week and temperature (TOWT) approach is reformulated and benchmarked against its original implementation. The case study chosen is Hale Court sheltered housing, located in the city of Portsmouth (UK). This building has been used for the field-testing of innovative technologies such as TRVs and GAHPs within the EU Horizon 2020 project THERMOSS. The results obtained are used to illustrate possible extensions of the use of energy signature modelling, highlighting implications for energy management and innovative building technologies development.
Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyai.2023.100304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyai.2023.100304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Italy, United KingdomPublisher:Elsevier BV Authors: Lamberto Tronchin; Massimiliano Manfren; Lavinia Chiara Tagliabue;handle: 11379/512120 , 2318/1890262
Abstract The sustainability of the built environment largely depends on its energy and environmental performances. The overall objective, across the different phases of the building life cycle, is to improve building and system performances in terms of economics, comfort, environmental impact and durability. Several modelling methodologies have been developed in order to evaluate the energy performance of buildings. Generally, every modelling methodology responds effectively to some specific tasks, but there exists a lack of integration in particular with respect to the cross-disciplinary role of data. Given the multi-scale and multi-objective nature of the problem of optimization of the energy and environmental performances of the built environment, an appropriate synthesis and integration process in modelling methodologies has to be identified, addressing realistically the uncertainties inherently present in modelling strategies. Visualization and data analysis techniques are successfully used in a wide variety of applications, both in theoretical and applied domains, but questions remains about their robustness, efficiency and applicability to the problems introduced before. The paper aims to analyze critically these topics by means of case studies, showing a possible path to create a multi-scale methodology able to synthesize all the relevant aspects.
Archivio Istituziona... arrow_drop_down Sustainable Cities and SocietyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2015.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Sustainable Cities and SocietyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2015.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Italy, United KingdomPublisher:Elsevier BV Authors: Lamberto Tronchin; Massimiliano Manfren; Lavinia Chiara Tagliabue;handle: 11379/512120 , 2318/1890262
Abstract The sustainability of the built environment largely depends on its energy and environmental performances. The overall objective, across the different phases of the building life cycle, is to improve building and system performances in terms of economics, comfort, environmental impact and durability. Several modelling methodologies have been developed in order to evaluate the energy performance of buildings. Generally, every modelling methodology responds effectively to some specific tasks, but there exists a lack of integration in particular with respect to the cross-disciplinary role of data. Given the multi-scale and multi-objective nature of the problem of optimization of the energy and environmental performances of the built environment, an appropriate synthesis and integration process in modelling methodologies has to be identified, addressing realistically the uncertainties inherently present in modelling strategies. Visualization and data analysis techniques are successfully used in a wide variety of applications, both in theoretical and applied domains, but questions remains about their robustness, efficiency and applicability to the problems introduced before. The paper aims to analyze critically these topics by means of case studies, showing a possible path to create a multi-scale methodology able to synthesize all the relevant aspects.
Archivio Istituziona... arrow_drop_down Sustainable Cities and SocietyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2015.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Sustainable Cities and SocietyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2015.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, Italy, Italy, ItalyPublisher:Elsevier BV Lamagna M.; Nastasi B.; Groppi D.; Rozain C.; Manfren M.; Astiaso Garcia D.;handle: 2108/356293 , 11573/1521601 , 2067/49239
Abstract Hydrogen is assuming a crescent role in the decarbonising initiatives. Moreover, hydrogen can supply the 3 most energy intense sectors, i.e. transport, heat and electricity, allowing the sector coupling. To do so, a production unit, the electrolyser, and a consumer one, the fuel cell, are needed. Actually, reversible Solid Oxide Cell technology presents the possibility to install only one device acting bi-directionally. It offers different advantages thank to its (i) compact design, thus ensuring space and cost savings; (ii) ability to meet thermal and electric demand, thus reducing emissions in both those sectors; (iii) possibility to store, the electricity excess coming from renewable sources in form of hydrogen, ensuring an unlimited and seasonal storage possibility. In this study, the deployment of a real reversible Solid Oxide Cell was simulated in different scenarios considering the data recorded in one year in the island of Procida, Italy. Up to date, the use of this technology was mostly relegated to the industrial sector or to prototype tests. While, this research aimed to analyse the functioning of near commercialization technology in civil environments such as hotels, offices and hospitals to understand its feasibility in this new context. It wants to be proved that advantages of this emerging technology can be exploited as well in the civil environment. Three economic indicators, i.e. Payback Period, Internal Return Rate and Net Present Value were selected to evaluate the simulated scenarios, while, the primary energy saving, the emission reduction and its storage efficacy were studied to evaluate the environmental achievements. To perform the simulations, the MATLAB model ConfigDym built by Sylfen was used. Finally, a sensitivity analysis in terms of economics was carried out. The results show an important decrease in emissions and an energy self-sufficiency increase of at least 29% and 58% respectively, differently the economic analysis returns a payback period currently near to its lifetime, while for the future a three years period is reachable.
e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della Ricerca - Università di Roma Tor vergataArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.113993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 41 citations 41 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della Ricerca - Università di Roma Tor vergataArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.113993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, Italy, Italy, ItalyPublisher:Elsevier BV Lamagna M.; Nastasi B.; Groppi D.; Rozain C.; Manfren M.; Astiaso Garcia D.;handle: 2108/356293 , 11573/1521601 , 2067/49239
Abstract Hydrogen is assuming a crescent role in the decarbonising initiatives. Moreover, hydrogen can supply the 3 most energy intense sectors, i.e. transport, heat and electricity, allowing the sector coupling. To do so, a production unit, the electrolyser, and a consumer one, the fuel cell, are needed. Actually, reversible Solid Oxide Cell technology presents the possibility to install only one device acting bi-directionally. It offers different advantages thank to its (i) compact design, thus ensuring space and cost savings; (ii) ability to meet thermal and electric demand, thus reducing emissions in both those sectors; (iii) possibility to store, the electricity excess coming from renewable sources in form of hydrogen, ensuring an unlimited and seasonal storage possibility. In this study, the deployment of a real reversible Solid Oxide Cell was simulated in different scenarios considering the data recorded in one year in the island of Procida, Italy. Up to date, the use of this technology was mostly relegated to the industrial sector or to prototype tests. While, this research aimed to analyse the functioning of near commercialization technology in civil environments such as hotels, offices and hospitals to understand its feasibility in this new context. It wants to be proved that advantages of this emerging technology can be exploited as well in the civil environment. Three economic indicators, i.e. Payback Period, Internal Return Rate and Net Present Value were selected to evaluate the simulated scenarios, while, the primary energy saving, the emission reduction and its storage efficacy were studied to evaluate the environmental achievements. To perform the simulations, the MATLAB model ConfigDym built by Sylfen was used. Finally, a sensitivity analysis in terms of economics was carried out. The results show an important decrease in emissions and an energy self-sufficiency increase of at least 29% and 58% respectively, differently the economic analysis returns a payback period currently near to its lifetime, while for the future a three years period is reachable.
e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della Ricerca - Università di Roma Tor vergataArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.113993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 41 citations 41 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della Ricerca - Università di Roma Tor vergataArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.113993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United Kingdom, Italy, ItalyPublisher:Elsevier BV Authors: Manfren M.; Nastasi B.;handle: 2108/356368 , 11573/1686529
Accelerating the decarbonisation of the built environment necessitates increasing electrification of end-uses, which in turn poses the issue of rethinking the role of energy efficiency in conjunction with flexibility in grid interaction. This requires a better understanding of the electricity load profiles at hourly or sub-hourly intervals using techniques that are simple, reliable, and interpretable. To this extent, this study proposes a reformulation of the Time Of Week and Temperature modelling approach. This approach is able to separate the energy consumption dependence on building operational characteristics (Time Of Week) and on weather (outdoor air temperature), through a highly automated modelling workflow, necessitating minimal effort for model tuning. These features, along with its intrinsic interpretability due to its formulation using multivariate regression and the availability of open-source software, makes it an ideal starting point for applied research. The case study selected for the research is a fully electrified public building in Southern Italy. The building has been monitored for 5 years, before, during and after the COVID-19 lockdown. The novel model formulation is calibrated using hourly interval data with a Coefficient of Variation of Root Mean Square Error in the range of 20.0-28.5% throughout the various monitoring periods. The counterfactual analysis of electricity consumption indicates a 10.7-26.7% decrease in electricity consumption due to operational adjustments following COVID-19 lockdown, highlighting the impact of behavioural change. Finally, the possibility of additional workflow automation and enhanced interpretability is discussed.
Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2023License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2023Full-Text: https://hdl.handle.net/2108/356368Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.128490&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2023License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2023Full-Text: https://hdl.handle.net/2108/356368Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.128490&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United Kingdom, Italy, ItalyPublisher:Elsevier BV Authors: Manfren M.; Nastasi B.;handle: 2108/356368 , 11573/1686529
Accelerating the decarbonisation of the built environment necessitates increasing electrification of end-uses, which in turn poses the issue of rethinking the role of energy efficiency in conjunction with flexibility in grid interaction. This requires a better understanding of the electricity load profiles at hourly or sub-hourly intervals using techniques that are simple, reliable, and interpretable. To this extent, this study proposes a reformulation of the Time Of Week and Temperature modelling approach. This approach is able to separate the energy consumption dependence on building operational characteristics (Time Of Week) and on weather (outdoor air temperature), through a highly automated modelling workflow, necessitating minimal effort for model tuning. These features, along with its intrinsic interpretability due to its formulation using multivariate regression and the availability of open-source software, makes it an ideal starting point for applied research. The case study selected for the research is a fully electrified public building in Southern Italy. The building has been monitored for 5 years, before, during and after the COVID-19 lockdown. The novel model formulation is calibrated using hourly interval data with a Coefficient of Variation of Root Mean Square Error in the range of 20.0-28.5% throughout the various monitoring periods. The counterfactual analysis of electricity consumption indicates a 10.7-26.7% decrease in electricity consumption due to operational adjustments following COVID-19 lockdown, highlighting the impact of behavioural change. Finally, the possibility of additional workflow automation and enhanced interpretability is discussed.
Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2023License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2023Full-Text: https://hdl.handle.net/2108/356368Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.128490&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2023License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2023Full-Text: https://hdl.handle.net/2108/356368Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.128490&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Italy, United KingdomPublisher:MDPI AG Authors: Benedetto Nastasi; Massimiliano Manfren; Michel Noussan;doi: 10.3390/en14154413
handle: 11583/2977441 , 2108/356326 , 11573/1565641
An increasing number of data sources and models to handle them call for transparency and openness in assessing their goodness and practical use for people [...]
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoOther literature type . 2021License: CC BYData sources: Publications Open Repository TOrinoArchivio della Ricerca - Università di Roma Tor vergataArticle . 2021License: CC BY NDData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2021Full-Text: https://hdl.handle.net/2108/356326Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoOther literature type . 2021License: CC BYData sources: Publications Open Repository TOrinoArchivio della Ricerca - Università di Roma Tor vergataArticle . 2021License: CC BY NDData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2021Full-Text: https://hdl.handle.net/2108/356326Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Italy, United KingdomPublisher:MDPI AG Authors: Benedetto Nastasi; Massimiliano Manfren; Michel Noussan;doi: 10.3390/en14154413
handle: 11583/2977441 , 2108/356326 , 11573/1565641
An increasing number of data sources and models to handle them call for transparency and openness in assessing their goodness and practical use for people [...]
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoOther literature type . 2021License: CC BYData sources: Publications Open Repository TOrinoArchivio della Ricerca - Università di Roma Tor vergataArticle . 2021License: CC BY NDData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2021Full-Text: https://hdl.handle.net/2108/356326Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoOther literature type . 2021License: CC BYData sources: Publications Open Repository TOrinoArchivio della Ricerca - Università di Roma Tor vergataArticle . 2021License: CC BY NDData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2021Full-Text: https://hdl.handle.net/2108/356326Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2012 United Kingdom, Italy, ItalyPublisher:Elsevier BV Authors: ADHIKARI, RAJENDRA SINGH; ASTE, NICCOLO'; MANFREN, MASSIMILIANO;handle: 11311/653358
AbstractThe strong interconnection between human activities, energy use and pollution reduction strategies in contemporary society has determined the necessity of collecting scientific knowledge from different fields to provide useful methods and models to foster the transition towards more sustainable energy systems. This is a challenging task in particular for contemporary communities where an increasing demand for services is combined with rapidly changing lifestyles and habits. The Smart Grid concept is the result of a confluence of issues and a convergence of objectives, which include national energy security, climate change, pollution reduction, grid reliability, etc. While thinking about a paradigm shift in energy systems, drivers, characteristics, market segments, applications and other interconnected aspects must be taken into account simultaneously. In this context, the use of multi-commodity network flow models for dynamic energy management aims at finding a compromise between model usefulness, accuracy, flexibility, solvability and scalability in Smart Grid applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.12.1104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.12.1104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2012 United Kingdom, Italy, ItalyPublisher:Elsevier BV Authors: ADHIKARI, RAJENDRA SINGH; ASTE, NICCOLO'; MANFREN, MASSIMILIANO;handle: 11311/653358
AbstractThe strong interconnection between human activities, energy use and pollution reduction strategies in contemporary society has determined the necessity of collecting scientific knowledge from different fields to provide useful methods and models to foster the transition towards more sustainable energy systems. This is a challenging task in particular for contemporary communities where an increasing demand for services is combined with rapidly changing lifestyles and habits. The Smart Grid concept is the result of a confluence of issues and a convergence of objectives, which include national energy security, climate change, pollution reduction, grid reliability, etc. While thinking about a paradigm shift in energy systems, drivers, characteristics, market segments, applications and other interconnected aspects must be taken into account simultaneously. In this context, the use of multi-commodity network flow models for dynamic energy management aims at finding a compromise between model usefulness, accuracy, flexibility, solvability and scalability in Smart Grid applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.12.1104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.12.1104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United Kingdom, ItalyPublisher:Elsevier BV Authors: Manfren, M.;AbstractThe evolution of energy infrastructures towards a more distributed, adaptive, predictive and marketbased paradigm implies an effort on combining communication protocols and energy transmission and distribution systems in a common architecture. This architecture should allow decentralized control in order to be able to manage efficiently distributed generation, storage and exchange of energy between sources and sinks. Dynamic energy management models are a part of this “systems thinking” vision that aims to create a new field of applications that is at the intersection of computing science and energy technology. The broader implications associated with them are related with the possibility of creating communities that integrate energy supply and demand within a given region, in order to limit their impact. In order to push intelligence to the energy networks’ edges, up to individual sources and sinks, scalable and flexible distributed systems will have to be build. In this sense, data mining techniques and multicommodity network flow models can be combined for pattern detection, forecasting and optimization, which are essential features of dynamic energy management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.12.1105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 2visibility views 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.12.1105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United Kingdom, ItalyPublisher:Elsevier BV Authors: Manfren, M.;AbstractThe evolution of energy infrastructures towards a more distributed, adaptive, predictive and marketbased paradigm implies an effort on combining communication protocols and energy transmission and distribution systems in a common architecture. This architecture should allow decentralized control in order to be able to manage efficiently distributed generation, storage and exchange of energy between sources and sinks. Dynamic energy management models are a part of this “systems thinking” vision that aims to create a new field of applications that is at the intersection of computing science and energy technology. The broader implications associated with them are related with the possibility of creating communities that integrate energy supply and demand within a given region, in order to limit their impact. In order to push intelligence to the energy networks’ edges, up to individual sources and sinks, scalable and flexible distributed systems will have to be build. In this sense, data mining techniques and multicommodity network flow models can be combined for pattern detection, forecasting and optimization, which are essential features of dynamic energy management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.12.1105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 2visibility views 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.12.1105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Italy, United KingdomPublisher:Elsevier BV Authors: Massimiliano Manfren; Patrick AB James; Lamberto Tronchin;handle: 11585/890245
Data-driven building energy modelling techniques have proven to be effective in multiple applications. However, the debate around the possibility of generalisation is open. Generalisation involves the ability of a machine-learning model to adapt to previously unseen data and perform in a satisfactory way. Besides that, while machine-learning techniques are extremely powerful, interpretability, i.e. the ability for humans to predict how the model output will change in response to a change in input data or algorithmic parameters, is essential to attain a "human-in-the-loop" approach and creating feedback loops aimed at continuous improvement of efficiency measures in buildings. A flexible regression-based approach is developed and tested on a Passive House building in this study. The formulation employs dummy (binary) variables as a piecewise linearization method, and the rules for creating them are explicitly stated to ensure interpretability. Furthermore, the possibility of automating the model selection process using statistical indicators is described, including specific indicators used in Measurement and Verification (M&V) for the acceptance of calibrated energy models. The valuable insights that can be found using data-driven methods are reported and discussed, emphasising limitations and constraints, as well as the potential for future research focused on systems of (interpretable data-driven) models that can exploit the techniques' spatial and temporal scalability. Finally, the physical interpretation of model coefficients and the analytical formulations for energy model decomposition can be used to supplement the scalability of data-driven techniques and create more sophisticated systems of interconnected models.
Archivio istituziona... arrow_drop_down e-Prints SotonArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 62 citations 62 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down e-Prints SotonArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Italy, United KingdomPublisher:Elsevier BV Authors: Massimiliano Manfren; Patrick AB James; Lamberto Tronchin;handle: 11585/890245
Data-driven building energy modelling techniques have proven to be effective in multiple applications. However, the debate around the possibility of generalisation is open. Generalisation involves the ability of a machine-learning model to adapt to previously unseen data and perform in a satisfactory way. Besides that, while machine-learning techniques are extremely powerful, interpretability, i.e. the ability for humans to predict how the model output will change in response to a change in input data or algorithmic parameters, is essential to attain a "human-in-the-loop" approach and creating feedback loops aimed at continuous improvement of efficiency measures in buildings. A flexible regression-based approach is developed and tested on a Passive House building in this study. The formulation employs dummy (binary) variables as a piecewise linearization method, and the rules for creating them are explicitly stated to ensure interpretability. Furthermore, the possibility of automating the model selection process using statistical indicators is described, including specific indicators used in Measurement and Verification (M&V) for the acceptance of calibrated energy models. The valuable insights that can be found using data-driven methods are reported and discussed, emphasising limitations and constraints, as well as the potential for future research focused on systems of (interpretable data-driven) models that can exploit the techniques' spatial and temporal scalability. Finally, the physical interpretation of model coefficients and the analytical formulations for energy model decomposition can be used to supplement the scalability of data-driven techniques and create more sophisticated systems of interconnected models.
Archivio istituziona... arrow_drop_down e-Prints SotonArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 62 citations 62 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down e-Prints SotonArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Italy, United KingdomPublisher:Elsevier BV Authors: MANFREN, MASSIMILIANO; ASTE, NICCOLO'; R. Moshksar;handle: 11311/694220
Abstract In energy and environment field models are constructed, in general, based on well-defined physical phenomena and properties. Calibration and uncertainty analysis hold a particular interest because models represent a simplification of reality and, therefore, it is necessary to quantify to what degree they are imperfect before employing them in design, prediction and decision making processes. Integrated building energy models attempt to describe the effect of various internal and external actions (weather, occupancy, appliances, etc.) through physical relations (both algebraic and differential) and they are being widely used to design and operate high performance buildings, which are an essential component of a global energy strategy to reduce carbon emission and fossil sources depletion. An approach oriented to systems and able to integrate effectively field measured data and computer simulations for calibration in the modeling process has the potential to revolutionize the way buildings are designed and operated, and to stimulate also the development of new technologies and solutions in the field. The research presented in this paper aims to represent an initial step towards this integrated approach.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2012.10.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu180 citations 180 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2012.10.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Italy, United KingdomPublisher:Elsevier BV Authors: MANFREN, MASSIMILIANO; ASTE, NICCOLO'; R. Moshksar;handle: 11311/694220
Abstract In energy and environment field models are constructed, in general, based on well-defined physical phenomena and properties. Calibration and uncertainty analysis hold a particular interest because models represent a simplification of reality and, therefore, it is necessary to quantify to what degree they are imperfect before employing them in design, prediction and decision making processes. Integrated building energy models attempt to describe the effect of various internal and external actions (weather, occupancy, appliances, etc.) through physical relations (both algebraic and differential) and they are being widely used to design and operate high performance buildings, which are an essential component of a global energy strategy to reduce carbon emission and fossil sources depletion. An approach oriented to systems and able to integrate effectively field measured data and computer simulations for calibration in the modeling process has the potential to revolutionize the way buildings are designed and operated, and to stimulate also the development of new technologies and solutions in the field. The research presented in this paper aims to represent an initial step towards this integrated approach.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2012.10.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu180 citations 180 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2012.10.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United Kingdom, ItalyPublisher:Elsevier BV Authors: Enrico De Angelis; Fulvio Re Cecconi; Angelo Luigi Camillo Ciribini; Massimiliano Manfren; +2 AuthorsEnrico De Angelis; Fulvio Re Cecconi; Angelo Luigi Camillo Ciribini; Massimiliano Manfren; Massimiliano Manfren; Lavinia Chiara Tagliabue;handle: 11379/505052 , 11311/1024089 , 2318/1890264
The increased awareness on sustainability matters is contributing to the evolution of energy and environmental policies for the building sector at the EU level, oriented toward resource efficiency. There exist today several possible strategies to model building performance through the life cycle. The increase of available computational capacity and of data acquisition capability is opening new scenarios for practical applications, which can contribute to the reduction of the gap usually encountered between simulated and measured energy performance. This article aims to investigate an approach for probabilistic building performance simulation to be used across life cycle phases, employing reduced-order models for performance monitoring and energy management. The workflow proposed aims to establish a continuity among design and operation phases. Design phase simulation is generally subject to relevant temporal and economic constraints and a successful workflow should incorporate elements from current design practices but should also add new features, which have to be reasonably automated to reduce additional effort. Therefore, the workflow proposed is automated and tested for robustness using Monte Carlo technique. In the design phase, the approach can be used for identifying probabilistic performance bounds suitable for risk analysis in energy efficiency investments, employing cost-optimal or life cycle cost accounting methodologies. In the operation phase, it can be used for performance monitoring and energy management based on daily energy consumption analysis, similarly to other multivariate regression-based methods at the state of the art, addressing the problem of maintaining energy consumption and related costs constantly under control.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.05.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 53 citations 53 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.05.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United Kingdom, ItalyPublisher:Elsevier BV Authors: Enrico De Angelis; Fulvio Re Cecconi; Angelo Luigi Camillo Ciribini; Massimiliano Manfren; +2 AuthorsEnrico De Angelis; Fulvio Re Cecconi; Angelo Luigi Camillo Ciribini; Massimiliano Manfren; Massimiliano Manfren; Lavinia Chiara Tagliabue;handle: 11379/505052 , 11311/1024089 , 2318/1890264
The increased awareness on sustainability matters is contributing to the evolution of energy and environmental policies for the building sector at the EU level, oriented toward resource efficiency. There exist today several possible strategies to model building performance through the life cycle. The increase of available computational capacity and of data acquisition capability is opening new scenarios for practical applications, which can contribute to the reduction of the gap usually encountered between simulated and measured energy performance. This article aims to investigate an approach for probabilistic building performance simulation to be used across life cycle phases, employing reduced-order models for performance monitoring and energy management. The workflow proposed aims to establish a continuity among design and operation phases. Design phase simulation is generally subject to relevant temporal and economic constraints and a successful workflow should incorporate elements from current design practices but should also add new features, which have to be reasonably automated to reduce additional effort. Therefore, the workflow proposed is automated and tested for robustness using Monte Carlo technique. In the design phase, the approach can be used for identifying probabilistic performance bounds suitable for risk analysis in energy efficiency investments, employing cost-optimal or life cycle cost accounting methodologies. In the operation phase, it can be used for performance monitoring and energy management based on daily energy consumption analysis, similarly to other multivariate regression-based methods at the state of the art, addressing the problem of maintaining energy consumption and related costs constantly under control.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.05.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 53 citations 53 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.05.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 United Kingdom, ItalyPublisher:Elsevier BV Funded by:EC | THERMOSSEC| THERMOSSAuthors: Manfren, Massimiliano; James, Patrick AB; Aragon, Victoria; Tronchin, Lamberto;handle: 11585/943393
The transition to low carbon energy systems poses challenges in terms of energy efficiency. In building refurbishment projects, efficient technologies such as smart controls and heat pumps are increasingly being used as a substitute for conventional technologies with the aim of reducing carbon emissions and determining operational energy and cost savings, together with other benefits. Measured building performance, however, often reveals a significant gap between the predicted energy use (design stage) and actual energy use (operation stage). For this reason, lean and interpretable digital twins are needed for building energy monitoring aimed at persistence of savings and continuous performance improvement. In this research, interpretable regression models are built with data at multiple temporal resolutions (monthly, daily and hourly) and seamlessly integrated with the goal of verifying the performance improvements due to Smart thermostatic radiator valves (TRVs) and gas absorption heat pumps (GAHPs) as well as giving insights on the performance of the building as a whole. Further, as part of modelling research, time of week and temperature (TOWT) approach is reformulated and benchmarked against its original implementation. The case study chosen is Hale Court sheltered housing, located in the city of Portsmouth (UK). This building has been used for the field-testing of innovative technologies such as TRVs and GAHPs within the EU Horizon 2020 project THERMOSS. The results obtained are used to illustrate possible extensions of the use of energy signature modelling, highlighting implications for energy management and innovative building technologies development.
Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyai.2023.100304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyai.2023.100304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United Kingdom, ItalyPublisher:Elsevier BV Funded by:EC | THERMOSSEC| THERMOSSAuthors: Manfren, Massimiliano; James, Patrick AB; Aragon, Victoria; Tronchin, Lamberto;handle: 11585/943393
The transition to low carbon energy systems poses challenges in terms of energy efficiency. In building refurbishment projects, efficient technologies such as smart controls and heat pumps are increasingly being used as a substitute for conventional technologies with the aim of reducing carbon emissions and determining operational energy and cost savings, together with other benefits. Measured building performance, however, often reveals a significant gap between the predicted energy use (design stage) and actual energy use (operation stage). For this reason, lean and interpretable digital twins are needed for building energy monitoring aimed at persistence of savings and continuous performance improvement. In this research, interpretable regression models are built with data at multiple temporal resolutions (monthly, daily and hourly) and seamlessly integrated with the goal of verifying the performance improvements due to Smart thermostatic radiator valves (TRVs) and gas absorption heat pumps (GAHPs) as well as giving insights on the performance of the building as a whole. Further, as part of modelling research, time of week and temperature (TOWT) approach is reformulated and benchmarked against its original implementation. The case study chosen is Hale Court sheltered housing, located in the city of Portsmouth (UK). This building has been used for the field-testing of innovative technologies such as TRVs and GAHPs within the EU Horizon 2020 project THERMOSS. The results obtained are used to illustrate possible extensions of the use of energy signature modelling, highlighting implications for energy management and innovative building technologies development.
Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyai.2023.100304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyai.2023.100304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Italy, United KingdomPublisher:Elsevier BV Authors: Lamberto Tronchin; Massimiliano Manfren; Lavinia Chiara Tagliabue;handle: 11379/512120 , 2318/1890262
Abstract The sustainability of the built environment largely depends on its energy and environmental performances. The overall objective, across the different phases of the building life cycle, is to improve building and system performances in terms of economics, comfort, environmental impact and durability. Several modelling methodologies have been developed in order to evaluate the energy performance of buildings. Generally, every modelling methodology responds effectively to some specific tasks, but there exists a lack of integration in particular with respect to the cross-disciplinary role of data. Given the multi-scale and multi-objective nature of the problem of optimization of the energy and environmental performances of the built environment, an appropriate synthesis and integration process in modelling methodologies has to be identified, addressing realistically the uncertainties inherently present in modelling strategies. Visualization and data analysis techniques are successfully used in a wide variety of applications, both in theoretical and applied domains, but questions remains about their robustness, efficiency and applicability to the problems introduced before. The paper aims to analyze critically these topics by means of case studies, showing a possible path to create a multi-scale methodology able to synthesize all the relevant aspects.
Archivio Istituziona... arrow_drop_down Sustainable Cities and SocietyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2015.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Sustainable Cities and SocietyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2015.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Italy, United KingdomPublisher:Elsevier BV Authors: Lamberto Tronchin; Massimiliano Manfren; Lavinia Chiara Tagliabue;handle: 11379/512120 , 2318/1890262
Abstract The sustainability of the built environment largely depends on its energy and environmental performances. The overall objective, across the different phases of the building life cycle, is to improve building and system performances in terms of economics, comfort, environmental impact and durability. Several modelling methodologies have been developed in order to evaluate the energy performance of buildings. Generally, every modelling methodology responds effectively to some specific tasks, but there exists a lack of integration in particular with respect to the cross-disciplinary role of data. Given the multi-scale and multi-objective nature of the problem of optimization of the energy and environmental performances of the built environment, an appropriate synthesis and integration process in modelling methodologies has to be identified, addressing realistically the uncertainties inherently present in modelling strategies. Visualization and data analysis techniques are successfully used in a wide variety of applications, both in theoretical and applied domains, but questions remains about their robustness, efficiency and applicability to the problems introduced before. The paper aims to analyze critically these topics by means of case studies, showing a possible path to create a multi-scale methodology able to synthesize all the relevant aspects.
Archivio Istituziona... arrow_drop_down Sustainable Cities and SocietyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2015.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Sustainable Cities and SocietyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scs.2015.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, Italy, Italy, ItalyPublisher:Elsevier BV Lamagna M.; Nastasi B.; Groppi D.; Rozain C.; Manfren M.; Astiaso Garcia D.;handle: 2108/356293 , 11573/1521601 , 2067/49239
Abstract Hydrogen is assuming a crescent role in the decarbonising initiatives. Moreover, hydrogen can supply the 3 most energy intense sectors, i.e. transport, heat and electricity, allowing the sector coupling. To do so, a production unit, the electrolyser, and a consumer one, the fuel cell, are needed. Actually, reversible Solid Oxide Cell technology presents the possibility to install only one device acting bi-directionally. It offers different advantages thank to its (i) compact design, thus ensuring space and cost savings; (ii) ability to meet thermal and electric demand, thus reducing emissions in both those sectors; (iii) possibility to store, the electricity excess coming from renewable sources in form of hydrogen, ensuring an unlimited and seasonal storage possibility. In this study, the deployment of a real reversible Solid Oxide Cell was simulated in different scenarios considering the data recorded in one year in the island of Procida, Italy. Up to date, the use of this technology was mostly relegated to the industrial sector or to prototype tests. While, this research aimed to analyse the functioning of near commercialization technology in civil environments such as hotels, offices and hospitals to understand its feasibility in this new context. It wants to be proved that advantages of this emerging technology can be exploited as well in the civil environment. Three economic indicators, i.e. Payback Period, Internal Return Rate and Net Present Value were selected to evaluate the simulated scenarios, while, the primary energy saving, the emission reduction and its storage efficacy were studied to evaluate the environmental achievements. To perform the simulations, the MATLAB model ConfigDym built by Sylfen was used. Finally, a sensitivity analysis in terms of economics was carried out. The results show an important decrease in emissions and an energy self-sufficiency increase of at least 29% and 58% respectively, differently the economic analysis returns a payback period currently near to its lifetime, while for the future a three years period is reachable.
e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della Ricerca - Università di Roma Tor vergataArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.113993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 41 citations 41 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della Ricerca - Università di Roma Tor vergataArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.113993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, Italy, Italy, ItalyPublisher:Elsevier BV Lamagna M.; Nastasi B.; Groppi D.; Rozain C.; Manfren M.; Astiaso Garcia D.;handle: 2108/356293 , 11573/1521601 , 2067/49239
Abstract Hydrogen is assuming a crescent role in the decarbonising initiatives. Moreover, hydrogen can supply the 3 most energy intense sectors, i.e. transport, heat and electricity, allowing the sector coupling. To do so, a production unit, the electrolyser, and a consumer one, the fuel cell, are needed. Actually, reversible Solid Oxide Cell technology presents the possibility to install only one device acting bi-directionally. It offers different advantages thank to its (i) compact design, thus ensuring space and cost savings; (ii) ability to meet thermal and electric demand, thus reducing emissions in both those sectors; (iii) possibility to store, the electricity excess coming from renewable sources in form of hydrogen, ensuring an unlimited and seasonal storage possibility. In this study, the deployment of a real reversible Solid Oxide Cell was simulated in different scenarios considering the data recorded in one year in the island of Procida, Italy. Up to date, the use of this technology was mostly relegated to the industrial sector or to prototype tests. While, this research aimed to analyse the functioning of near commercialization technology in civil environments such as hotels, offices and hospitals to understand its feasibility in this new context. It wants to be proved that advantages of this emerging technology can be exploited as well in the civil environment. Three economic indicators, i.e. Payback Period, Internal Return Rate and Net Present Value were selected to evaluate the simulated scenarios, while, the primary energy saving, the emission reduction and its storage efficacy were studied to evaluate the environmental achievements. To perform the simulations, the MATLAB model ConfigDym built by Sylfen was used. Finally, a sensitivity analysis in terms of economics was carried out. The results show an important decrease in emissions and an energy self-sufficiency increase of at least 29% and 58% respectively, differently the economic analysis returns a payback period currently near to its lifetime, while for the future a three years period is reachable.
e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della Ricerca - Università di Roma Tor vergataArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.113993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 41 citations 41 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della Ricerca - Università di Roma Tor vergataArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.113993&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United Kingdom, Italy, ItalyPublisher:Elsevier BV Authors: Manfren M.; Nastasi B.;handle: 2108/356368 , 11573/1686529
Accelerating the decarbonisation of the built environment necessitates increasing electrification of end-uses, which in turn poses the issue of rethinking the role of energy efficiency in conjunction with flexibility in grid interaction. This requires a better understanding of the electricity load profiles at hourly or sub-hourly intervals using techniques that are simple, reliable, and interpretable. To this extent, this study proposes a reformulation of the Time Of Week and Temperature modelling approach. This approach is able to separate the energy consumption dependence on building operational characteristics (Time Of Week) and on weather (outdoor air temperature), through a highly automated modelling workflow, necessitating minimal effort for model tuning. These features, along with its intrinsic interpretability due to its formulation using multivariate regression and the availability of open-source software, makes it an ideal starting point for applied research. The case study selected for the research is a fully electrified public building in Southern Italy. The building has been monitored for 5 years, before, during and after the COVID-19 lockdown. The novel model formulation is calibrated using hourly interval data with a Coefficient of Variation of Root Mean Square Error in the range of 20.0-28.5% throughout the various monitoring periods. The counterfactual analysis of electricity consumption indicates a 10.7-26.7% decrease in electricity consumption due to operational adjustments following COVID-19 lockdown, highlighting the impact of behavioural change. Finally, the possibility of additional workflow automation and enhanced interpretability is discussed.
Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2023License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2023Full-Text: https://hdl.handle.net/2108/356368Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.128490&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2023License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2023Full-Text: https://hdl.handle.net/2108/356368Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.128490&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United Kingdom, Italy, ItalyPublisher:Elsevier BV Authors: Manfren M.; Nastasi B.;handle: 2108/356368 , 11573/1686529
Accelerating the decarbonisation of the built environment necessitates increasing electrification of end-uses, which in turn poses the issue of rethinking the role of energy efficiency in conjunction with flexibility in grid interaction. This requires a better understanding of the electricity load profiles at hourly or sub-hourly intervals using techniques that are simple, reliable, and interpretable. To this extent, this study proposes a reformulation of the Time Of Week and Temperature modelling approach. This approach is able to separate the energy consumption dependence on building operational characteristics (Time Of Week) and on weather (outdoor air temperature), through a highly automated modelling workflow, necessitating minimal effort for model tuning. These features, along with its intrinsic interpretability due to its formulation using multivariate regression and the availability of open-source software, makes it an ideal starting point for applied research. The case study selected for the research is a fully electrified public building in Southern Italy. The building has been monitored for 5 years, before, during and after the COVID-19 lockdown. The novel model formulation is calibrated using hourly interval data with a Coefficient of Variation of Root Mean Square Error in the range of 20.0-28.5% throughout the various monitoring periods. The counterfactual analysis of electricity consumption indicates a 10.7-26.7% decrease in electricity consumption due to operational adjustments following COVID-19 lockdown, highlighting the impact of behavioural change. Finally, the possibility of additional workflow automation and enhanced interpretability is discussed.
Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2023License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2023Full-Text: https://hdl.handle.net/2108/356368Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.128490&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2023License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2023Full-Text: https://hdl.handle.net/2108/356368Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.128490&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Italy, United KingdomPublisher:MDPI AG Authors: Benedetto Nastasi; Massimiliano Manfren; Michel Noussan;doi: 10.3390/en14154413
handle: 11583/2977441 , 2108/356326 , 11573/1565641
An increasing number of data sources and models to handle them call for transparency and openness in assessing their goodness and practical use for people [...]
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoOther literature type . 2021License: CC BYData sources: Publications Open Repository TOrinoArchivio della Ricerca - Università di Roma Tor vergataArticle . 2021License: CC BY NDData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2021Full-Text: https://hdl.handle.net/2108/356326Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoOther literature type . 2021License: CC BYData sources: Publications Open Repository TOrinoArchivio della Ricerca - Università di Roma Tor vergataArticle . 2021License: CC BY NDData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2021Full-Text: https://hdl.handle.net/2108/356326Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Italy, United KingdomPublisher:MDPI AG Authors: Benedetto Nastasi; Massimiliano Manfren; Michel Noussan;doi: 10.3390/en14154413
handle: 11583/2977441 , 2108/356326 , 11573/1565641
An increasing number of data sources and models to handle them call for transparency and openness in assessing their goodness and practical use for people [...]
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoOther literature type . 2021License: CC BYData sources: Publications Open Repository TOrinoArchivio della Ricerca - Università di Roma Tor vergataArticle . 2021License: CC BY NDData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2021Full-Text: https://hdl.handle.net/2108/356326Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoOther literature type . 2021License: CC BYData sources: Publications Open Repository TOrinoArchivio della Ricerca - Università di Roma Tor vergataArticle . 2021License: CC BY NDData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2021License: CC BY NC NDData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2021Full-Text: https://hdl.handle.net/2108/356326Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2012 United Kingdom, Italy, ItalyPublisher:Elsevier BV Authors: ADHIKARI, RAJENDRA SINGH; ASTE, NICCOLO'; MANFREN, MASSIMILIANO;handle: 11311/653358
AbstractThe strong interconnection between human activities, energy use and pollution reduction strategies in contemporary society has determined the necessity of collecting scientific knowledge from different fields to provide useful methods and models to foster the transition towards more sustainable energy systems. This is a challenging task in particular for contemporary communities where an increasing demand for services is combined with rapidly changing lifestyles and habits. The Smart Grid concept is the result of a confluence of issues and a convergence of objectives, which include national energy security, climate change, pollution reduction, grid reliability, etc. While thinking about a paradigm shift in energy systems, drivers, characteristics, market segments, applications and other interconnected aspects must be taken into account simultaneously. In this context, the use of multi-commodity network flow models for dynamic energy management aims at finding a compromise between model usefulness, accuracy, flexibility, solvability and scalability in Smart Grid applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.12.1104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.12.1104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2012 United Kingdom, Italy, ItalyPublisher:Elsevier BV Authors: ADHIKARI, RAJENDRA SINGH; ASTE, NICCOLO'; MANFREN, MASSIMILIANO;handle: 11311/653358
AbstractThe strong interconnection between human activities, energy use and pollution reduction strategies in contemporary society has determined the necessity of collecting scientific knowledge from different fields to provide useful methods and models to foster the transition towards more sustainable energy systems. This is a challenging task in particular for contemporary communities where an increasing demand for services is combined with rapidly changing lifestyles and habits. The Smart Grid concept is the result of a confluence of issues and a convergence of objectives, which include national energy security, climate change, pollution reduction, grid reliability, etc. While thinking about a paradigm shift in energy systems, drivers, characteristics, market segments, applications and other interconnected aspects must be taken into account simultaneously. In this context, the use of multi-commodity network flow models for dynamic energy management aims at finding a compromise between model usefulness, accuracy, flexibility, solvability and scalability in Smart Grid applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.12.1104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.12.1104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United Kingdom, ItalyPublisher:Elsevier BV Authors: Manfren, M.;AbstractThe evolution of energy infrastructures towards a more distributed, adaptive, predictive and marketbased paradigm implies an effort on combining communication protocols and energy transmission and distribution systems in a common architecture. This architecture should allow decentralized control in order to be able to manage efficiently distributed generation, storage and exchange of energy between sources and sinks. Dynamic energy management models are a part of this “systems thinking” vision that aims to create a new field of applications that is at the intersection of computing science and energy technology. The broader implications associated with them are related with the possibility of creating communities that integrate energy supply and demand within a given region, in order to limit their impact. In order to push intelligence to the energy networks’ edges, up to individual sources and sinks, scalable and flexible distributed systems will have to be build. In this sense, data mining techniques and multicommodity network flow models can be combined for pattern detection, forecasting and optimization, which are essential features of dynamic energy management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.12.1105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 2visibility views 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.12.1105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United Kingdom, ItalyPublisher:Elsevier BV Authors: Manfren, M.;AbstractThe evolution of energy infrastructures towards a more distributed, adaptive, predictive and marketbased paradigm implies an effort on combining communication protocols and energy transmission and distribution systems in a common architecture. This architecture should allow decentralized control in order to be able to manage efficiently distributed generation, storage and exchange of energy between sources and sinks. Dynamic energy management models are a part of this “systems thinking” vision that aims to create a new field of applications that is at the intersection of computing science and energy technology. The broader implications associated with them are related with the possibility of creating communities that integrate energy supply and demand within a given region, in order to limit their impact. In order to push intelligence to the energy networks’ edges, up to individual sources and sinks, scalable and flexible distributed systems will have to be build. In this sense, data mining techniques and multicommodity network flow models can be combined for pattern detection, forecasting and optimization, which are essential features of dynamic energy management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.12.1105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 2visibility views 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.12.1105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Italy, United KingdomPublisher:Elsevier BV Authors: Massimiliano Manfren; Patrick AB James; Lamberto Tronchin;handle: 11585/890245
Data-driven building energy modelling techniques have proven to be effective in multiple applications. However, the debate around the possibility of generalisation is open. Generalisation involves the ability of a machine-learning model to adapt to previously unseen data and perform in a satisfactory way. Besides that, while machine-learning techniques are extremely powerful, interpretability, i.e. the ability for humans to predict how the model output will change in response to a change in input data or algorithmic parameters, is essential to attain a "human-in-the-loop" approach and creating feedback loops aimed at continuous improvement of efficiency measures in buildings. A flexible regression-based approach is developed and tested on a Passive House building in this study. The formulation employs dummy (binary) variables as a piecewise linearization method, and the rules for creating them are explicitly stated to ensure interpretability. Furthermore, the possibility of automating the model selection process using statistical indicators is described, including specific indicators used in Measurement and Verification (M&V) for the acceptance of calibrated energy models. The valuable insights that can be found using data-driven methods are reported and discussed, emphasising limitations and constraints, as well as the potential for future research focused on systems of (interpretable data-driven) models that can exploit the techniques' spatial and temporal scalability. Finally, the physical interpretation of model coefficients and the analytical formulations for energy model decomposition can be used to supplement the scalability of data-driven techniques and create more sophisticated systems of interconnected models.
Archivio istituziona... arrow_drop_down e-Prints SotonArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 62 citations 62 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down e-Prints SotonArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Italy, United KingdomPublisher:Elsevier BV Authors: Massimiliano Manfren; Patrick AB James; Lamberto Tronchin;handle: 11585/890245
Data-driven building energy modelling techniques have proven to be effective in multiple applications. However, the debate around the possibility of generalisation is open. Generalisation involves the ability of a machine-learning model to adapt to previously unseen data and perform in a satisfactory way. Besides that, while machine-learning techniques are extremely powerful, interpretability, i.e. the ability for humans to predict how the model output will change in response to a change in input data or algorithmic parameters, is essential to attain a "human-in-the-loop" approach and creating feedback loops aimed at continuous improvement of efficiency measures in buildings. A flexible regression-based approach is developed and tested on a Passive House building in this study. The formulation employs dummy (binary) variables as a piecewise linearization method, and the rules for creating them are explicitly stated to ensure interpretability. Furthermore, the possibility of automating the model selection process using statistical indicators is described, including specific indicators used in Measurement and Verification (M&V) for the acceptance of calibrated energy models. The valuable insights that can be found using data-driven methods are reported and discussed, emphasising limitations and constraints, as well as the potential for future research focused on systems of (interpretable data-driven) models that can exploit the techniques' spatial and temporal scalability. Finally, the physical interpretation of model coefficients and the analytical formulations for energy model decomposition can be used to supplement the scalability of data-driven techniques and create more sophisticated systems of interconnected models.
Archivio istituziona... arrow_drop_down e-Prints SotonArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 62 citations 62 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down e-Prints SotonArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112686&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Italy, United KingdomPublisher:Elsevier BV Authors: MANFREN, MASSIMILIANO; ASTE, NICCOLO'; R. Moshksar;handle: 11311/694220
Abstract In energy and environment field models are constructed, in general, based on well-defined physical phenomena and properties. Calibration and uncertainty analysis hold a particular interest because models represent a simplification of reality and, therefore, it is necessary to quantify to what degree they are imperfect before employing them in design, prediction and decision making processes. Integrated building energy models attempt to describe the effect of various internal and external actions (weather, occupancy, appliances, etc.) through physical relations (both algebraic and differential) and they are being widely used to design and operate high performance buildings, which are an essential component of a global energy strategy to reduce carbon emission and fossil sources depletion. An approach oriented to systems and able to integrate effectively field measured data and computer simulations for calibration in the modeling process has the potential to revolutionize the way buildings are designed and operated, and to stimulate also the development of new technologies and solutions in the field. The research presented in this paper aims to represent an initial step towards this integrated approach.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2012.10.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu180 citations 180 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2012.10.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Italy, United KingdomPublisher:Elsevier BV Authors: MANFREN, MASSIMILIANO; ASTE, NICCOLO'; R. Moshksar;handle: 11311/694220
Abstract In energy and environment field models are constructed, in general, based on well-defined physical phenomena and properties. Calibration and uncertainty analysis hold a particular interest because models represent a simplification of reality and, therefore, it is necessary to quantify to what degree they are imperfect before employing them in design, prediction and decision making processes. Integrated building energy models attempt to describe the effect of various internal and external actions (weather, occupancy, appliances, etc.) through physical relations (both algebraic and differential) and they are being widely used to design and operate high performance buildings, which are an essential component of a global energy strategy to reduce carbon emission and fossil sources depletion. An approach oriented to systems and able to integrate effectively field measured data and computer simulations for calibration in the modeling process has the potential to revolutionize the way buildings are designed and operated, and to stimulate also the development of new technologies and solutions in the field. The research presented in this paper aims to represent an initial step towards this integrated approach.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2012.10.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu180 citations 180 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2012.10.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United Kingdom, ItalyPublisher:Elsevier BV Authors: Enrico De Angelis; Fulvio Re Cecconi; Angelo Luigi Camillo Ciribini; Massimiliano Manfren; +2 AuthorsEnrico De Angelis; Fulvio Re Cecconi; Angelo Luigi Camillo Ciribini; Massimiliano Manfren; Massimiliano Manfren; Lavinia Chiara Tagliabue;handle: 11379/505052 , 11311/1024089 , 2318/1890264
The increased awareness on sustainability matters is contributing to the evolution of energy and environmental policies for the building sector at the EU level, oriented toward resource efficiency. There exist today several possible strategies to model building performance through the life cycle. The increase of available computational capacity and of data acquisition capability is opening new scenarios for practical applications, which can contribute to the reduction of the gap usually encountered between simulated and measured energy performance. This article aims to investigate an approach for probabilistic building performance simulation to be used across life cycle phases, employing reduced-order models for performance monitoring and energy management. The workflow proposed aims to establish a continuity among design and operation phases. Design phase simulation is generally subject to relevant temporal and economic constraints and a successful workflow should incorporate elements from current design practices but should also add new features, which have to be reasonably automated to reduce additional effort. Therefore, the workflow proposed is automated and tested for robustness using Monte Carlo technique. In the design phase, the approach can be used for identifying probabilistic performance bounds suitable for risk analysis in energy efficiency investments, employing cost-optimal or life cycle cost accounting methodologies. In the operation phase, it can be used for performance monitoring and energy management based on daily energy consumption analysis, similarly to other multivariate regression-based methods at the state of the art, addressing the problem of maintaining energy consumption and related costs constantly under control.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.05.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 53 citations 53 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.05.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United Kingdom, ItalyPublisher:Elsevier BV Authors: Enrico De Angelis; Fulvio Re Cecconi; Angelo Luigi Camillo Ciribini; Massimiliano Manfren; +2 AuthorsEnrico De Angelis; Fulvio Re Cecconi; Angelo Luigi Camillo Ciribini; Massimiliano Manfren; Massimiliano Manfren; Lavinia Chiara Tagliabue;handle: 11379/505052 , 11311/1024089 , 2318/1890264
The increased awareness on sustainability matters is contributing to the evolution of energy and environmental policies for the building sector at the EU level, oriented toward resource efficiency. There exist today several possible strategies to model building performance through the life cycle. The increase of available computational capacity and of data acquisition capability is opening new scenarios for practical applications, which can contribute to the reduction of the gap usually encountered between simulated and measured energy performance. This article aims to investigate an approach for probabilistic building performance simulation to be used across life cycle phases, employing reduced-order models for performance monitoring and energy management. The workflow proposed aims to establish a continuity among design and operation phases. Design phase simulation is generally subject to relevant temporal and economic constraints and a successful workflow should incorporate elements from current design practices but should also add new features, which have to be reasonably automated to reduce additional effort. Therefore, the workflow proposed is automated and tested for robustness using Monte Carlo technique. In the design phase, the approach can be used for identifying probabilistic performance bounds suitable for risk analysis in energy efficiency investments, employing cost-optimal or life cycle cost accounting methodologies. In the operation phase, it can be used for performance monitoring and energy management based on daily energy consumption analysis, similarly to other multivariate regression-based methods at the state of the art, addressing the problem of maintaining energy consumption and related costs constantly under control.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.05.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 53 citations 53 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.05.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu