- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Wiley Funded by:FCT | Untitled Seabird migratio..., FCT | SFRH/BD/85017/2012, FCT | MARE - Marine and Environ...FCT| Untitled Seabird migrations: ontogenetic development, causes of intra and inter-specific variability and relevance for ocean monitoring and marine spatial planning ,FCT| SFRH/BD/85017/2012 ,FCT| MARE - Marine and Environmental Sciences CentreAna R. Patrício; Miguel R. Varela; Castro Barbosa; Annette C. Broderick; Paulo Catry; Lucy A. Hawkes; Aissa Regalla; Brendan J. Godley;AbstractFew studies have looked into climate change resilience of populations of wild animals. We use a model higher vertebrate, the green sea turtle, as its life history is fundamentally affected by climatic conditions, including temperature‐dependent sex determination and obligate use of beaches subject to sea level rise (SLR). We use empirical data from a globally important population in West Africa to assess resistance to climate change within a quantitative framework. We project 200 years of primary sex ratios (1900–2100) and create a digital elevation model of the nesting beach to estimate impacts of projected SLR. Primary sex ratio is currently almost balanced, with 52% of hatchlings produced being female. Under IPCC models, we predict: (a) an increase in the proportion of females by 2100 to 76%–93%, but cooler temperatures, both at the end of the nesting season and in shaded areas, will guarantee male hatchling production; (b) IPCC SLR scenarios will lead to 33.4%–43.0% loss of the current nesting area; (c) climate change will contribute to population growth through population feminization, with 32%–64% more nesting females expected by 2120; (d) as incubation temperatures approach lethal levels, however, the population will cease growing and start to decline. Taken together with other factors (degree of foraging plasticity, rookery size and trajectory, and prevailing threats), this nesting population should resist climate change until 2100, and the availability of spatial and temporal microrefugia indicates potential for resilience to predicted impacts, through the evolution of nest site selection or changes in nesting phenology. This represents the most comprehensive assessment to date of climate change resilience of a marine reptile using the most up‐to‐date IPCC models, appraising the impacts of temperature and SLR, integrated with additional ecological and demographic parameters. We suggest this as a framework for other populations, species and taxa.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu61 citations 61 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2011 United KingdomPublisher:The Royal Society Weber, SB; Broderick, Annette C.; Groothuis, TG; Ellick, J; Godley, BJ; Blount, Jonathan D.;pmid: 21937495
pmc: PMC3267129
The effect of climate warming on the reproductive success of ectothermic animals is currently a subject of major conservation concern. However, for many threatened species, we still know surprisingly little about the extent of naturally occurring adaptive variation in heat-tolerance. Here, we show that the thermal tolerances of green turtle ( Chelonia mydas ) embryos in a single, island-breeding population have diverged in response to the contrasting incubation temperatures of nesting beaches just a few kilometres apart. In natural nests and in a common-garden rearing experiment, the offspring of females nesting on a naturally hot (black sand) beach survived better and grew larger at hot incubation temperatures compared with the offspring of females nesting on a cooler (pale sand) beach nearby. These differences were owing to shallower thermal reaction norms in the hot beach population, rather than shifts in thermal optima, and could not be explained by egg-mediated maternal effects. Our results suggest that marine turtle nesting behaviour can drive adaptive differentiation at remarkably fine spatial scales, and have important implications for how we define conservation units for protection. In particular, previous studies may have underestimated the extent of adaptive structuring in marine turtle populations that may significantly affect their capacity to respond to environmental change.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2012License: CC BYFull-Text: http://www.ncbi.nlm.nih.gov/pubmed/21937495Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallProceedings of the Royal Society B Biological SciencesArticle . 2012License: CC BYData sources: University of Groningen Research PortalProceedings of the Royal Society B Biological SciencesArticle . 2011 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2012Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2012Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2011.1238&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 81 citations 81 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2012License: CC BYFull-Text: http://www.ncbi.nlm.nih.gov/pubmed/21937495Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallProceedings of the Royal Society B Biological SciencesArticle . 2012License: CC BYData sources: University of Groningen Research PortalProceedings of the Royal Society B Biological SciencesArticle . 2011 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2012Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2012Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2011.1238&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Portugal, Turkey, Turkey, Spain, Morocco, Turkey, Spain, France, Qatar, Turkey, PortugalPublisher:Wiley Publicly fundedFunded by:NSF | Collaborative research: ...NSF| Collaborative research: Mating systems as mechanisms for resilience of species in which the environment determines whether they become male or femaleAuthors: Mariana M. P. B. Fuentes; Armando José Barsante Santos; F. Alberto Abreu‐Grobois; Raquel Briseño-Dueñas; +70 AuthorsMariana M. P. B. Fuentes; Armando José Barsante Santos; F. Alberto Abreu‐Grobois; Raquel Briseño-Dueñas; Jassim A. Al‐Khayat; S. Hamza; Sally Saliba; D.P. Anderson; Kirt W. Rusenko; Nicola J. Mitchell; Malindi Gammon; Blair P. Bentley; Damla Beton; David T. Booth; Annette C. Broderick; Liliana P. Colman; Robin T. E. Snape; M.F. Calderón-Campuzano; Eduardo Cuevas; Melania C. López‐Castro; C. D. Flores‐Aguirre; Fausto R. Méndez‐de la Cruz; Y. Segura‐Garcia; A. Ruiz‐Garcia; Sabrina Fossette; Christopher R. Gatto; Richard D. Reina; Marc Girondot; Matthew H Godfrey; Vicente Guzmán‐Hernández; Catherine E. Hart; Yakup Kaska; Paulo Lara; Maria Ângela Marcovaldi; Anne Marie LeBlanc; David C. Rostal; Michael J. Liles; Jeanette Wyneken; Alexandra Lolavar; Sean A. Williamson; Muralidharan Manoharakrishnan; Chandana Pusapati; Mark Chatting; Salwa Mohd Salleh; Rita Patrício; Aissa Regalla; J. Restrepo; Rosa Giménez García; Pilar Santidrián Tomillo; Çisem Sezgin; Kartik Shanker; F Tapilatu; Oğuz Türkozan; Roldán A. Valverde; Kim Williams; Can Yılmaz; N Tolen; R Nel; Jiří Tuček; D.Z.M.Le Gouvello; Marga L. Rivas; Clara Gaspar; Margaux Touron; Quentin Genet; Michael Salmon; Maria Araújo; Jordana Borini Freire; Vinícius Davel Castheloge; Paulo Roberto Jesus Filho; Paulo Dias Ferreira; Frank V. Paladino; D. Montero‐Flores; Doğan Sözbilen; Jonathan Monsinjon;pmid: 37905464
handle: 11499/54832 , 10261/361142 , 10576/51187 , 10400.12/9630
AbstractSea turtles are vulnerable to climate change since their reproductive output is influenced by incubating temperatures, with warmer temperatures causing lower hatching success and increased feminization of embryos. Their ability to cope with projected increases in ambient temperatures will depend on their capacity to adapt to shifts in climatic regimes. Here, we assessed the extent to which phenological shifts could mitigate impacts from increases in ambient temperatures (from 1.5 to 3°C in air temperatures and from 1.4 to 2.3°C in sea surface temperatures by 2100 at our sites) on four species of sea turtles, under a “middle of the road” scenario (SSP2‐4.5). Sand temperatures at sea turtle nesting sites are projected to increase from 0.58 to 4.17°C by 2100 and expected shifts in nesting of 26–43 days earlier will not be sufficient to maintain current incubation temperatures at 7 (29%) of our sites, hatching success rates at 10 (42%) of our sites, with current trends in hatchling sex ratio being able to be maintained at half of the sites. We also calculated the phenological shifts that would be required (both backward for an earlier shift in nesting and forward for a later shift) to keep up with present‐day incubation temperatures, hatching success rates, and sex ratios. The required shifts backward in nesting for incubation temperatures ranged from −20 to −191 days, whereas the required shifts forward ranged from +54 to +180 days. However, for half of the sites, no matter the shift the median incubation temperature will always be warmer than the 75th percentile of current ranges. Given that phenological shifts will not be able to ameliorate predicted changes in temperature, hatching success and sex ratio at most sites, turtles may need to use other adaptive responses and/or there is the need to enhance sea turtle resilience to climate warming.
Pamukkale University... arrow_drop_down Pamukkale University RepositoryArticle . 2023Full-Text: https://hdl.handle.net/11499/54832Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAQatar University Institutional RepositoryArticle . 2024Data sources: Qatar University Institutional RepositoryRepositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2024License: CC BYArchiMer - Institutional Archive of IfremerOther literature type . 2024Data sources: ArchiMer - Institutional Archive of IfremerQatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 57visibility views 57 download downloads 61 Powered bymore_vert Pamukkale University... arrow_drop_down Pamukkale University RepositoryArticle . 2023Full-Text: https://hdl.handle.net/11499/54832Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAQatar University Institutional RepositoryArticle . 2024Data sources: Qatar University Institutional RepositoryRepositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2024License: CC BYArchiMer - Institutional Archive of IfremerOther literature type . 2024Data sources: ArchiMer - Institutional Archive of IfremerQatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 United KingdomPublisher:The Company of Biologists Witt, MJ; Hawkes, LA; Godfrey, MH; Broderick, Annette C.; Godley, BJ;SUMMARY Marine turtles utilise terrestrial and marine habitats and several aspects of their life history are tied to environmental features that are altering due to rapid climate change. We overview the likely impacts of climate change on the biology of these species, which are likely centred upon the thermal ecology of this taxonomic group. Then, focusing in detail on three decades of research on the loggerhead turtle (Caretta caretta L.), we describe how much progress has been made to date and how future experimental and ecological focus should be directed. Key questions include: what are the current hatchling sex ratios from which to measure future climate-induced changes? What are wild adult sex ratios and how many males are necessary to maintain a fertile and productive population? How will climate change affect turtles in terms of their distribution?
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1242/jeb.038133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 169 citations 169 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1242/jeb.038133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:The Royal Society Lucy I. Wright; Annette C. Broderick; Robin T. E. Snape; Tom Tregenza; Brendan J. Godley; Andrew McGowan; Wayne J. Fuller; K. L. Stokes;For organisms with temperature-dependent sex determination (TSD), skewed offspring sex ratios are common. However, climate warming poses the unique threat of producing extreme sex ratio biases that could ultimately lead to population extinctions. In marine turtles, highly female-skewed hatchling sex ratios already occur and predicted increases in global temperatures are expected to exacerbate this trend, unless species can adapt. However, it is not known whether offspring sex ratios persist into adulthood, or whether variation in male mating success intensifies the impact of a shortage of males on effective population size. Here, we use parentage analysis to show that in a rookery of the endangered green turtle ( Chelonia mydas ), despite an offspring sex ratio of 95 per cent females, there were at least 1.4 reproductive males to every breeding female. Our results suggest that male reproductive intervals may be shorter than the 2–4 years typical for females, and/or that males move between aggregations of receptive females, an inference supported by our satellite tracking, which shows that male turtles may visit multiple rookeries. We suggest that male mating patterns have the potential to buffer the disruptive effects of climate change on marine turtle populations, many of which are already seriously threatened.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2012 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2012Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2011.2285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 82 citations 82 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2012 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2012Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2011.2285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Turkey, Italy, Spain, FrancePublisher:Elsevier BV Funded by:EC | FutureMARESEC| FutureMARESAntonios D. Mazaris; Charalampos Dimitriadis; Maria Papazekou; Gail Schofield; Aggeliki Doxa; Anastasia Chatzimentor; Oguz Turkozan; Stelios Katsanevakis; Aphrodite Lioliou; Sara Abalo-Morla; Mustapha Aksissou; Antonella Arcangeli; Vincent Attard; Hedia Attia El Hili; Fabrizio Atzori; Eduardo J. Belda; Lobna Ben Nakhla; Ali A. Berbash; Karen A. Bjorndal; Annette C. Broderick; Juan A. Camiñas; Onur Candan; Luis Cardona; Ilija Cetkovic; Nabigha Dakik; Giuseppe Andrea de Lucia; Panayiotis G. Dimitrakopoulos; Salih Diryaq; Costanza Favilli; Caterina Maria Fortuna; Wayne J. Fuller; Susan Gallon; Abdulmaula Hamza; Imed Jribi; Manel Ben Ismail; Yiannis Kamarianakis; Yakup Kaska; Kastriot Korro; Drosos Koutsoubas; Giancarlo Lauriano; Bojan Lazar; David March; Adolfo Marco; Charikleia Minotou; Jonathan R. Monsinjon; Nahla M. Naguib; Andreas Palialexis; Vilma Piroli; Karaa Sami; Bektaş Sönmez; Laurent Sourbès; Doğan Sözbilen; Frederic Vandeperre; Pierre Vignes; Michail Xanthakis; Vera Köpsel; Myron A. Peck;pmid: 37043912
handle: 11499/51255 , 20.500.14243/539039 , 10261/309826
As climate-related impacts threaten marine biodiversity globally, it is important to adjust conservation efforts to mitigate the effects of climate change. Translating scientific knowledge into practical management, however, is often complicated due to resource, economic and policy constraints, generating a knowledge-action gap. To develop potential solutions for marine turtle conservation, we explored the perceptions of key actors across 18 countries in the Mediterranean. These actors evaluated their perceived relative importance of 19 adaptation and mitigation measures that could safeguard marine turtles from climate change. Of importance, despite differences in expertise, experience and focal country, the perceptions of researchers and management practitioners largely converged with respect to prioritizing adaptation and mitigation measures. Climate change was considered to have the greatest impacts on offspring sex ratios and suitable nesting sites. The most viable adaptation/mitigation measures were considered to be reducing other pressures that act in parallel to climate change. Ecological effectiveness represented a key determinant for implementing proposed measures, followed by practical applicability, financial cost, and societal cost. This convergence in opinions across actors likely reflects long-standing initiatives in the Mediterranean region towards supporting knowledge exchange in marine turtle conservation. Our results provide important guidance on how to prioritize measures that incorporate climate change in decision-making processes related to the current and future management and protection of marine turtles at the ocean-basin scale, and could be used to guide decisions in other regions globally. Importantly, this study demonstrates a successful example of how interactive processes can be used to fill the knowledge-action gap between research and management.
Pamukkale University... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAJournal of Environmental ManagementArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJournal of Environmental ManagementArticle . 2023Data sources: Croatian Research Information SystemJournal of Environmental ManagementArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2023.117805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 64visibility views 64 download downloads 387 Powered bymore_vert Pamukkale University... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAJournal of Environmental ManagementArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJournal of Environmental ManagementArticle . 2023Data sources: Croatian Research Information SystemJournal of Environmental ManagementArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2023.117805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, Portugal, PortugalPublisher:Wiley Leon DeBell; Dominic Tilley; Karen Anderson; Annette C. Broderick; Miguel R. Varela; Matthew J. Westoby; Lucy A. Hawkes; Ana R. Patrício; Ana R. Patrício; Brendan J. Godley; Robin T. E. Snape;AbstractClimate change associated sea‐level rise (SLR) is expected to have profound impacts on coastal areas, affecting many species, including sea turtles which depend on these habitats for egg incubation. Being able to accurately model beach topography using digital terrain models (DTMs) is therefore crucial to project SLR impacts and develop effective conservation strategies. Traditional survey methods are typically low‐cost with low accuracy or high‐cost with high accuracy. We present a novel combination of drone‐based photogrammetry and a low‐cost and portable real‐time kinematic (RTK) GPS to create DTMs which are highly accurate (<10 cm error) and visually realistic. This methodology is ideal for surveying coastal sites, can be broadly applied to other species and habitats, and is a relevant tool in supporting the development of Specially Protected Areas. Here, we applied this method as a case‐study to project three SLR scenarios (0.48, 0.63 and 1.20 m) and assess the future vulnerability and viability of a key nesting habitat for sympatric loggerhead (Caretta caretta) and green turtle (Chelonia mydas) at a key rookery in the Mediterranean. We combined the DTM with 5 years of nest survey data describing location and clutch depth, to identify (a) regions with highest nest densities, (b) nest elevation by species and beach, and (c) estimated proportion of nests inundated under each SLR scenario. On average, green turtles nested at higher elevations than loggerheads (1.8 m vs. 1.32 m, respectively). However, because green turtles dig deeper nests than loggerheads (0.76 m vs. 0.50 m, respectively), these were at similar risk of inundation. For a SLR of 1.2 m, we estimated a loss of 67.3% for loggerhead turtle nests and 59.1% for green turtle nests. Existing natural and artificial barriers may affect the ability of these nesting habitats to remain suitable for nesting through beach migration.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 1 Powered bymore_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 PortugalPublisher:Elsevier BV Funded by:FCT | UI 329 - 2014, FCT | SFRH/BD/85017/2012, FCT | MARE - Marine and Environ...FCT| UI 329 - 2014 ,FCT| SFRH/BD/85017/2012 ,FCT| MARE - Marine and Environmental Sciences CentreCastro Barbosa; Annette C. Broderick; Miguel R. Varela; Paulo Catry; Aissa Regalla; Brendan J. Godley; Ana R. Patrício; Ana R. Patrício; Dominic Tilley; Maria B. Ferreira Airaud;Nest site selection is a critical behaviour, particularly in species with no parental care, as it can greatly impact offspring survival. Marine turtles depend on sandy beaches to nest, where they select from a range of microhabitats that may differently affect hatchling survival and phenotype. Here we describe the degree of nest site selection at one of the largest green turtle rookeries globally, in Guinea-Bissau, West Africa, and how this impacts offspring. In 2013 and 2014 we recorded the spatial distribution of 1559 nests, and monitored 657 females during oviposition, to assess population and individual preferences on nesting site. Overall, females tended to nest close to the vegetation, at a preferred elevation of 4.8–5.0 m, which was above the highest spring tide (4.7 m), enhancing clutch survival. Individuals displayed high repeatability in nesting microhabitat type (open sand, forest border and forest), distance along the beach, distance to the vegetation and elevation, which may result from this behaviour having a genetic basis or from fine-scale nest site philopatry. Hatchlings from cooler nests were larger, potentially dispersing faster and more able to evade predators, while smaller hatchlings, from warmer nests, retained more energetic reserves (residual yolk), which may also be advantageous for initial dispersal, particularly if food is scarce. Thus, individual preferences in nest site selection led to trade-offs in offspring phenotype, but overall, most nesting females selected sites that increased offspring survival, suggesting that nest site selection is an adaptive trait that has been under selection. As under future climate change scenarios females nesting in upper shaded areas should have higher fitness, individual consistency in nesting microhabitat provides opportunity for natural selection to occur.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anbehav.2018.03.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anbehav.2018.03.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 Australia, United KingdomPublisher:Wiley Karen A. Bjorndal; Milani Chaloupka; Vincent S. Saba; Carlos Estepa Díez; Robert P. van Dam; Barry H. Krueger; Julia A. Horrocks; Armando José Barsante Santos; Cláudio Bellini; Maria Ângela Marcovaldi; Mabel Nava; Sue Willis; Brendan J. Godley; Shannon Gore; Lucy A. Hawkes; Andrew McGowan; Matthew J. Witt; Thomas B. Stringell; Amdeep Sanghera; Peter B. Richardson; Annette C. Broderick; Quinton Phillips; Marta C. Calosso; John A. B. Claydon; Janice Blumenthal; Félix Moncada; Gonzalo Nodarse; Yosvani Medina; Stephen G. Dunbar; Lawrence D. Wood; Cynthia J. Lagueux; Cathi L. Campbell; Anne B. Meylan; Peter A. Meylan; Virginia R. Burns Perez; Robin Coleman; Samantha Strindberg; Vicente Guzmán‐H.; Kristen M. Hart; Michael S. Cherkiss; Zandy Hillis‐Starr; Ian Lundgren; Ralf H. Boulon; Stephen Connett; Mark E. Outerbridge; Alan B. Bolten;handle: 10871/22024
AbstractSomatic growth dynamics are an integrated response to environmental conditions. Hawksbill sea turtles (Eretmochelys imbricata) are long‐lived, major consumers in coral reef habitats that move over broad geographic areas (hundreds to thousands of kilometers). We evaluated spatio‐temporal effects on hawksbill growth dynamics over a 33‐yr period and 24 study sites throughout the West Atlantic and explored relationships between growth dynamics and climate indices. We compiled the largest ever data set on somatic growth rates for hawksbills – 3541 growth increments from 1980 to 2013. Using generalized additive mixed model analyses, we evaluated 10 covariates, including spatial and temporal variation, that could affect growth rates. Growth rates throughout the region responded similarly over space and time. The lack of a spatial effect or spatio‐temporal interaction and the very strong temporal effect reveal that growth rates in West Atlantic hawksbills are likely driven by region‐wide forces. Between 1997 and 2013, mean growth rates declined significantly and steadily by 18%. Regional climate indices have significant relationships with annual growth rates with 0‐ or 1‐yr lags: positive with the Multivariate El Niño Southern Oscillation Index (correlation = 0.99) and negative with Caribbean sea surface temperature (correlation = −0.85). Declines in growth rates between 1997 and 2013 throughout the West Atlantic most likely resulted from warming waters through indirect negative effects on foraging resources of hawksbills. These climatic influences are complex. With increasing temperatures, trajectories of decline of coral cover and availability in reef habitats of major prey species of hawksbills are not parallel. Knowledge of how choice of foraging habitats, prey selection, and prey abundance are affected by warming water temperatures is needed to understand how climate change will affect productivity of consumers that live in association with coral reefs.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10871/22024Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecs2.1279&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 117 citations 117 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10871/22024Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecs2.1279&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Wiley Funded by:FCT | Untitled Seabird migratio..., FCT | SFRH/BD/85017/2012, FCT | MARE - Marine and Environ...FCT| Untitled Seabird migrations: ontogenetic development, causes of intra and inter-specific variability and relevance for ocean monitoring and marine spatial planning ,FCT| SFRH/BD/85017/2012 ,FCT| MARE - Marine and Environmental Sciences CentreAna R. Patrício; Miguel R. Varela; Castro Barbosa; Annette C. Broderick; Paulo Catry; Lucy A. Hawkes; Aissa Regalla; Brendan J. Godley;AbstractFew studies have looked into climate change resilience of populations of wild animals. We use a model higher vertebrate, the green sea turtle, as its life history is fundamentally affected by climatic conditions, including temperature‐dependent sex determination and obligate use of beaches subject to sea level rise (SLR). We use empirical data from a globally important population in West Africa to assess resistance to climate change within a quantitative framework. We project 200 years of primary sex ratios (1900–2100) and create a digital elevation model of the nesting beach to estimate impacts of projected SLR. Primary sex ratio is currently almost balanced, with 52% of hatchlings produced being female. Under IPCC models, we predict: (a) an increase in the proportion of females by 2100 to 76%–93%, but cooler temperatures, both at the end of the nesting season and in shaded areas, will guarantee male hatchling production; (b) IPCC SLR scenarios will lead to 33.4%–43.0% loss of the current nesting area; (c) climate change will contribute to population growth through population feminization, with 32%–64% more nesting females expected by 2120; (d) as incubation temperatures approach lethal levels, however, the population will cease growing and start to decline. Taken together with other factors (degree of foraging plasticity, rookery size and trajectory, and prevailing threats), this nesting population should resist climate change until 2100, and the availability of spatial and temporal microrefugia indicates potential for resilience to predicted impacts, through the evolution of nest site selection or changes in nesting phenology. This represents the most comprehensive assessment to date of climate change resilience of a marine reptile using the most up‐to‐date IPCC models, appraising the impacts of temperature and SLR, integrated with additional ecological and demographic parameters. We suggest this as a framework for other populations, species and taxa.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu61 citations 61 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2011 United KingdomPublisher:The Royal Society Weber, SB; Broderick, Annette C.; Groothuis, TG; Ellick, J; Godley, BJ; Blount, Jonathan D.;pmid: 21937495
pmc: PMC3267129
The effect of climate warming on the reproductive success of ectothermic animals is currently a subject of major conservation concern. However, for many threatened species, we still know surprisingly little about the extent of naturally occurring adaptive variation in heat-tolerance. Here, we show that the thermal tolerances of green turtle ( Chelonia mydas ) embryos in a single, island-breeding population have diverged in response to the contrasting incubation temperatures of nesting beaches just a few kilometres apart. In natural nests and in a common-garden rearing experiment, the offspring of females nesting on a naturally hot (black sand) beach survived better and grew larger at hot incubation temperatures compared with the offspring of females nesting on a cooler (pale sand) beach nearby. These differences were owing to shallower thermal reaction norms in the hot beach population, rather than shifts in thermal optima, and could not be explained by egg-mediated maternal effects. Our results suggest that marine turtle nesting behaviour can drive adaptive differentiation at remarkably fine spatial scales, and have important implications for how we define conservation units for protection. In particular, previous studies may have underestimated the extent of adaptive structuring in marine turtle populations that may significantly affect their capacity to respond to environmental change.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2012License: CC BYFull-Text: http://www.ncbi.nlm.nih.gov/pubmed/21937495Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallProceedings of the Royal Society B Biological SciencesArticle . 2012License: CC BYData sources: University of Groningen Research PortalProceedings of the Royal Society B Biological SciencesArticle . 2011 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2012Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2012Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2011.1238&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 81 citations 81 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2012License: CC BYFull-Text: http://www.ncbi.nlm.nih.gov/pubmed/21937495Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallProceedings of the Royal Society B Biological SciencesArticle . 2012License: CC BYData sources: University of Groningen Research PortalProceedings of the Royal Society B Biological SciencesArticle . 2011 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2012Data sources: DANS (Data Archiving and Networked Services)Proceedings of the Royal Society B Biological SciencesArticle . 2012Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2011.1238&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Portugal, Turkey, Turkey, Spain, Morocco, Turkey, Spain, France, Qatar, Turkey, PortugalPublisher:Wiley Publicly fundedFunded by:NSF | Collaborative research: ...NSF| Collaborative research: Mating systems as mechanisms for resilience of species in which the environment determines whether they become male or femaleAuthors: Mariana M. P. B. Fuentes; Armando José Barsante Santos; F. Alberto Abreu‐Grobois; Raquel Briseño-Dueñas; +70 AuthorsMariana M. P. B. Fuentes; Armando José Barsante Santos; F. Alberto Abreu‐Grobois; Raquel Briseño-Dueñas; Jassim A. Al‐Khayat; S. Hamza; Sally Saliba; D.P. Anderson; Kirt W. Rusenko; Nicola J. Mitchell; Malindi Gammon; Blair P. Bentley; Damla Beton; David T. Booth; Annette C. Broderick; Liliana P. Colman; Robin T. E. Snape; M.F. Calderón-Campuzano; Eduardo Cuevas; Melania C. López‐Castro; C. D. Flores‐Aguirre; Fausto R. Méndez‐de la Cruz; Y. Segura‐Garcia; A. Ruiz‐Garcia; Sabrina Fossette; Christopher R. Gatto; Richard D. Reina; Marc Girondot; Matthew H Godfrey; Vicente Guzmán‐Hernández; Catherine E. Hart; Yakup Kaska; Paulo Lara; Maria Ângela Marcovaldi; Anne Marie LeBlanc; David C. Rostal; Michael J. Liles; Jeanette Wyneken; Alexandra Lolavar; Sean A. Williamson; Muralidharan Manoharakrishnan; Chandana Pusapati; Mark Chatting; Salwa Mohd Salleh; Rita Patrício; Aissa Regalla; J. Restrepo; Rosa Giménez García; Pilar Santidrián Tomillo; Çisem Sezgin; Kartik Shanker; F Tapilatu; Oğuz Türkozan; Roldán A. Valverde; Kim Williams; Can Yılmaz; N Tolen; R Nel; Jiří Tuček; D.Z.M.Le Gouvello; Marga L. Rivas; Clara Gaspar; Margaux Touron; Quentin Genet; Michael Salmon; Maria Araújo; Jordana Borini Freire; Vinícius Davel Castheloge; Paulo Roberto Jesus Filho; Paulo Dias Ferreira; Frank V. Paladino; D. Montero‐Flores; Doğan Sözbilen; Jonathan Monsinjon;pmid: 37905464
handle: 11499/54832 , 10261/361142 , 10576/51187 , 10400.12/9630
AbstractSea turtles are vulnerable to climate change since their reproductive output is influenced by incubating temperatures, with warmer temperatures causing lower hatching success and increased feminization of embryos. Their ability to cope with projected increases in ambient temperatures will depend on their capacity to adapt to shifts in climatic regimes. Here, we assessed the extent to which phenological shifts could mitigate impacts from increases in ambient temperatures (from 1.5 to 3°C in air temperatures and from 1.4 to 2.3°C in sea surface temperatures by 2100 at our sites) on four species of sea turtles, under a “middle of the road” scenario (SSP2‐4.5). Sand temperatures at sea turtle nesting sites are projected to increase from 0.58 to 4.17°C by 2100 and expected shifts in nesting of 26–43 days earlier will not be sufficient to maintain current incubation temperatures at 7 (29%) of our sites, hatching success rates at 10 (42%) of our sites, with current trends in hatchling sex ratio being able to be maintained at half of the sites. We also calculated the phenological shifts that would be required (both backward for an earlier shift in nesting and forward for a later shift) to keep up with present‐day incubation temperatures, hatching success rates, and sex ratios. The required shifts backward in nesting for incubation temperatures ranged from −20 to −191 days, whereas the required shifts forward ranged from +54 to +180 days. However, for half of the sites, no matter the shift the median incubation temperature will always be warmer than the 75th percentile of current ranges. Given that phenological shifts will not be able to ameliorate predicted changes in temperature, hatching success and sex ratio at most sites, turtles may need to use other adaptive responses and/or there is the need to enhance sea turtle resilience to climate warming.
Pamukkale University... arrow_drop_down Pamukkale University RepositoryArticle . 2023Full-Text: https://hdl.handle.net/11499/54832Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAQatar University Institutional RepositoryArticle . 2024Data sources: Qatar University Institutional RepositoryRepositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2024License: CC BYArchiMer - Institutional Archive of IfremerOther literature type . 2024Data sources: ArchiMer - Institutional Archive of IfremerQatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 57visibility views 57 download downloads 61 Powered bymore_vert Pamukkale University... arrow_drop_down Pamukkale University RepositoryArticle . 2023Full-Text: https://hdl.handle.net/11499/54832Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAQatar University Institutional RepositoryArticle . 2024Data sources: Qatar University Institutional RepositoryRepositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2024License: CC BYArchiMer - Institutional Archive of IfremerOther literature type . 2024Data sources: ArchiMer - Institutional Archive of IfremerQatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 United KingdomPublisher:The Company of Biologists Witt, MJ; Hawkes, LA; Godfrey, MH; Broderick, Annette C.; Godley, BJ;SUMMARY Marine turtles utilise terrestrial and marine habitats and several aspects of their life history are tied to environmental features that are altering due to rapid climate change. We overview the likely impacts of climate change on the biology of these species, which are likely centred upon the thermal ecology of this taxonomic group. Then, focusing in detail on three decades of research on the loggerhead turtle (Caretta caretta L.), we describe how much progress has been made to date and how future experimental and ecological focus should be directed. Key questions include: what are the current hatchling sex ratios from which to measure future climate-induced changes? What are wild adult sex ratios and how many males are necessary to maintain a fertile and productive population? How will climate change affect turtles in terms of their distribution?
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1242/jeb.038133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 169 citations 169 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1242/jeb.038133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:The Royal Society Lucy I. Wright; Annette C. Broderick; Robin T. E. Snape; Tom Tregenza; Brendan J. Godley; Andrew McGowan; Wayne J. Fuller; K. L. Stokes;For organisms with temperature-dependent sex determination (TSD), skewed offspring sex ratios are common. However, climate warming poses the unique threat of producing extreme sex ratio biases that could ultimately lead to population extinctions. In marine turtles, highly female-skewed hatchling sex ratios already occur and predicted increases in global temperatures are expected to exacerbate this trend, unless species can adapt. However, it is not known whether offspring sex ratios persist into adulthood, or whether variation in male mating success intensifies the impact of a shortage of males on effective population size. Here, we use parentage analysis to show that in a rookery of the endangered green turtle ( Chelonia mydas ), despite an offspring sex ratio of 95 per cent females, there were at least 1.4 reproductive males to every breeding female. Our results suggest that male reproductive intervals may be shorter than the 2–4 years typical for females, and/or that males move between aggregations of receptive females, an inference supported by our satellite tracking, which shows that male turtles may visit multiple rookeries. We suggest that male mating patterns have the potential to buffer the disruptive effects of climate change on marine turtle populations, many of which are already seriously threatened.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2012 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2012Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2011.2285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 82 citations 82 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2012 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2012Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2011.2285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Turkey, Italy, Spain, FrancePublisher:Elsevier BV Funded by:EC | FutureMARESEC| FutureMARESAntonios D. Mazaris; Charalampos Dimitriadis; Maria Papazekou; Gail Schofield; Aggeliki Doxa; Anastasia Chatzimentor; Oguz Turkozan; Stelios Katsanevakis; Aphrodite Lioliou; Sara Abalo-Morla; Mustapha Aksissou; Antonella Arcangeli; Vincent Attard; Hedia Attia El Hili; Fabrizio Atzori; Eduardo J. Belda; Lobna Ben Nakhla; Ali A. Berbash; Karen A. Bjorndal; Annette C. Broderick; Juan A. Camiñas; Onur Candan; Luis Cardona; Ilija Cetkovic; Nabigha Dakik; Giuseppe Andrea de Lucia; Panayiotis G. Dimitrakopoulos; Salih Diryaq; Costanza Favilli; Caterina Maria Fortuna; Wayne J. Fuller; Susan Gallon; Abdulmaula Hamza; Imed Jribi; Manel Ben Ismail; Yiannis Kamarianakis; Yakup Kaska; Kastriot Korro; Drosos Koutsoubas; Giancarlo Lauriano; Bojan Lazar; David March; Adolfo Marco; Charikleia Minotou; Jonathan R. Monsinjon; Nahla M. Naguib; Andreas Palialexis; Vilma Piroli; Karaa Sami; Bektaş Sönmez; Laurent Sourbès; Doğan Sözbilen; Frederic Vandeperre; Pierre Vignes; Michail Xanthakis; Vera Köpsel; Myron A. Peck;pmid: 37043912
handle: 11499/51255 , 20.500.14243/539039 , 10261/309826
As climate-related impacts threaten marine biodiversity globally, it is important to adjust conservation efforts to mitigate the effects of climate change. Translating scientific knowledge into practical management, however, is often complicated due to resource, economic and policy constraints, generating a knowledge-action gap. To develop potential solutions for marine turtle conservation, we explored the perceptions of key actors across 18 countries in the Mediterranean. These actors evaluated their perceived relative importance of 19 adaptation and mitigation measures that could safeguard marine turtles from climate change. Of importance, despite differences in expertise, experience and focal country, the perceptions of researchers and management practitioners largely converged with respect to prioritizing adaptation and mitigation measures. Climate change was considered to have the greatest impacts on offspring sex ratios and suitable nesting sites. The most viable adaptation/mitigation measures were considered to be reducing other pressures that act in parallel to climate change. Ecological effectiveness represented a key determinant for implementing proposed measures, followed by practical applicability, financial cost, and societal cost. This convergence in opinions across actors likely reflects long-standing initiatives in the Mediterranean region towards supporting knowledge exchange in marine turtle conservation. Our results provide important guidance on how to prioritize measures that incorporate climate change in decision-making processes related to the current and future management and protection of marine turtles at the ocean-basin scale, and could be used to guide decisions in other regions globally. Importantly, this study demonstrates a successful example of how interactive processes can be used to fill the knowledge-action gap between research and management.
Pamukkale University... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAJournal of Environmental ManagementArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJournal of Environmental ManagementArticle . 2023Data sources: Croatian Research Information SystemJournal of Environmental ManagementArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2023.117805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 64visibility views 64 download downloads 387 Powered bymore_vert Pamukkale University... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAJournal of Environmental ManagementArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJournal of Environmental ManagementArticle . 2023Data sources: Croatian Research Information SystemJournal of Environmental ManagementArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2023.117805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, Portugal, PortugalPublisher:Wiley Leon DeBell; Dominic Tilley; Karen Anderson; Annette C. Broderick; Miguel R. Varela; Matthew J. Westoby; Lucy A. Hawkes; Ana R. Patrício; Ana R. Patrício; Brendan J. Godley; Robin T. E. Snape;AbstractClimate change associated sea‐level rise (SLR) is expected to have profound impacts on coastal areas, affecting many species, including sea turtles which depend on these habitats for egg incubation. Being able to accurately model beach topography using digital terrain models (DTMs) is therefore crucial to project SLR impacts and develop effective conservation strategies. Traditional survey methods are typically low‐cost with low accuracy or high‐cost with high accuracy. We present a novel combination of drone‐based photogrammetry and a low‐cost and portable real‐time kinematic (RTK) GPS to create DTMs which are highly accurate (<10 cm error) and visually realistic. This methodology is ideal for surveying coastal sites, can be broadly applied to other species and habitats, and is a relevant tool in supporting the development of Specially Protected Areas. Here, we applied this method as a case‐study to project three SLR scenarios (0.48, 0.63 and 1.20 m) and assess the future vulnerability and viability of a key nesting habitat for sympatric loggerhead (Caretta caretta) and green turtle (Chelonia mydas) at a key rookery in the Mediterranean. We combined the DTM with 5 years of nest survey data describing location and clutch depth, to identify (a) regions with highest nest densities, (b) nest elevation by species and beach, and (c) estimated proportion of nests inundated under each SLR scenario. On average, green turtles nested at higher elevations than loggerheads (1.8 m vs. 1.32 m, respectively). However, because green turtles dig deeper nests than loggerheads (0.76 m vs. 0.50 m, respectively), these were at similar risk of inundation. For a SLR of 1.2 m, we estimated a loss of 67.3% for loggerhead turtle nests and 59.1% for green turtle nests. Existing natural and artificial barriers may affect the ability of these nesting habitats to remain suitable for nesting through beach migration.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 1 Powered bymore_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 PortugalPublisher:Elsevier BV Funded by:FCT | UI 329 - 2014, FCT | SFRH/BD/85017/2012, FCT | MARE - Marine and Environ...FCT| UI 329 - 2014 ,FCT| SFRH/BD/85017/2012 ,FCT| MARE - Marine and Environmental Sciences CentreCastro Barbosa; Annette C. Broderick; Miguel R. Varela; Paulo Catry; Aissa Regalla; Brendan J. Godley; Ana R. Patrício; Ana R. Patrício; Dominic Tilley; Maria B. Ferreira Airaud;Nest site selection is a critical behaviour, particularly in species with no parental care, as it can greatly impact offspring survival. Marine turtles depend on sandy beaches to nest, where they select from a range of microhabitats that may differently affect hatchling survival and phenotype. Here we describe the degree of nest site selection at one of the largest green turtle rookeries globally, in Guinea-Bissau, West Africa, and how this impacts offspring. In 2013 and 2014 we recorded the spatial distribution of 1559 nests, and monitored 657 females during oviposition, to assess population and individual preferences on nesting site. Overall, females tended to nest close to the vegetation, at a preferred elevation of 4.8–5.0 m, which was above the highest spring tide (4.7 m), enhancing clutch survival. Individuals displayed high repeatability in nesting microhabitat type (open sand, forest border and forest), distance along the beach, distance to the vegetation and elevation, which may result from this behaviour having a genetic basis or from fine-scale nest site philopatry. Hatchlings from cooler nests were larger, potentially dispersing faster and more able to evade predators, while smaller hatchlings, from warmer nests, retained more energetic reserves (residual yolk), which may also be advantageous for initial dispersal, particularly if food is scarce. Thus, individual preferences in nest site selection led to trade-offs in offspring phenotype, but overall, most nesting females selected sites that increased offspring survival, suggesting that nest site selection is an adaptive trait that has been under selection. As under future climate change scenarios females nesting in upper shaded areas should have higher fitness, individual consistency in nesting microhabitat provides opportunity for natural selection to occur.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anbehav.2018.03.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anbehav.2018.03.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 Australia, United KingdomPublisher:Wiley Karen A. Bjorndal; Milani Chaloupka; Vincent S. Saba; Carlos Estepa Díez; Robert P. van Dam; Barry H. Krueger; Julia A. Horrocks; Armando José Barsante Santos; Cláudio Bellini; Maria Ângela Marcovaldi; Mabel Nava; Sue Willis; Brendan J. Godley; Shannon Gore; Lucy A. Hawkes; Andrew McGowan; Matthew J. Witt; Thomas B. Stringell; Amdeep Sanghera; Peter B. Richardson; Annette C. Broderick; Quinton Phillips; Marta C. Calosso; John A. B. Claydon; Janice Blumenthal; Félix Moncada; Gonzalo Nodarse; Yosvani Medina; Stephen G. Dunbar; Lawrence D. Wood; Cynthia J. Lagueux; Cathi L. Campbell; Anne B. Meylan; Peter A. Meylan; Virginia R. Burns Perez; Robin Coleman; Samantha Strindberg; Vicente Guzmán‐H.; Kristen M. Hart; Michael S. Cherkiss; Zandy Hillis‐Starr; Ian Lundgren; Ralf H. Boulon; Stephen Connett; Mark E. Outerbridge; Alan B. Bolten;handle: 10871/22024
AbstractSomatic growth dynamics are an integrated response to environmental conditions. Hawksbill sea turtles (Eretmochelys imbricata) are long‐lived, major consumers in coral reef habitats that move over broad geographic areas (hundreds to thousands of kilometers). We evaluated spatio‐temporal effects on hawksbill growth dynamics over a 33‐yr period and 24 study sites throughout the West Atlantic and explored relationships between growth dynamics and climate indices. We compiled the largest ever data set on somatic growth rates for hawksbills – 3541 growth increments from 1980 to 2013. Using generalized additive mixed model analyses, we evaluated 10 covariates, including spatial and temporal variation, that could affect growth rates. Growth rates throughout the region responded similarly over space and time. The lack of a spatial effect or spatio‐temporal interaction and the very strong temporal effect reveal that growth rates in West Atlantic hawksbills are likely driven by region‐wide forces. Between 1997 and 2013, mean growth rates declined significantly and steadily by 18%. Regional climate indices have significant relationships with annual growth rates with 0‐ or 1‐yr lags: positive with the Multivariate El Niño Southern Oscillation Index (correlation = 0.99) and negative with Caribbean sea surface temperature (correlation = −0.85). Declines in growth rates between 1997 and 2013 throughout the West Atlantic most likely resulted from warming waters through indirect negative effects on foraging resources of hawksbills. These climatic influences are complex. With increasing temperatures, trajectories of decline of coral cover and availability in reef habitats of major prey species of hawksbills are not parallel. Knowledge of how choice of foraging habitats, prey selection, and prey abundance are affected by warming water temperatures is needed to understand how climate change will affect productivity of consumers that live in association with coral reefs.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10871/22024Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecs2.1279&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 117 citations 117 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10871/22024Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecs2.1279&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu