- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2020 PolandPublisher:Frontiers Media SA Ryszard J. Kaczka; Ryszard J. Kaczka; Jill E. Harvey; Jill E. Harvey; Marek Metslaid; Mario Trouillier; Allan Buras; Sandra Metslaid; Martin Wilmking; Karolina Janecka;handle: 20.500.12128/16757
Coastal sand dunes near the Baltic Sea are a dynamic environment marking the boundary between land and sea and oftentimes covered by Scots pine (Pinus sylvestris L.) forests. Complex climate-environmental interactions characterize these ecosystems and largely determine the productivity and state of these coastal forests. In the face of future climate change, understanding interactions between coastal tree growth and climate variability is important to promote sustainable coastal forests. In this study, we assessed the effect of microsite conditions on tree growth and the temporal and spatial variability of the relationship between climate and Scots pine growth at nine coastal sand dune sites located around the south Baltic Sea. At each site, we studied the growth of Scots pine growing at microsites located at the ridge and bottom of a dune and built a network of 18 ring-width and 18 latewood blue intensity chronologies. Across this network, we found that microsite has a minor influence on ring-width variability, basal area increment, latewood blue intensity, and climate sensitivity. However, at the local scale, microsite effects turned out to be important for growth and climate sensitivity at some sites. Correlation analysis indicated that the strength and direction of climate-growth responses for the ring-width and blue intensity chronologies were similar for climate variables over the 1903–2016 period. A strong and positive relationship between ring-width and latewood blue intensity chronologies with winter-spring temperature was detected at local and regional scales. We identified a relatively strong, positive influence of winter-spring/summer moisture availability on both tree-ring proxies. When climate-growth responses between two intervals (1903–1959, 1960–2016) were compared, the strength of growth responses to temperature and moisture availability for both proxies varied. More specifically, for the ring-width network, we identified decreasing temperature-growth responses, which is in contrast to the latewood blue intensity network, where we documented decreasing and increasing temperature-growth relationships in the north and south respectively. We conclude that coastal Scots pine forests are primarily limited by winter-spring temperature and winter-spring/summer drought despite differing microsite conditions. We detected some spatial and temporal variability in climate-growth relationships that warrant further investigation.
The Repository of th... arrow_drop_down The Repository of the University of Silesia (RE-BUŚ)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/20.500.12128/16757Data sources: Bielefeld Academic Search Engine (BASE)Frontiers in Forests and Global ChangeArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefRepozytorium Uniwersytetu Śląskiego RE-BUŚArticle . 2020Data sources: Repozytorium Uniwersytetu Śląskiego RE-BUŚadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/ffgc.2020.578912&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Repository of th... arrow_drop_down The Repository of the University of Silesia (RE-BUŚ)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/20.500.12128/16757Data sources: Bielefeld Academic Search Engine (BASE)Frontiers in Forests and Global ChangeArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefRepozytorium Uniwersytetu Śląskiego RE-BUŚArticle . 2020Data sources: Repozytorium Uniwersytetu Śląskiego RE-BUŚadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/ffgc.2020.578912&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ArgentinaPublisher:Elsevier BV Gadek, Bogdan; Kaczka, Ryszard J.; Raczkowska, Zofia; Rojan, Elzbieta; Casteller, Alejandro; Bebi, Peter;handle: 11336/57299
Abstract This paper reports from a survey of the occurrence of large avalanches in Żleb Żandarmerii. This couloir is known to be one of the most hazardous avalanche paths in the Tatra Mountains and has one of the longest histories of avalanche observation. This survey looked at the runout distance, return period, dynamics and geoecological implications of avalanches in the context of current climate change. The study took advantage of the longest record of meteorological data available in the Tatra Mountains, as well as archival avalanche observations, topographical maps, orthophotomaps and a high-resolution digital terrain model. Avalanche data were obtained using geomorphological and dendrogeomorphic methods and through modelling with the RAMMS numerical avalanche dynamics simulation software. The largest avalanches reach the foot of its counter slope. Their length, release volume, flow velocity and pressure can exceed respectively 1000 m, 80 000 m 3 , 45 m/s and 600 kPa. The results of our study suggest that current climate warming has been accompanied by thinning and shortening of the duration of snow cover, as well as by an upward expansion of the timberline (including in the large-avalanche runout zones) of up to 80 m since the mid-1920s. No distinct temporal trend was identified in the large avalanche return period since 1909, but their mass and intensity have declined. Forests and timberline expansion were found to have no influence on the extent of the avalanches in our study, while ground relief could determine both their downward extent and lateral expansion.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.catena.2017.07.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.catena.2017.07.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Jakub Kašpar; Jan Tumajer; Jan Altman; Nela Altmanová; Vojtěch Čada; Tomáš Čihák; Jiří Doležal; Pavel Fibich; Pavel Janda; Ryszard Kaczka; Tomáš Kolář; Jiří Lehejček; Jiří Mašek; Kateřina Neudertová Hellebrandová; Michal Rybníček; Miloš Rydval; Rohan Shetti; Miroslav Svoboda; Martin Šenfeldr; Pavel Šamonil; Ivana Vašíčková; Monika Vejpustková; Václav Treml;doi: 10.1111/gcb.17146
pmid: 38273515
AbstractTemperate forests are undergoing significant transformations due to the influence of climate change, including varying responses of different tree species to increasing temperature and drought severity. To comprehensively understand the full range of growth responses, representative datasets spanning extensive site and climatic gradients are essential. This study utilizes tree‐ring data from 550 sites from the temperate forests of Czechia to assess growth trends of six dominant Central European tree species (European beech, Norway spruce, Scots pine, silver fir, sessile and pedunculate oak) over 1990–2014. By modeling mean growth series for each species and site, and employing principal component analysis, we identified the predominant growth trends. Over the study period, linear growth trends were evident across most sites (56% increasing, 32% decreasing, and 10% neutral). The proportion of sites with stationary positive trends increased from low toward high elevations, whereas the opposite was true for the stationary negative trends. Notably, within the middle range of their distribution (between 500 and 700 m a.s.l.), Norway spruce and European beech exhibited a mix of positive and negative growth trends. While Scots pine growth trends showed no clear elevation‐based pattern, silver fir and oaks displayed consistent positive growth trends regardless of site elevation, indicating resilience to the ongoing warming. We demonstrate divergent growth trajectories across space and among species. These findings are particularly important as recent warming has triggered a gradual shift in the elevation range of optimal growth conditions for most tree species and has also led to a decoupling of growth trends between lowlands and mountain areas. As a result, further future shifts in the elevation range and changes in species diversity of European temperate forests can be expected.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Czech RepublicPublisher:Wiley Jan Tumajer; Krešimir Begović; Vojtěch Čada; Michal Jenicek; Jelena Lange; Jiří Mašek; Ryszard J. Kaczka; Miloš Rydval; Miroslav Svoboda; Lukáš Vlček; Václav Treml;doi: 10.1111/gcb.16470
pmid: 36200330
AbstractRadial tree growth is sensitive to environmental conditions, making observed growth increments an important indicator of climate change effects on forest growth. However, unprecedented climate variability could lead to non‐stationarity, that is, a decoupling of tree growth responses from climate over time, potentially inducing biases in climate reconstructions and forest growth projections. Little is known about whether and to what extent environmental conditions, species, and model type and resolution affect the occurrence and magnitude of non‐stationarity. To systematically assess potential drivers of non‐stationarity, we compiled tree‐ring width chronologies of two conifer species, Picea abies and Pinus sylvestris, distributed across cold, dry, and mixed climates. We analyzed 147 sites across the Europe including the distribution margins of these species as well as moderate sites. We calibrated four numerical models (linear vs. non‐linear, daily vs. monthly resolution) to simulate growth chronologies based on temperature and soil moisture data. Climate–growth models were tested in independent verification periods to quantify their non‐stationarity, which was assessed based on bootstrapped transfer function stability tests. The degree of non‐stationarity varied between species, site climatic conditions, and models. Chronologies of P. sylvestris showed stronger non‐stationarity compared with Picea abies stands with a high degree of stationarity. Sites with mixed climatic signals were most affected by non‐stationarity compared with sites sampled at cold and dry species distribution margins. Moreover, linear models with daily resolution exhibited greater non‐stationarity compared with monthly‐resolved non‐linear models. We conclude that non‐stationarity in climate–growth responses is a multifactorial phenomenon driven by the interaction of site climatic conditions, tree species, and methodological features of the modeling approach. Given the existence of multiple drivers and the frequent occurrence of non‐stationarity, we recommend that temporal non‐stationarity rather than stationarity should be considered as the baseline model of climate–growth response for temperate forests.
Repository of the Cz... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Repository of the Cz... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, Poland, Germany, SwedenPublisher:Wiley Authors: Marieke van der Maaten-Theunissen; Jürgen Kreyling; Tobias Scharnweber; Karolina Janecka; +23 AuthorsMarieke van der Maaten-Theunissen; Jürgen Kreyling; Tobias Scharnweber; Karolina Janecka; Roberto Cruz-García; Alar Läänelaid; Juliane Stolz; Anna Cedro; Robert Weigel; Robert Weigel; Martin Wilmking; Ernst van der Maaten; Ryszard J. Kaczka; Roberts Matisons; Barbara Spyt; Marcin Klisz; Allan Buras; Igor Drobyshev; Igor Drobyshev; Āris Jansons; Kristina Sohar; Adomas Vitas; Marko Smiljanic; Lena Muffler; Lena Muffler; Jill E. Harvey; Jill E. Harvey;AbstractThe role of future forests in global biogeochemical cycles will depend on how different tree species respond to climate. Interpreting the response of forest growth to climate change requires an understanding of the temporal and spatial patterns of seasonal climatic influences on the growth of common tree species. We constructed a new network of 310 tree‐ring width chronologies from three common tree species (Quercus robur, Pinus sylvestris and Fagus sylvatica) collected for different ecological, management and climate purposes in the south Baltic Sea region at the border of three bioclimatic zones (temperate continental, oceanic, southern boreal). The major climate factors (temperature, precipitation, drought) affecting tree growth at monthly and seasonal scales were identified. Our analysis documents that 20th century Scots pine and deciduous species growth is generally controlled by different climate parameters, and that summer moisture availability is increasingly important for the growth of deciduous species examined. We report changes in the influence of winter climate variables over the last decades, where a decreasing influence of late winter temperature on deciduous tree growth and an increasing influence of winter temperature on Scots pine growth was found. By comparing climate–growth responses for the 1943–1972 and 1973–2002 periods and characterizing site‐level growth response stability, a descriptive application of spatial segregation analysis distinguished sites with stable responses to dominant climate parameters (northeast of the study region), and sites that collectively showed unstable responses to winter climate (southeast of the study region). The findings presented here highlight the temporally unstable and nonuniform responses of tree growth to climate variability, and that there are geographical coherent regions where these changes are similar. Considering continued climate change in the future, our results provide important regional perspectives on recent broad‐scale climate–growth relationships for trees across the temperate to boreal forest transition around the south Baltic Sea.
SLU publication data... arrow_drop_down The Repository of the University of Silesia (RE-BUŚ)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/20.500.12128/15982Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repozytorium Uniwersytetu Śląskiego RE-BUŚArticle . 2020Data sources: Repozytorium Uniwersytetu Śląskiego RE-BUŚadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14966&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 145 citations 145 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert SLU publication data... arrow_drop_down The Repository of the University of Silesia (RE-BUŚ)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/20.500.12128/15982Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repozytorium Uniwersytetu Śląskiego RE-BUŚArticle . 2020Data sources: Repozytorium Uniwersytetu Śląskiego RE-BUŚadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14966&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2020 PolandPublisher:Frontiers Media SA Ryszard J. Kaczka; Ryszard J. Kaczka; Jill E. Harvey; Jill E. Harvey; Marek Metslaid; Mario Trouillier; Allan Buras; Sandra Metslaid; Martin Wilmking; Karolina Janecka;handle: 20.500.12128/16757
Coastal sand dunes near the Baltic Sea are a dynamic environment marking the boundary between land and sea and oftentimes covered by Scots pine (Pinus sylvestris L.) forests. Complex climate-environmental interactions characterize these ecosystems and largely determine the productivity and state of these coastal forests. In the face of future climate change, understanding interactions between coastal tree growth and climate variability is important to promote sustainable coastal forests. In this study, we assessed the effect of microsite conditions on tree growth and the temporal and spatial variability of the relationship between climate and Scots pine growth at nine coastal sand dune sites located around the south Baltic Sea. At each site, we studied the growth of Scots pine growing at microsites located at the ridge and bottom of a dune and built a network of 18 ring-width and 18 latewood blue intensity chronologies. Across this network, we found that microsite has a minor influence on ring-width variability, basal area increment, latewood blue intensity, and climate sensitivity. However, at the local scale, microsite effects turned out to be important for growth and climate sensitivity at some sites. Correlation analysis indicated that the strength and direction of climate-growth responses for the ring-width and blue intensity chronologies were similar for climate variables over the 1903–2016 period. A strong and positive relationship between ring-width and latewood blue intensity chronologies with winter-spring temperature was detected at local and regional scales. We identified a relatively strong, positive influence of winter-spring/summer moisture availability on both tree-ring proxies. When climate-growth responses between two intervals (1903–1959, 1960–2016) were compared, the strength of growth responses to temperature and moisture availability for both proxies varied. More specifically, for the ring-width network, we identified decreasing temperature-growth responses, which is in contrast to the latewood blue intensity network, where we documented decreasing and increasing temperature-growth relationships in the north and south respectively. We conclude that coastal Scots pine forests are primarily limited by winter-spring temperature and winter-spring/summer drought despite differing microsite conditions. We detected some spatial and temporal variability in climate-growth relationships that warrant further investigation.
The Repository of th... arrow_drop_down The Repository of the University of Silesia (RE-BUŚ)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/20.500.12128/16757Data sources: Bielefeld Academic Search Engine (BASE)Frontiers in Forests and Global ChangeArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefRepozytorium Uniwersytetu Śląskiego RE-BUŚArticle . 2020Data sources: Repozytorium Uniwersytetu Śląskiego RE-BUŚadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/ffgc.2020.578912&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Repository of th... arrow_drop_down The Repository of the University of Silesia (RE-BUŚ)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/20.500.12128/16757Data sources: Bielefeld Academic Search Engine (BASE)Frontiers in Forests and Global ChangeArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefRepozytorium Uniwersytetu Śląskiego RE-BUŚArticle . 2020Data sources: Repozytorium Uniwersytetu Śląskiego RE-BUŚadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/ffgc.2020.578912&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ArgentinaPublisher:Elsevier BV Gadek, Bogdan; Kaczka, Ryszard J.; Raczkowska, Zofia; Rojan, Elzbieta; Casteller, Alejandro; Bebi, Peter;handle: 11336/57299
Abstract This paper reports from a survey of the occurrence of large avalanches in Żleb Żandarmerii. This couloir is known to be one of the most hazardous avalanche paths in the Tatra Mountains and has one of the longest histories of avalanche observation. This survey looked at the runout distance, return period, dynamics and geoecological implications of avalanches in the context of current climate change. The study took advantage of the longest record of meteorological data available in the Tatra Mountains, as well as archival avalanche observations, topographical maps, orthophotomaps and a high-resolution digital terrain model. Avalanche data were obtained using geomorphological and dendrogeomorphic methods and through modelling with the RAMMS numerical avalanche dynamics simulation software. The largest avalanches reach the foot of its counter slope. Their length, release volume, flow velocity and pressure can exceed respectively 1000 m, 80 000 m 3 , 45 m/s and 600 kPa. The results of our study suggest that current climate warming has been accompanied by thinning and shortening of the duration of snow cover, as well as by an upward expansion of the timberline (including in the large-avalanche runout zones) of up to 80 m since the mid-1920s. No distinct temporal trend was identified in the large avalanche return period since 1909, but their mass and intensity have declined. Forests and timberline expansion were found to have no influence on the extent of the avalanches in our study, while ground relief could determine both their downward extent and lateral expansion.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.catena.2017.07.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.catena.2017.07.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Jakub Kašpar; Jan Tumajer; Jan Altman; Nela Altmanová; Vojtěch Čada; Tomáš Čihák; Jiří Doležal; Pavel Fibich; Pavel Janda; Ryszard Kaczka; Tomáš Kolář; Jiří Lehejček; Jiří Mašek; Kateřina Neudertová Hellebrandová; Michal Rybníček; Miloš Rydval; Rohan Shetti; Miroslav Svoboda; Martin Šenfeldr; Pavel Šamonil; Ivana Vašíčková; Monika Vejpustková; Václav Treml;doi: 10.1111/gcb.17146
pmid: 38273515
AbstractTemperate forests are undergoing significant transformations due to the influence of climate change, including varying responses of different tree species to increasing temperature and drought severity. To comprehensively understand the full range of growth responses, representative datasets spanning extensive site and climatic gradients are essential. This study utilizes tree‐ring data from 550 sites from the temperate forests of Czechia to assess growth trends of six dominant Central European tree species (European beech, Norway spruce, Scots pine, silver fir, sessile and pedunculate oak) over 1990–2014. By modeling mean growth series for each species and site, and employing principal component analysis, we identified the predominant growth trends. Over the study period, linear growth trends were evident across most sites (56% increasing, 32% decreasing, and 10% neutral). The proportion of sites with stationary positive trends increased from low toward high elevations, whereas the opposite was true for the stationary negative trends. Notably, within the middle range of their distribution (between 500 and 700 m a.s.l.), Norway spruce and European beech exhibited a mix of positive and negative growth trends. While Scots pine growth trends showed no clear elevation‐based pattern, silver fir and oaks displayed consistent positive growth trends regardless of site elevation, indicating resilience to the ongoing warming. We demonstrate divergent growth trajectories across space and among species. These findings are particularly important as recent warming has triggered a gradual shift in the elevation range of optimal growth conditions for most tree species and has also led to a decoupling of growth trends between lowlands and mountain areas. As a result, further future shifts in the elevation range and changes in species diversity of European temperate forests can be expected.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Czech RepublicPublisher:Wiley Jan Tumajer; Krešimir Begović; Vojtěch Čada; Michal Jenicek; Jelena Lange; Jiří Mašek; Ryszard J. Kaczka; Miloš Rydval; Miroslav Svoboda; Lukáš Vlček; Václav Treml;doi: 10.1111/gcb.16470
pmid: 36200330
AbstractRadial tree growth is sensitive to environmental conditions, making observed growth increments an important indicator of climate change effects on forest growth. However, unprecedented climate variability could lead to non‐stationarity, that is, a decoupling of tree growth responses from climate over time, potentially inducing biases in climate reconstructions and forest growth projections. Little is known about whether and to what extent environmental conditions, species, and model type and resolution affect the occurrence and magnitude of non‐stationarity. To systematically assess potential drivers of non‐stationarity, we compiled tree‐ring width chronologies of two conifer species, Picea abies and Pinus sylvestris, distributed across cold, dry, and mixed climates. We analyzed 147 sites across the Europe including the distribution margins of these species as well as moderate sites. We calibrated four numerical models (linear vs. non‐linear, daily vs. monthly resolution) to simulate growth chronologies based on temperature and soil moisture data. Climate–growth models were tested in independent verification periods to quantify their non‐stationarity, which was assessed based on bootstrapped transfer function stability tests. The degree of non‐stationarity varied between species, site climatic conditions, and models. Chronologies of P. sylvestris showed stronger non‐stationarity compared with Picea abies stands with a high degree of stationarity. Sites with mixed climatic signals were most affected by non‐stationarity compared with sites sampled at cold and dry species distribution margins. Moreover, linear models with daily resolution exhibited greater non‐stationarity compared with monthly‐resolved non‐linear models. We conclude that non‐stationarity in climate–growth responses is a multifactorial phenomenon driven by the interaction of site climatic conditions, tree species, and methodological features of the modeling approach. Given the existence of multiple drivers and the frequent occurrence of non‐stationarity, we recommend that temporal non‐stationarity rather than stationarity should be considered as the baseline model of climate–growth response for temperate forests.
Repository of the Cz... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Repository of the Cz... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, Poland, Germany, SwedenPublisher:Wiley Authors: Marieke van der Maaten-Theunissen; Jürgen Kreyling; Tobias Scharnweber; Karolina Janecka; +23 AuthorsMarieke van der Maaten-Theunissen; Jürgen Kreyling; Tobias Scharnweber; Karolina Janecka; Roberto Cruz-García; Alar Läänelaid; Juliane Stolz; Anna Cedro; Robert Weigel; Robert Weigel; Martin Wilmking; Ernst van der Maaten; Ryszard J. Kaczka; Roberts Matisons; Barbara Spyt; Marcin Klisz; Allan Buras; Igor Drobyshev; Igor Drobyshev; Āris Jansons; Kristina Sohar; Adomas Vitas; Marko Smiljanic; Lena Muffler; Lena Muffler; Jill E. Harvey; Jill E. Harvey;AbstractThe role of future forests in global biogeochemical cycles will depend on how different tree species respond to climate. Interpreting the response of forest growth to climate change requires an understanding of the temporal and spatial patterns of seasonal climatic influences on the growth of common tree species. We constructed a new network of 310 tree‐ring width chronologies from three common tree species (Quercus robur, Pinus sylvestris and Fagus sylvatica) collected for different ecological, management and climate purposes in the south Baltic Sea region at the border of three bioclimatic zones (temperate continental, oceanic, southern boreal). The major climate factors (temperature, precipitation, drought) affecting tree growth at monthly and seasonal scales were identified. Our analysis documents that 20th century Scots pine and deciduous species growth is generally controlled by different climate parameters, and that summer moisture availability is increasingly important for the growth of deciduous species examined. We report changes in the influence of winter climate variables over the last decades, where a decreasing influence of late winter temperature on deciduous tree growth and an increasing influence of winter temperature on Scots pine growth was found. By comparing climate–growth responses for the 1943–1972 and 1973–2002 periods and characterizing site‐level growth response stability, a descriptive application of spatial segregation analysis distinguished sites with stable responses to dominant climate parameters (northeast of the study region), and sites that collectively showed unstable responses to winter climate (southeast of the study region). The findings presented here highlight the temporally unstable and nonuniform responses of tree growth to climate variability, and that there are geographical coherent regions where these changes are similar. Considering continued climate change in the future, our results provide important regional perspectives on recent broad‐scale climate–growth relationships for trees across the temperate to boreal forest transition around the south Baltic Sea.
SLU publication data... arrow_drop_down The Repository of the University of Silesia (RE-BUŚ)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/20.500.12128/15982Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repozytorium Uniwersytetu Śląskiego RE-BUŚArticle . 2020Data sources: Repozytorium Uniwersytetu Śląskiego RE-BUŚadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14966&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 145 citations 145 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert SLU publication data... arrow_drop_down The Repository of the University of Silesia (RE-BUŚ)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/20.500.12128/15982Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repozytorium Uniwersytetu Śląskiego RE-BUŚArticle . 2020Data sources: Repozytorium Uniwersytetu Śląskiego RE-BUŚadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14966&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu