Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Global Change Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Global Change Biology
Article . 2018 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 4 versions
addClaim

Assessing climate change associated sea‐level rise impacts on sea turtle nesting beaches using drones, photogrammetry and a novel GPS system

Authors: Leon DeBell; orcid Dominic Tilley;
Dominic Tilley
ORCID
Harvested from ORCID Public Data File

Dominic Tilley in OpenAIRE
orcid Karen Anderson;
Karen Anderson
ORCID
Harvested from ORCID Public Data File

Karen Anderson in OpenAIRE
orcid Annette C. Broderick;
Annette C. Broderick
ORCID
Harvested from ORCID Public Data File

Annette C. Broderick in OpenAIRE
orcid Miguel R. Varela;
Miguel R. Varela
ORCID
Harvested from ORCID Public Data File

Miguel R. Varela in OpenAIRE
orcid Matthew J. Westoby;
Matthew J. Westoby
ORCID
Harvested from ORCID Public Data File

Matthew J. Westoby in OpenAIRE
orcid Lucy A. Hawkes;
Lucy A. Hawkes
ORCID
Harvested from ORCID Public Data File

Lucy A. Hawkes in OpenAIRE
+4 Authors

Assessing climate change associated sea‐level rise impacts on sea turtle nesting beaches using drones, photogrammetry and a novel GPS system

Abstract

AbstractClimate change associated sea‐level rise (SLR) is expected to have profound impacts on coastal areas, affecting many species, including sea turtles which depend on these habitats for egg incubation. Being able to accurately model beach topography using digital terrain models (DTMs) is therefore crucial to project SLR impacts and develop effective conservation strategies. Traditional survey methods are typically low‐cost with low accuracy or high‐cost with high accuracy. We present a novel combination of drone‐based photogrammetry and a low‐cost and portable real‐time kinematic (RTK) GPS to create DTMs which are highly accurate (<10 cm error) and visually realistic. This methodology is ideal for surveying coastal sites, can be broadly applied to other species and habitats, and is a relevant tool in supporting the development of Specially Protected Areas. Here, we applied this method as a case‐study to project three SLR scenarios (0.48, 0.63 and 1.20 m) and assess the future vulnerability and viability of a key nesting habitat for sympatric loggerhead (Caretta caretta) and green turtle (Chelonia mydas) at a key rookery in the Mediterranean. We combined the DTM with 5 years of nest survey data describing location and clutch depth, to identify (a) regions with highest nest densities, (b) nest elevation by species and beach, and (c) estimated proportion of nests inundated under each SLR scenario. On average, green turtles nested at higher elevations than loggerheads (1.8 m vs. 1.32 m, respectively). However, because green turtles dig deeper nests than loggerheads (0.76 m vs. 0.50 m, respectively), these were at similar risk of inundation. For a SLR of 1.2 m, we estimated a loss of 67.3% for loggerhead turtle nests and 59.1% for green turtle nests. Existing natural and artificial barriers may affect the ability of these nesting habitats to remain suitable for nesting through beach migration.

Country
United Kingdom
Keywords

Aircraft, Climate Change, F800, Nesting Behavior, Turtles, Photogrammetry, Geographic Information Systems, Animals, Ecosystem, Environmental Monitoring

Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
45
Top 10%
Top 10%
Top 10%
88
510
Green
bronze