- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Diego Portalanza; Finbarr G. Horgan; Valeria Pohlmann; Santiago Vianna Cuadra; Malena Torres-Ulloa; Eduardo Alava; Simone Ferraz; Angelica Durigon;Rice (Oryza sativa L.) is the main staple food of more than 50% of the world’s population. However, global production may need to increase by more than 70% before 2050 to meet global food requirements despite increasing challenges due to environmental degradation, a changing climate, and extreme weather events. Rice production in Ecuador, mainly concentrated in lowland tropical plains, declined in recent years. In this paper, we aim to calibrate and validate Kobayashi’s ‘Very Simple Model’ (VSM) and, using downscaled corrected climate data, to quantify the potential impact of climate change on rice yields for Ecuador’s two main rice-growing provinces. The negative impact is expected to be highest (up to −67%; 2946 tons) under the Representative Concentration Pathway (RCP) 8.5, with a lower impact under RCP 2.6 (−36%; 1650 tons) yield reduction in the Guayas province. A positive impact on yield is predicted for Los Ríos Province (up to 9%; 161 tons) under RCP 8.5. These different impacts indicate the utility of fine-scale analyses using simple models to make predictions that are relevant to regional production scenarios. Our prediction of possible changes in rice productivity can help policymakers define a variety of requirements to meet the demands of a changing climate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agriculture12111828&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agriculture12111828&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Diego Portalanza; Finbarr G. Horgan; Valeria Pohlmann; Santiago Vianna Cuadra; Malena Torres-Ulloa; Eduardo Alava; Simone Ferraz; Angelica Durigon;Rice (Oryza sativa L.) is the main staple food of more than 50% of the world’s population. However, global production may need to increase by more than 70% before 2050 to meet global food requirements despite increasing challenges due to environmental degradation, a changing climate, and extreme weather events. Rice production in Ecuador, mainly concentrated in lowland tropical plains, declined in recent years. In this paper, we aim to calibrate and validate Kobayashi’s ‘Very Simple Model’ (VSM) and, using downscaled corrected climate data, to quantify the potential impact of climate change on rice yields for Ecuador’s two main rice-growing provinces. The negative impact is expected to be highest (up to −67%; 2946 tons) under the Representative Concentration Pathway (RCP) 8.5, with a lower impact under RCP 2.6 (−36%; 1650 tons) yield reduction in the Guayas province. A positive impact on yield is predicted for Los Ríos Province (up to 9%; 161 tons) under RCP 8.5. These different impacts indicate the utility of fine-scale analyses using simple models to make predictions that are relevant to regional production scenarios. Our prediction of possible changes in rice productivity can help policymakers define a variety of requirements to meet the demands of a changing climate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agriculture12111828&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agriculture12111828&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Yane Freitas Silva; Rafael Vasconcelos Valadares; Henrique Boriolo Dias; Santiago Vianna Cuadra; +7 AuthorsYane Freitas Silva; Rafael Vasconcelos Valadares; Henrique Boriolo Dias; Santiago Vianna Cuadra; Eleanor E. Campbell; Rubens A. C. Lamparelli; Edemar Moro; Rafael Battisti; Marcelo R. Alves; Paulo S. G. Magalhães; Gleyce K. D. A. Figueiredo;doi: 10.3390/su14063517
Process-based models (PBM) are important tools for understanding the benefits of Integrated Crop-Livestock Systems (ICLS), such as increasing land productivity and improving environmental conditions. PBM can provide insights into the contribution of agricultural production to climate change and help identify potential greenhouse gas (GHG) mitigation and carbon sequestration options. Rehabilitation of degraded lands is a key strategy for achieving food security goals and can reduce the need for new agricultural land. This study focused on the calibration and validation of the DayCent PBM for a typical ICLS adopted in Brazil from 2018 to 2020. We also present the DayCent parametrization for two forage species (ruzigrass and millet) grown simultaneously, bringing some innovation in the modeling challenges. We used aboveground biomass to calibrate the model, randomly selecting data from 70% of the paddocks in the study area. The calibration obtained a coefficient of determination (R2) of 0.69 and a relative RMSE of 37.0%. During the validation, we used other variables (CO2 flux, grain biomass, and soil water content) measured in the ICLS and performed a double validation for plant growth to evaluate the robustness of the model in terms of generalization. R2 validations ranged from 0.61 to 0.73, and relative RMSE from 11.3 to 48.3%. Despite the complexity and diversity of ICLS results show that DayCent can be used to model ICLS, which is an important step for future regional analyses and large-scale evaluations of the impacts of ICLS.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/6/3517/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14063517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/6/3517/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14063517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Yane Freitas Silva; Rafael Vasconcelos Valadares; Henrique Boriolo Dias; Santiago Vianna Cuadra; +7 AuthorsYane Freitas Silva; Rafael Vasconcelos Valadares; Henrique Boriolo Dias; Santiago Vianna Cuadra; Eleanor E. Campbell; Rubens A. C. Lamparelli; Edemar Moro; Rafael Battisti; Marcelo R. Alves; Paulo S. G. Magalhães; Gleyce K. D. A. Figueiredo;doi: 10.3390/su14063517
Process-based models (PBM) are important tools for understanding the benefits of Integrated Crop-Livestock Systems (ICLS), such as increasing land productivity and improving environmental conditions. PBM can provide insights into the contribution of agricultural production to climate change and help identify potential greenhouse gas (GHG) mitigation and carbon sequestration options. Rehabilitation of degraded lands is a key strategy for achieving food security goals and can reduce the need for new agricultural land. This study focused on the calibration and validation of the DayCent PBM for a typical ICLS adopted in Brazil from 2018 to 2020. We also present the DayCent parametrization for two forage species (ruzigrass and millet) grown simultaneously, bringing some innovation in the modeling challenges. We used aboveground biomass to calibrate the model, randomly selecting data from 70% of the paddocks in the study area. The calibration obtained a coefficient of determination (R2) of 0.69 and a relative RMSE of 37.0%. During the validation, we used other variables (CO2 flux, grain biomass, and soil water content) measured in the ICLS and performed a double validation for plant growth to evaluate the robustness of the model in terms of generalization. R2 validations ranged from 0.61 to 0.73, and relative RMSE from 11.3 to 48.3%. Despite the complexity and diversity of ICLS results show that DayCent can be used to model ICLS, which is an important step for future regional analyses and large-scale evaluations of the impacts of ICLS.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/6/3517/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14063517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/6/3517/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14063517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 South Africa, Germany, FrancePublisher:Elsevier BV Kritika Kothari; Rafael Battisti; Kenneth J. Boote; Sotirios Archontoulis; Adriana Confalone; Julie Constantin; Santiago Vianna Cuadra; Philippe Debaeke; Babacar Faye; Brian Grant; Gerrit Hoogenboom; Qi Jing; Michael van der Laan; Fernando Antônio Macena da Silva; Fábio Ricardo Marin; Alireza Nehbandani; Claas Nendel; Larry C. Purcell; Budong Qian; Alex C. Ruane; Céline Schoving; Evandro Henrique Figueiredo Moura da Silva; Ward Smith; Afshin Soltani; Amit Kumar Srivastava; Nilson Aparecido Vieira; Stacey Slone; Montserrat Salmerón;Une estimation précise du rendement des cultures dans les scénarios de changement climatique est essentielle pour quantifier notre capacité à nourrir une population croissante et à développer des adaptations agronomiques pour répondre à la demande alimentaire future. Une évaluation coordonnée des simulations de rendement à partir de modèles écophysiologiques basés sur les processus pour l'évaluation de l'impact du changement climatique fait toujours défaut pour le soja, la légumineuse à grains la plus cultivée et la principale source de protéines dans notre chaîne alimentaire. Dans cette première étude multimodèle sur le soja, nous avons utilisé dix modèles de premier plan capables de simuler le rendement du soja sous différentes températures et concentrations atmosphériques de CO2 [CO2] pour quantifier l'incertitude dans les simulations de rendement du soja en réponse à ces facteurs. Les modèles ont d'abord été paramétrés avec des données mesurées de haute qualité provenant de cinq environnements contrastés. Nous avons trouvé une variabilité considérable entre les modèles dans les réponses de rendement simulées à l'augmentation de la température et du [CO2]. Par exemple, en cas d'augmentation de la température de + 3 °C dans notre endroit le plus frais en Argentine, certains modèles ont simulé que le rendement diminuerait jusqu'à 24 %, tandis que d'autres simulaient une augmentation du rendement allant jusqu'à 29 %. Dans notre emplacement le plus chaud au Brésil, les modèles ont simulé une réduction du rendement allant d'une diminution de 38 % sous + 3 °C à une augmentation de la température sans effet sur le rendement. De même, en augmentant le [CO2] de 360 à 540 ppm, les modèles ont simulé une augmentation du rendement allant de 6% à 31%. L'étalonnage du modèle n'a pas réduit la variabilité entre les modèles, mais a eu un effet inattendu sur la modification des réponses du rendement à la température pour certains des modèles. La forte incertitude dans les réponses des modèles indique l'applicabilité limitée des modèles individuels pour les projections alimentaires du changement climatique. Cependant, la moyenne d'ensemble des simulations à travers les modèles était un outil efficace pour réduire la forte incertitude dans les simulations de rendement du soja associées aux modèles individuels et à leur paramétrage. Les réponses du rendement moyen de l'ensemble à la température et au [CO2] étaient similaires à celles rapportées dans la littérature. Notre étude est la première démonstration des avantages obtenus en utilisant un ensemble de modèles de légumineuses à grains pour les projections alimentaires du changement climatique, et souligne qu'un développement plus poussé du modèle du soja avec des expériences sous des [CO2] et des températures élevées est nécessaire pour réduire l'incertitude des modèles individuels. Una estimación precisa del rendimiento de los cultivos en escenarios de cambio climático es esencial para cuantificar nuestra capacidad para alimentar a una población en crecimiento y desarrollar adaptaciones agronómicas para satisfacer la demanda futura de alimentos. Todavía falta una evaluación coordinada de las simulaciones de rendimiento a partir de modelos ecofisiológicos basados en procesos para la evaluación del impacto del cambio climático para la soja, la leguminosa de grano más cultivada y la principal fuente de proteínas en nuestra cadena alimentaria. En este primer estudio multimodelo de soja, utilizamos diez modelos prominentes capaces de simular el rendimiento de la soja a diferentes temperaturas y concentraciones de CO2 atmosférico [CO2] para cuantificar la incertidumbre en las simulaciones de rendimiento de soja en respuesta a estos factores. Los modelos se parametrizaron por primera vez con datos medidos de alta calidad de cinco entornos contrastantes. Encontramos una variabilidad considerable entre los modelos en las respuestas de rendimiento simuladas al aumento de la temperatura y [CO2]. Por ejemplo, bajo un aumento de temperatura de + 3 ° C en nuestra ubicación más fresca en Argentina, algunos modelos simularon que el rendimiento se reduciría hasta un 24%, mientras que otros simularon aumentos de rendimiento de hasta un 29%. En nuestra ubicación más cálida en Brasil, los modelos simularon una reducción del rendimiento que va desde una disminución del 38% con un aumento de temperatura de + 3 ° C hasta ningún efecto en el rendimiento. Del mismo modo, al aumentar [CO2] de 360 a 540 ppm, los modelos simularon un aumento del rendimiento que osciló entre el 6% y el 31%. La calibración del modelo no redujo la variabilidad entre los modelos, pero tuvo un efecto inesperado en la modificación de las respuestas de rendimiento a la temperatura para algunos de los modelos. La alta incertidumbre en las respuestas de los modelos indica la aplicabilidad limitada de los modelos individuales para las proyecciones alimentarias del cambio climático. Sin embargo, la media del conjunto de simulaciones entre modelos fue una herramienta efectiva para reducir la alta incertidumbre en las simulaciones de rendimiento de soja asociadas con modelos individuales y su parametrización. Las respuestas de rendimiento medio del conjunto a la temperatura y [CO2] fueron similares a las informadas en la literatura. Nuestro estudio es la primera demostración de los beneficios logrados al utilizar un conjunto de modelos de leguminosas de grano para las proyecciones de alimentos del cambio climático, y destaca que se necesita un mayor desarrollo del modelo de soja con experimentos bajo [CO2] y temperatura elevadas para reducir la incertidumbre de los modelos individuales. An accurate estimation of crop yield under climate change scenarios is essential to quantify our ability to feed a growing population and develop agronomic adaptations to meet future food demand. A coordinated evaluation of yield simulations from process-based eco-physiological models for climate change impact assessment is still missing for soybean, the most widely grown grain legume and the main source of protein in our food chain. In this first soybean multi-model study, we used ten prominent models capable of simulating soybean yield under varying temperature and atmospheric CO2 concentration [CO2] to quantify the uncertainty in soybean yield simulations in response to these factors. Models were first parametrized with high quality measured data from five contrasting environments. We found considerable variability among models in simulated yield responses to increasing temperature and [CO2]. For example, under a + 3 °C temperature rise in our coolest location in Argentina, some models simulated that yield would reduce as much as 24%, while others simulated yield increases up to 29%. In our warmest location in Brazil, the models simulated a yield reduction ranging from a 38% decrease under + 3 °C temperature rise to no effect on yield. Similarly, when increasing [CO2] from 360 to 540 ppm, the models simulated a yield increase that ranged from 6% to 31%. Model calibration did not reduce variability across models but had an unexpected effect on modifying yield responses to temperature for some of the models. The high uncertainty in model responses indicates the limited applicability of individual models for climate change food projections. However, the ensemble mean of simulations across models was an effective tool to reduce the high uncertainty in soybean yield simulations associated with individual models and their parametrization. Ensemble mean yield responses to temperature and [CO2] were similar to those reported from the literature. Our study is the first demonstration of the benefits achieved from using an ensemble of grain legume models for climate change food projections, and highlights that further soybean model development with experiments under elevated [CO2] and temperature is needed to reduce the uncertainty from the individual models. يعد التقدير الدقيق لمحصول المحاصيل في ظل سيناريوهات تغير المناخ أمرًا ضروريًا لتحديد قدرتنا على إطعام عدد متزايد من السكان وتطوير التكيفات الزراعية لتلبية الطلب على الغذاء في المستقبل. لا يزال التقييم المنسق لمحاكاة الغلة من النماذج الفسيولوجية البيئية القائمة على العمليات لتقييم تأثير تغير المناخ مفقودًا بالنسبة لفول الصويا، وهو بقول الحبوب الأكثر زراعة على نطاق واسع والمصدر الرئيسي للبروتين في سلسلتنا الغذائية. في هذه الدراسة الأولى متعددة النماذج لفول الصويا، استخدمنا عشرة نماذج بارزة قادرة على محاكاة محصول فول الصويا تحت درجات حرارة متفاوتة وتركيز ثاني أكسيد الكربون في الغلاف الجوي [CO2] لقياس عدم اليقين في محاكاة محصول فول الصويا استجابة لهذه العوامل. تم قياس النماذج أولاً ببيانات مقاسة عالية الجودة من خمس بيئات متباينة. وجدنا تباينًا كبيرًا بين النماذج في استجابات العائد المحاكاة لزيادة درجة الحرارة و [CO2]. على سبيل المثال، في ظل ارتفاع درجة الحرارة بمقدار + 3 درجات مئوية في أروع موقع لنا في الأرجنتين، قامت بعض النماذج بمحاكاة أن العائد سيقلل بنسبة تصل إلى 24 ٪، بينما يزيد العائد المحاكى الآخر بنسبة تصل إلى 29 ٪. في موقعنا الأكثر دفئًا في البرازيل، قامت النماذج بمحاكاة انخفاض العائد الذي يتراوح بين انخفاض بنسبة 38 ٪ تحت + ارتفاع درجة حرارة 3 درجات مئوية إلى عدم التأثير على العائد. وبالمثل، عند زيادة [ثاني أكسيد الكربون] من 360 إلى 540 جزء في المليون، قامت النماذج بمحاكاة زيادة العائد التي تراوحت من 6 ٪ إلى 31 ٪. لم تقلل معايرة النموذج من التباين عبر النماذج ولكن كان لها تأثير غير متوقع على تعديل استجابات الخضوع لدرجة الحرارة لبعض النماذج. يشير عدم اليقين الشديد في الاستجابات النموذجية إلى التطبيق المحدود للنماذج الفردية للتوقعات الغذائية لتغير المناخ. ومع ذلك، كان المتوسط الجماعي للمحاكاة عبر النماذج أداة فعالة للحد من عدم اليقين العالي في محاكاة غلة فول الصويا المرتبطة بالنماذج الفردية ومعلماتها. كانت استجابات متوسط العائد على درجة الحرارة و [CO2] متشابهة مع تلك الواردة في الأدبيات. دراستنا هي أول عرض توضيحي للفوائد التي تحققت من استخدام مجموعة من نماذج البقوليات لتوقعات تغير المناخ الغذائية، وتسلط الضوء على الحاجة إلى مزيد من تطوير نموذج فول الصويا مع التجارب تحت [CO2] ودرجة الحرارة المرتفعة لتقليل عدم اليقين من النماذج الفردية.
UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2022.126482&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2022.126482&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 South Africa, Germany, FrancePublisher:Elsevier BV Kritika Kothari; Rafael Battisti; Kenneth J. Boote; Sotirios Archontoulis; Adriana Confalone; Julie Constantin; Santiago Vianna Cuadra; Philippe Debaeke; Babacar Faye; Brian Grant; Gerrit Hoogenboom; Qi Jing; Michael van der Laan; Fernando Antônio Macena da Silva; Fábio Ricardo Marin; Alireza Nehbandani; Claas Nendel; Larry C. Purcell; Budong Qian; Alex C. Ruane; Céline Schoving; Evandro Henrique Figueiredo Moura da Silva; Ward Smith; Afshin Soltani; Amit Kumar Srivastava; Nilson Aparecido Vieira; Stacey Slone; Montserrat Salmerón;Une estimation précise du rendement des cultures dans les scénarios de changement climatique est essentielle pour quantifier notre capacité à nourrir une population croissante et à développer des adaptations agronomiques pour répondre à la demande alimentaire future. Une évaluation coordonnée des simulations de rendement à partir de modèles écophysiologiques basés sur les processus pour l'évaluation de l'impact du changement climatique fait toujours défaut pour le soja, la légumineuse à grains la plus cultivée et la principale source de protéines dans notre chaîne alimentaire. Dans cette première étude multimodèle sur le soja, nous avons utilisé dix modèles de premier plan capables de simuler le rendement du soja sous différentes températures et concentrations atmosphériques de CO2 [CO2] pour quantifier l'incertitude dans les simulations de rendement du soja en réponse à ces facteurs. Les modèles ont d'abord été paramétrés avec des données mesurées de haute qualité provenant de cinq environnements contrastés. Nous avons trouvé une variabilité considérable entre les modèles dans les réponses de rendement simulées à l'augmentation de la température et du [CO2]. Par exemple, en cas d'augmentation de la température de + 3 °C dans notre endroit le plus frais en Argentine, certains modèles ont simulé que le rendement diminuerait jusqu'à 24 %, tandis que d'autres simulaient une augmentation du rendement allant jusqu'à 29 %. Dans notre emplacement le plus chaud au Brésil, les modèles ont simulé une réduction du rendement allant d'une diminution de 38 % sous + 3 °C à une augmentation de la température sans effet sur le rendement. De même, en augmentant le [CO2] de 360 à 540 ppm, les modèles ont simulé une augmentation du rendement allant de 6% à 31%. L'étalonnage du modèle n'a pas réduit la variabilité entre les modèles, mais a eu un effet inattendu sur la modification des réponses du rendement à la température pour certains des modèles. La forte incertitude dans les réponses des modèles indique l'applicabilité limitée des modèles individuels pour les projections alimentaires du changement climatique. Cependant, la moyenne d'ensemble des simulations à travers les modèles était un outil efficace pour réduire la forte incertitude dans les simulations de rendement du soja associées aux modèles individuels et à leur paramétrage. Les réponses du rendement moyen de l'ensemble à la température et au [CO2] étaient similaires à celles rapportées dans la littérature. Notre étude est la première démonstration des avantages obtenus en utilisant un ensemble de modèles de légumineuses à grains pour les projections alimentaires du changement climatique, et souligne qu'un développement plus poussé du modèle du soja avec des expériences sous des [CO2] et des températures élevées est nécessaire pour réduire l'incertitude des modèles individuels. Una estimación precisa del rendimiento de los cultivos en escenarios de cambio climático es esencial para cuantificar nuestra capacidad para alimentar a una población en crecimiento y desarrollar adaptaciones agronómicas para satisfacer la demanda futura de alimentos. Todavía falta una evaluación coordinada de las simulaciones de rendimiento a partir de modelos ecofisiológicos basados en procesos para la evaluación del impacto del cambio climático para la soja, la leguminosa de grano más cultivada y la principal fuente de proteínas en nuestra cadena alimentaria. En este primer estudio multimodelo de soja, utilizamos diez modelos prominentes capaces de simular el rendimiento de la soja a diferentes temperaturas y concentraciones de CO2 atmosférico [CO2] para cuantificar la incertidumbre en las simulaciones de rendimiento de soja en respuesta a estos factores. Los modelos se parametrizaron por primera vez con datos medidos de alta calidad de cinco entornos contrastantes. Encontramos una variabilidad considerable entre los modelos en las respuestas de rendimiento simuladas al aumento de la temperatura y [CO2]. Por ejemplo, bajo un aumento de temperatura de + 3 ° C en nuestra ubicación más fresca en Argentina, algunos modelos simularon que el rendimiento se reduciría hasta un 24%, mientras que otros simularon aumentos de rendimiento de hasta un 29%. En nuestra ubicación más cálida en Brasil, los modelos simularon una reducción del rendimiento que va desde una disminución del 38% con un aumento de temperatura de + 3 ° C hasta ningún efecto en el rendimiento. Del mismo modo, al aumentar [CO2] de 360 a 540 ppm, los modelos simularon un aumento del rendimiento que osciló entre el 6% y el 31%. La calibración del modelo no redujo la variabilidad entre los modelos, pero tuvo un efecto inesperado en la modificación de las respuestas de rendimiento a la temperatura para algunos de los modelos. La alta incertidumbre en las respuestas de los modelos indica la aplicabilidad limitada de los modelos individuales para las proyecciones alimentarias del cambio climático. Sin embargo, la media del conjunto de simulaciones entre modelos fue una herramienta efectiva para reducir la alta incertidumbre en las simulaciones de rendimiento de soja asociadas con modelos individuales y su parametrización. Las respuestas de rendimiento medio del conjunto a la temperatura y [CO2] fueron similares a las informadas en la literatura. Nuestro estudio es la primera demostración de los beneficios logrados al utilizar un conjunto de modelos de leguminosas de grano para las proyecciones de alimentos del cambio climático, y destaca que se necesita un mayor desarrollo del modelo de soja con experimentos bajo [CO2] y temperatura elevadas para reducir la incertidumbre de los modelos individuales. An accurate estimation of crop yield under climate change scenarios is essential to quantify our ability to feed a growing population and develop agronomic adaptations to meet future food demand. A coordinated evaluation of yield simulations from process-based eco-physiological models for climate change impact assessment is still missing for soybean, the most widely grown grain legume and the main source of protein in our food chain. In this first soybean multi-model study, we used ten prominent models capable of simulating soybean yield under varying temperature and atmospheric CO2 concentration [CO2] to quantify the uncertainty in soybean yield simulations in response to these factors. Models were first parametrized with high quality measured data from five contrasting environments. We found considerable variability among models in simulated yield responses to increasing temperature and [CO2]. For example, under a + 3 °C temperature rise in our coolest location in Argentina, some models simulated that yield would reduce as much as 24%, while others simulated yield increases up to 29%. In our warmest location in Brazil, the models simulated a yield reduction ranging from a 38% decrease under + 3 °C temperature rise to no effect on yield. Similarly, when increasing [CO2] from 360 to 540 ppm, the models simulated a yield increase that ranged from 6% to 31%. Model calibration did not reduce variability across models but had an unexpected effect on modifying yield responses to temperature for some of the models. The high uncertainty in model responses indicates the limited applicability of individual models for climate change food projections. However, the ensemble mean of simulations across models was an effective tool to reduce the high uncertainty in soybean yield simulations associated with individual models and their parametrization. Ensemble mean yield responses to temperature and [CO2] were similar to those reported from the literature. Our study is the first demonstration of the benefits achieved from using an ensemble of grain legume models for climate change food projections, and highlights that further soybean model development with experiments under elevated [CO2] and temperature is needed to reduce the uncertainty from the individual models. يعد التقدير الدقيق لمحصول المحاصيل في ظل سيناريوهات تغير المناخ أمرًا ضروريًا لتحديد قدرتنا على إطعام عدد متزايد من السكان وتطوير التكيفات الزراعية لتلبية الطلب على الغذاء في المستقبل. لا يزال التقييم المنسق لمحاكاة الغلة من النماذج الفسيولوجية البيئية القائمة على العمليات لتقييم تأثير تغير المناخ مفقودًا بالنسبة لفول الصويا، وهو بقول الحبوب الأكثر زراعة على نطاق واسع والمصدر الرئيسي للبروتين في سلسلتنا الغذائية. في هذه الدراسة الأولى متعددة النماذج لفول الصويا، استخدمنا عشرة نماذج بارزة قادرة على محاكاة محصول فول الصويا تحت درجات حرارة متفاوتة وتركيز ثاني أكسيد الكربون في الغلاف الجوي [CO2] لقياس عدم اليقين في محاكاة محصول فول الصويا استجابة لهذه العوامل. تم قياس النماذج أولاً ببيانات مقاسة عالية الجودة من خمس بيئات متباينة. وجدنا تباينًا كبيرًا بين النماذج في استجابات العائد المحاكاة لزيادة درجة الحرارة و [CO2]. على سبيل المثال، في ظل ارتفاع درجة الحرارة بمقدار + 3 درجات مئوية في أروع موقع لنا في الأرجنتين، قامت بعض النماذج بمحاكاة أن العائد سيقلل بنسبة تصل إلى 24 ٪، بينما يزيد العائد المحاكى الآخر بنسبة تصل إلى 29 ٪. في موقعنا الأكثر دفئًا في البرازيل، قامت النماذج بمحاكاة انخفاض العائد الذي يتراوح بين انخفاض بنسبة 38 ٪ تحت + ارتفاع درجة حرارة 3 درجات مئوية إلى عدم التأثير على العائد. وبالمثل، عند زيادة [ثاني أكسيد الكربون] من 360 إلى 540 جزء في المليون، قامت النماذج بمحاكاة زيادة العائد التي تراوحت من 6 ٪ إلى 31 ٪. لم تقلل معايرة النموذج من التباين عبر النماذج ولكن كان لها تأثير غير متوقع على تعديل استجابات الخضوع لدرجة الحرارة لبعض النماذج. يشير عدم اليقين الشديد في الاستجابات النموذجية إلى التطبيق المحدود للنماذج الفردية للتوقعات الغذائية لتغير المناخ. ومع ذلك، كان المتوسط الجماعي للمحاكاة عبر النماذج أداة فعالة للحد من عدم اليقين العالي في محاكاة غلة فول الصويا المرتبطة بالنماذج الفردية ومعلماتها. كانت استجابات متوسط العائد على درجة الحرارة و [CO2] متشابهة مع تلك الواردة في الأدبيات. دراستنا هي أول عرض توضيحي للفوائد التي تحققت من استخدام مجموعة من نماذج البقوليات لتوقعات تغير المناخ الغذائية، وتسلط الضوء على الحاجة إلى مزيد من تطوير نموذج فول الصويا مع التجارب تحت [CO2] ودرجة الحرارة المرتفعة لتقليل عدم اليقين من النماذج الفردية.
UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2022.126482&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2022.126482&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 BrazilPublisher:Elsevier BV Authors: Osvaldo M.R. Cabral; Helber Custódio Freitas; Santiago Viana Cuadra; Cristiano Alberto de Andrade; +6 AuthorsOsvaldo M.R. Cabral; Helber Custódio Freitas; Santiago Viana Cuadra; Cristiano Alberto de Andrade; Nilza Patricia Ramos; Priscila Grutzmacher; Marcelo Galdos; Ana Paula Contador Packer; Humberto Ribeiro da Rocha; Paulo Rossi;handle: 11449/198239
Abstract The sustainability of sugarcane farming for biofuel has recently become a subject of debate, because its expansion may contribute significantly to global climate change mitigation. Here we report greenhouse gases (GHG) fluxes, measured by the eddy covariance method, from a commercial scale rain-fed sugarcane plantation representative of the leading bioethanol production area in southeast Brazil. The measurements covered two harvests, during which the field received nitrogen fertilization and trash was not removed. The cumulative fluxes for nitrous oxide (N2O) (62.4 ± 1.3 and 52.3 ± 1.8 g N2O CO2 eq. m−2 for the first and second years, respectively) and methane (CH4) (12.1 ± 1.7 and 10.4 ± 2.3 g CH4 CO2 eq. m−2 for the first and second years, respectively) were minor sources to the atmosphere in comparison with the net ecosystem exchange (NEE) of carbon dioxide (CO2), whose sink dominated the balances (−7643. ± 129. and -4615. ± 124. g CO2 m−2 for the first and second years, respectively). Compared to the first year, the observed NEE in the second year decreased by 40%, as it covered the first re-growth from the stubble (ratoon) and exhibited a shorter growth cycle than the first year (304 versus 390 days). The second year also included the partial decomposition of the trash remaining on the soil after the first harvest (1581 ± 301 g CO2 m−2). The net ecosystem carbon balances (NECB), obtained as the cumulative fluxes of GHGs and the stalk dry biomass removed in the harvests (4923 ± 459 and 3929 ± 352 g CO2 m−2 for the first and second years, respectively) were -2646 ± 459 and -623 ± 352 g CO2 m−2 for the first and second years, respectively. Although the yields in stalk fresh weight (SFW) were representative of the region (9.9 and 8.2 kg SFW m−2, in the first and second year respectively) other factors caused a decrease of 76% in NECB, stressing the importance of the CO2 balance (assimilation versus respiration). Nevertheless, this sugarcane agro-system was an overall carbon sink with the N2O and CH4 emitted totals being offset by the net carbon gain.
LAReferencia - Red F... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2019.107864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2019.107864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 BrazilPublisher:Elsevier BV Authors: Osvaldo M.R. Cabral; Helber Custódio Freitas; Santiago Viana Cuadra; Cristiano Alberto de Andrade; +6 AuthorsOsvaldo M.R. Cabral; Helber Custódio Freitas; Santiago Viana Cuadra; Cristiano Alberto de Andrade; Nilza Patricia Ramos; Priscila Grutzmacher; Marcelo Galdos; Ana Paula Contador Packer; Humberto Ribeiro da Rocha; Paulo Rossi;handle: 11449/198239
Abstract The sustainability of sugarcane farming for biofuel has recently become a subject of debate, because its expansion may contribute significantly to global climate change mitigation. Here we report greenhouse gases (GHG) fluxes, measured by the eddy covariance method, from a commercial scale rain-fed sugarcane plantation representative of the leading bioethanol production area in southeast Brazil. The measurements covered two harvests, during which the field received nitrogen fertilization and trash was not removed. The cumulative fluxes for nitrous oxide (N2O) (62.4 ± 1.3 and 52.3 ± 1.8 g N2O CO2 eq. m−2 for the first and second years, respectively) and methane (CH4) (12.1 ± 1.7 and 10.4 ± 2.3 g CH4 CO2 eq. m−2 for the first and second years, respectively) were minor sources to the atmosphere in comparison with the net ecosystem exchange (NEE) of carbon dioxide (CO2), whose sink dominated the balances (−7643. ± 129. and -4615. ± 124. g CO2 m−2 for the first and second years, respectively). Compared to the first year, the observed NEE in the second year decreased by 40%, as it covered the first re-growth from the stubble (ratoon) and exhibited a shorter growth cycle than the first year (304 versus 390 days). The second year also included the partial decomposition of the trash remaining on the soil after the first harvest (1581 ± 301 g CO2 m−2). The net ecosystem carbon balances (NECB), obtained as the cumulative fluxes of GHGs and the stalk dry biomass removed in the harvests (4923 ± 459 and 3929 ± 352 g CO2 m−2 for the first and second years, respectively) were -2646 ± 459 and -623 ± 352 g CO2 m−2 for the first and second years, respectively. Although the yields in stalk fresh weight (SFW) were representative of the region (9.9 and 8.2 kg SFW m−2, in the first and second year respectively) other factors caused a decrease of 76% in NECB, stressing the importance of the CO2 balance (assimilation versus respiration). Nevertheless, this sugarcane agro-system was an overall carbon sink with the N2O and CH4 emitted totals being offset by the net carbon gain.
LAReferencia - Red F... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2019.107864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2019.107864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Wiley Murilo S. Vianna; Karina W. Williams; Emma W. Littleton; Osvaldo Cabral; Carlos Eduardo P. Cerri; Quirijn De Jong van Lier; Toby R. Marthews; Garry Hayman; Marcelo Zeri; Santiago V. Cuadra; Andrew J. Challinor; Fabio R. Marin; Marcelo V. Galdos;doi: 10.1111/gcbb.12989
AbstractBioenergy from sugarcane production is considered a key mitigation strategy for global warming. Improving its representation in land surface models is important to further understand the interactions between climate and bioenergy production, supporting accurate climate projections and decision‐making. This study aimed to calibrate and evaluate the Joint UK Land Environment Simulator (JULES) for climate impact assessments in sugarcane. A dataset composed of soil moisture, water and carbon fluxes and biomass measurements from field experiments across Brazil was used to calibrate and evaluate JULES‐crop and JULES‐BE parametrizations. The ability to predict the spatiotemporal variability of sugarcane yields and the impact of climate change was also tested at five Brazilian microregions. Parameters related to sugarcane allometry, crop growth and development were derived and tested for JULES‐crop and JULES‐BE, together with the response to atmospheric carbon dioxide, temperature and low‐water availability (CTW‐response). Both parametrizations showed comparable performance to other sugarcane dynamic models, with a root mean squared error of 6.75 and 6.05 t ha−1 for stalk dry matter for JULES‐crop and JULES‐BE, respectively. The parametrizations were also able to replicate the average yield patterns observed in the five microregions over 30 years when the yield gap factors were taken into account, with the correlation (r) between simulated and observed interannual variability of yields ranging from 0.33 to 0.56. An overall small positive trend was found in future yield projections of sugarcane using the new calibrations, with exception of the Jataí mesoregion which showed a clear negative trend for the SSP5 scenario from the years 2070 to 2100. Our simulations showed that an abrupt negative impact on sugarcane yields is expected if daytime temperatures above 35°C become more frequent. The newly calibrated version of JULES can be applied regionally and globally to help understand the interactions between climate and bioenergy production.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Wiley Murilo S. Vianna; Karina W. Williams; Emma W. Littleton; Osvaldo Cabral; Carlos Eduardo P. Cerri; Quirijn De Jong van Lier; Toby R. Marthews; Garry Hayman; Marcelo Zeri; Santiago V. Cuadra; Andrew J. Challinor; Fabio R. Marin; Marcelo V. Galdos;doi: 10.1111/gcbb.12989
AbstractBioenergy from sugarcane production is considered a key mitigation strategy for global warming. Improving its representation in land surface models is important to further understand the interactions between climate and bioenergy production, supporting accurate climate projections and decision‐making. This study aimed to calibrate and evaluate the Joint UK Land Environment Simulator (JULES) for climate impact assessments in sugarcane. A dataset composed of soil moisture, water and carbon fluxes and biomass measurements from field experiments across Brazil was used to calibrate and evaluate JULES‐crop and JULES‐BE parametrizations. The ability to predict the spatiotemporal variability of sugarcane yields and the impact of climate change was also tested at five Brazilian microregions. Parameters related to sugarcane allometry, crop growth and development were derived and tested for JULES‐crop and JULES‐BE, together with the response to atmospheric carbon dioxide, temperature and low‐water availability (CTW‐response). Both parametrizations showed comparable performance to other sugarcane dynamic models, with a root mean squared error of 6.75 and 6.05 t ha−1 for stalk dry matter for JULES‐crop and JULES‐BE, respectively. The parametrizations were also able to replicate the average yield patterns observed in the five microregions over 30 years when the yield gap factors were taken into account, with the correlation (r) between simulated and observed interannual variability of yields ranging from 0.33 to 0.56. An overall small positive trend was found in future yield projections of sugarcane using the new calibrations, with exception of the Jataí mesoregion which showed a clear negative trend for the SSP5 scenario from the years 2070 to 2100. Our simulations showed that an abrupt negative impact on sugarcane yields is expected if daytime temperatures above 35°C become more frequent. The newly calibrated version of JULES can be applied regionally and globally to help understand the interactions between climate and bioenergy production.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Diego Portalanza; Finbarr G. Horgan; Valeria Pohlmann; Santiago Vianna Cuadra; Malena Torres-Ulloa; Eduardo Alava; Simone Ferraz; Angelica Durigon;Rice (Oryza sativa L.) is the main staple food of more than 50% of the world’s population. However, global production may need to increase by more than 70% before 2050 to meet global food requirements despite increasing challenges due to environmental degradation, a changing climate, and extreme weather events. Rice production in Ecuador, mainly concentrated in lowland tropical plains, declined in recent years. In this paper, we aim to calibrate and validate Kobayashi’s ‘Very Simple Model’ (VSM) and, using downscaled corrected climate data, to quantify the potential impact of climate change on rice yields for Ecuador’s two main rice-growing provinces. The negative impact is expected to be highest (up to −67%; 2946 tons) under the Representative Concentration Pathway (RCP) 8.5, with a lower impact under RCP 2.6 (−36%; 1650 tons) yield reduction in the Guayas province. A positive impact on yield is predicted for Los Ríos Province (up to 9%; 161 tons) under RCP 8.5. These different impacts indicate the utility of fine-scale analyses using simple models to make predictions that are relevant to regional production scenarios. Our prediction of possible changes in rice productivity can help policymakers define a variety of requirements to meet the demands of a changing climate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agriculture12111828&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agriculture12111828&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Diego Portalanza; Finbarr G. Horgan; Valeria Pohlmann; Santiago Vianna Cuadra; Malena Torres-Ulloa; Eduardo Alava; Simone Ferraz; Angelica Durigon;Rice (Oryza sativa L.) is the main staple food of more than 50% of the world’s population. However, global production may need to increase by more than 70% before 2050 to meet global food requirements despite increasing challenges due to environmental degradation, a changing climate, and extreme weather events. Rice production in Ecuador, mainly concentrated in lowland tropical plains, declined in recent years. In this paper, we aim to calibrate and validate Kobayashi’s ‘Very Simple Model’ (VSM) and, using downscaled corrected climate data, to quantify the potential impact of climate change on rice yields for Ecuador’s two main rice-growing provinces. The negative impact is expected to be highest (up to −67%; 2946 tons) under the Representative Concentration Pathway (RCP) 8.5, with a lower impact under RCP 2.6 (−36%; 1650 tons) yield reduction in the Guayas province. A positive impact on yield is predicted for Los Ríos Province (up to 9%; 161 tons) under RCP 8.5. These different impacts indicate the utility of fine-scale analyses using simple models to make predictions that are relevant to regional production scenarios. Our prediction of possible changes in rice productivity can help policymakers define a variety of requirements to meet the demands of a changing climate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agriculture12111828&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agriculture12111828&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Yane Freitas Silva; Rafael Vasconcelos Valadares; Henrique Boriolo Dias; Santiago Vianna Cuadra; +7 AuthorsYane Freitas Silva; Rafael Vasconcelos Valadares; Henrique Boriolo Dias; Santiago Vianna Cuadra; Eleanor E. Campbell; Rubens A. C. Lamparelli; Edemar Moro; Rafael Battisti; Marcelo R. Alves; Paulo S. G. Magalhães; Gleyce K. D. A. Figueiredo;doi: 10.3390/su14063517
Process-based models (PBM) are important tools for understanding the benefits of Integrated Crop-Livestock Systems (ICLS), such as increasing land productivity and improving environmental conditions. PBM can provide insights into the contribution of agricultural production to climate change and help identify potential greenhouse gas (GHG) mitigation and carbon sequestration options. Rehabilitation of degraded lands is a key strategy for achieving food security goals and can reduce the need for new agricultural land. This study focused on the calibration and validation of the DayCent PBM for a typical ICLS adopted in Brazil from 2018 to 2020. We also present the DayCent parametrization for two forage species (ruzigrass and millet) grown simultaneously, bringing some innovation in the modeling challenges. We used aboveground biomass to calibrate the model, randomly selecting data from 70% of the paddocks in the study area. The calibration obtained a coefficient of determination (R2) of 0.69 and a relative RMSE of 37.0%. During the validation, we used other variables (CO2 flux, grain biomass, and soil water content) measured in the ICLS and performed a double validation for plant growth to evaluate the robustness of the model in terms of generalization. R2 validations ranged from 0.61 to 0.73, and relative RMSE from 11.3 to 48.3%. Despite the complexity and diversity of ICLS results show that DayCent can be used to model ICLS, which is an important step for future regional analyses and large-scale evaluations of the impacts of ICLS.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/6/3517/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14063517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/6/3517/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14063517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Yane Freitas Silva; Rafael Vasconcelos Valadares; Henrique Boriolo Dias; Santiago Vianna Cuadra; +7 AuthorsYane Freitas Silva; Rafael Vasconcelos Valadares; Henrique Boriolo Dias; Santiago Vianna Cuadra; Eleanor E. Campbell; Rubens A. C. Lamparelli; Edemar Moro; Rafael Battisti; Marcelo R. Alves; Paulo S. G. Magalhães; Gleyce K. D. A. Figueiredo;doi: 10.3390/su14063517
Process-based models (PBM) are important tools for understanding the benefits of Integrated Crop-Livestock Systems (ICLS), such as increasing land productivity and improving environmental conditions. PBM can provide insights into the contribution of agricultural production to climate change and help identify potential greenhouse gas (GHG) mitigation and carbon sequestration options. Rehabilitation of degraded lands is a key strategy for achieving food security goals and can reduce the need for new agricultural land. This study focused on the calibration and validation of the DayCent PBM for a typical ICLS adopted in Brazil from 2018 to 2020. We also present the DayCent parametrization for two forage species (ruzigrass and millet) grown simultaneously, bringing some innovation in the modeling challenges. We used aboveground biomass to calibrate the model, randomly selecting data from 70% of the paddocks in the study area. The calibration obtained a coefficient of determination (R2) of 0.69 and a relative RMSE of 37.0%. During the validation, we used other variables (CO2 flux, grain biomass, and soil water content) measured in the ICLS and performed a double validation for plant growth to evaluate the robustness of the model in terms of generalization. R2 validations ranged from 0.61 to 0.73, and relative RMSE from 11.3 to 48.3%. Despite the complexity and diversity of ICLS results show that DayCent can be used to model ICLS, which is an important step for future regional analyses and large-scale evaluations of the impacts of ICLS.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/6/3517/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14063517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/6/3517/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14063517&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 South Africa, Germany, FrancePublisher:Elsevier BV Kritika Kothari; Rafael Battisti; Kenneth J. Boote; Sotirios Archontoulis; Adriana Confalone; Julie Constantin; Santiago Vianna Cuadra; Philippe Debaeke; Babacar Faye; Brian Grant; Gerrit Hoogenboom; Qi Jing; Michael van der Laan; Fernando Antônio Macena da Silva; Fábio Ricardo Marin; Alireza Nehbandani; Claas Nendel; Larry C. Purcell; Budong Qian; Alex C. Ruane; Céline Schoving; Evandro Henrique Figueiredo Moura da Silva; Ward Smith; Afshin Soltani; Amit Kumar Srivastava; Nilson Aparecido Vieira; Stacey Slone; Montserrat Salmerón;Une estimation précise du rendement des cultures dans les scénarios de changement climatique est essentielle pour quantifier notre capacité à nourrir une population croissante et à développer des adaptations agronomiques pour répondre à la demande alimentaire future. Une évaluation coordonnée des simulations de rendement à partir de modèles écophysiologiques basés sur les processus pour l'évaluation de l'impact du changement climatique fait toujours défaut pour le soja, la légumineuse à grains la plus cultivée et la principale source de protéines dans notre chaîne alimentaire. Dans cette première étude multimodèle sur le soja, nous avons utilisé dix modèles de premier plan capables de simuler le rendement du soja sous différentes températures et concentrations atmosphériques de CO2 [CO2] pour quantifier l'incertitude dans les simulations de rendement du soja en réponse à ces facteurs. Les modèles ont d'abord été paramétrés avec des données mesurées de haute qualité provenant de cinq environnements contrastés. Nous avons trouvé une variabilité considérable entre les modèles dans les réponses de rendement simulées à l'augmentation de la température et du [CO2]. Par exemple, en cas d'augmentation de la température de + 3 °C dans notre endroit le plus frais en Argentine, certains modèles ont simulé que le rendement diminuerait jusqu'à 24 %, tandis que d'autres simulaient une augmentation du rendement allant jusqu'à 29 %. Dans notre emplacement le plus chaud au Brésil, les modèles ont simulé une réduction du rendement allant d'une diminution de 38 % sous + 3 °C à une augmentation de la température sans effet sur le rendement. De même, en augmentant le [CO2] de 360 à 540 ppm, les modèles ont simulé une augmentation du rendement allant de 6% à 31%. L'étalonnage du modèle n'a pas réduit la variabilité entre les modèles, mais a eu un effet inattendu sur la modification des réponses du rendement à la température pour certains des modèles. La forte incertitude dans les réponses des modèles indique l'applicabilité limitée des modèles individuels pour les projections alimentaires du changement climatique. Cependant, la moyenne d'ensemble des simulations à travers les modèles était un outil efficace pour réduire la forte incertitude dans les simulations de rendement du soja associées aux modèles individuels et à leur paramétrage. Les réponses du rendement moyen de l'ensemble à la température et au [CO2] étaient similaires à celles rapportées dans la littérature. Notre étude est la première démonstration des avantages obtenus en utilisant un ensemble de modèles de légumineuses à grains pour les projections alimentaires du changement climatique, et souligne qu'un développement plus poussé du modèle du soja avec des expériences sous des [CO2] et des températures élevées est nécessaire pour réduire l'incertitude des modèles individuels. Una estimación precisa del rendimiento de los cultivos en escenarios de cambio climático es esencial para cuantificar nuestra capacidad para alimentar a una población en crecimiento y desarrollar adaptaciones agronómicas para satisfacer la demanda futura de alimentos. Todavía falta una evaluación coordinada de las simulaciones de rendimiento a partir de modelos ecofisiológicos basados en procesos para la evaluación del impacto del cambio climático para la soja, la leguminosa de grano más cultivada y la principal fuente de proteínas en nuestra cadena alimentaria. En este primer estudio multimodelo de soja, utilizamos diez modelos prominentes capaces de simular el rendimiento de la soja a diferentes temperaturas y concentraciones de CO2 atmosférico [CO2] para cuantificar la incertidumbre en las simulaciones de rendimiento de soja en respuesta a estos factores. Los modelos se parametrizaron por primera vez con datos medidos de alta calidad de cinco entornos contrastantes. Encontramos una variabilidad considerable entre los modelos en las respuestas de rendimiento simuladas al aumento de la temperatura y [CO2]. Por ejemplo, bajo un aumento de temperatura de + 3 ° C en nuestra ubicación más fresca en Argentina, algunos modelos simularon que el rendimiento se reduciría hasta un 24%, mientras que otros simularon aumentos de rendimiento de hasta un 29%. En nuestra ubicación más cálida en Brasil, los modelos simularon una reducción del rendimiento que va desde una disminución del 38% con un aumento de temperatura de + 3 ° C hasta ningún efecto en el rendimiento. Del mismo modo, al aumentar [CO2] de 360 a 540 ppm, los modelos simularon un aumento del rendimiento que osciló entre el 6% y el 31%. La calibración del modelo no redujo la variabilidad entre los modelos, pero tuvo un efecto inesperado en la modificación de las respuestas de rendimiento a la temperatura para algunos de los modelos. La alta incertidumbre en las respuestas de los modelos indica la aplicabilidad limitada de los modelos individuales para las proyecciones alimentarias del cambio climático. Sin embargo, la media del conjunto de simulaciones entre modelos fue una herramienta efectiva para reducir la alta incertidumbre en las simulaciones de rendimiento de soja asociadas con modelos individuales y su parametrización. Las respuestas de rendimiento medio del conjunto a la temperatura y [CO2] fueron similares a las informadas en la literatura. Nuestro estudio es la primera demostración de los beneficios logrados al utilizar un conjunto de modelos de leguminosas de grano para las proyecciones de alimentos del cambio climático, y destaca que se necesita un mayor desarrollo del modelo de soja con experimentos bajo [CO2] y temperatura elevadas para reducir la incertidumbre de los modelos individuales. An accurate estimation of crop yield under climate change scenarios is essential to quantify our ability to feed a growing population and develop agronomic adaptations to meet future food demand. A coordinated evaluation of yield simulations from process-based eco-physiological models for climate change impact assessment is still missing for soybean, the most widely grown grain legume and the main source of protein in our food chain. In this first soybean multi-model study, we used ten prominent models capable of simulating soybean yield under varying temperature and atmospheric CO2 concentration [CO2] to quantify the uncertainty in soybean yield simulations in response to these factors. Models were first parametrized with high quality measured data from five contrasting environments. We found considerable variability among models in simulated yield responses to increasing temperature and [CO2]. For example, under a + 3 °C temperature rise in our coolest location in Argentina, some models simulated that yield would reduce as much as 24%, while others simulated yield increases up to 29%. In our warmest location in Brazil, the models simulated a yield reduction ranging from a 38% decrease under + 3 °C temperature rise to no effect on yield. Similarly, when increasing [CO2] from 360 to 540 ppm, the models simulated a yield increase that ranged from 6% to 31%. Model calibration did not reduce variability across models but had an unexpected effect on modifying yield responses to temperature for some of the models. The high uncertainty in model responses indicates the limited applicability of individual models for climate change food projections. However, the ensemble mean of simulations across models was an effective tool to reduce the high uncertainty in soybean yield simulations associated with individual models and their parametrization. Ensemble mean yield responses to temperature and [CO2] were similar to those reported from the literature. Our study is the first demonstration of the benefits achieved from using an ensemble of grain legume models for climate change food projections, and highlights that further soybean model development with experiments under elevated [CO2] and temperature is needed to reduce the uncertainty from the individual models. يعد التقدير الدقيق لمحصول المحاصيل في ظل سيناريوهات تغير المناخ أمرًا ضروريًا لتحديد قدرتنا على إطعام عدد متزايد من السكان وتطوير التكيفات الزراعية لتلبية الطلب على الغذاء في المستقبل. لا يزال التقييم المنسق لمحاكاة الغلة من النماذج الفسيولوجية البيئية القائمة على العمليات لتقييم تأثير تغير المناخ مفقودًا بالنسبة لفول الصويا، وهو بقول الحبوب الأكثر زراعة على نطاق واسع والمصدر الرئيسي للبروتين في سلسلتنا الغذائية. في هذه الدراسة الأولى متعددة النماذج لفول الصويا، استخدمنا عشرة نماذج بارزة قادرة على محاكاة محصول فول الصويا تحت درجات حرارة متفاوتة وتركيز ثاني أكسيد الكربون في الغلاف الجوي [CO2] لقياس عدم اليقين في محاكاة محصول فول الصويا استجابة لهذه العوامل. تم قياس النماذج أولاً ببيانات مقاسة عالية الجودة من خمس بيئات متباينة. وجدنا تباينًا كبيرًا بين النماذج في استجابات العائد المحاكاة لزيادة درجة الحرارة و [CO2]. على سبيل المثال، في ظل ارتفاع درجة الحرارة بمقدار + 3 درجات مئوية في أروع موقع لنا في الأرجنتين، قامت بعض النماذج بمحاكاة أن العائد سيقلل بنسبة تصل إلى 24 ٪، بينما يزيد العائد المحاكى الآخر بنسبة تصل إلى 29 ٪. في موقعنا الأكثر دفئًا في البرازيل، قامت النماذج بمحاكاة انخفاض العائد الذي يتراوح بين انخفاض بنسبة 38 ٪ تحت + ارتفاع درجة حرارة 3 درجات مئوية إلى عدم التأثير على العائد. وبالمثل، عند زيادة [ثاني أكسيد الكربون] من 360 إلى 540 جزء في المليون، قامت النماذج بمحاكاة زيادة العائد التي تراوحت من 6 ٪ إلى 31 ٪. لم تقلل معايرة النموذج من التباين عبر النماذج ولكن كان لها تأثير غير متوقع على تعديل استجابات الخضوع لدرجة الحرارة لبعض النماذج. يشير عدم اليقين الشديد في الاستجابات النموذجية إلى التطبيق المحدود للنماذج الفردية للتوقعات الغذائية لتغير المناخ. ومع ذلك، كان المتوسط الجماعي للمحاكاة عبر النماذج أداة فعالة للحد من عدم اليقين العالي في محاكاة غلة فول الصويا المرتبطة بالنماذج الفردية ومعلماتها. كانت استجابات متوسط العائد على درجة الحرارة و [CO2] متشابهة مع تلك الواردة في الأدبيات. دراستنا هي أول عرض توضيحي للفوائد التي تحققت من استخدام مجموعة من نماذج البقوليات لتوقعات تغير المناخ الغذائية، وتسلط الضوء على الحاجة إلى مزيد من تطوير نموذج فول الصويا مع التجارب تحت [CO2] ودرجة الحرارة المرتفعة لتقليل عدم اليقين من النماذج الفردية.
UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2022.126482&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2022.126482&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 South Africa, Germany, FrancePublisher:Elsevier BV Kritika Kothari; Rafael Battisti; Kenneth J. Boote; Sotirios Archontoulis; Adriana Confalone; Julie Constantin; Santiago Vianna Cuadra; Philippe Debaeke; Babacar Faye; Brian Grant; Gerrit Hoogenboom; Qi Jing; Michael van der Laan; Fernando Antônio Macena da Silva; Fábio Ricardo Marin; Alireza Nehbandani; Claas Nendel; Larry C. Purcell; Budong Qian; Alex C. Ruane; Céline Schoving; Evandro Henrique Figueiredo Moura da Silva; Ward Smith; Afshin Soltani; Amit Kumar Srivastava; Nilson Aparecido Vieira; Stacey Slone; Montserrat Salmerón;Une estimation précise du rendement des cultures dans les scénarios de changement climatique est essentielle pour quantifier notre capacité à nourrir une population croissante et à développer des adaptations agronomiques pour répondre à la demande alimentaire future. Une évaluation coordonnée des simulations de rendement à partir de modèles écophysiologiques basés sur les processus pour l'évaluation de l'impact du changement climatique fait toujours défaut pour le soja, la légumineuse à grains la plus cultivée et la principale source de protéines dans notre chaîne alimentaire. Dans cette première étude multimodèle sur le soja, nous avons utilisé dix modèles de premier plan capables de simuler le rendement du soja sous différentes températures et concentrations atmosphériques de CO2 [CO2] pour quantifier l'incertitude dans les simulations de rendement du soja en réponse à ces facteurs. Les modèles ont d'abord été paramétrés avec des données mesurées de haute qualité provenant de cinq environnements contrastés. Nous avons trouvé une variabilité considérable entre les modèles dans les réponses de rendement simulées à l'augmentation de la température et du [CO2]. Par exemple, en cas d'augmentation de la température de + 3 °C dans notre endroit le plus frais en Argentine, certains modèles ont simulé que le rendement diminuerait jusqu'à 24 %, tandis que d'autres simulaient une augmentation du rendement allant jusqu'à 29 %. Dans notre emplacement le plus chaud au Brésil, les modèles ont simulé une réduction du rendement allant d'une diminution de 38 % sous + 3 °C à une augmentation de la température sans effet sur le rendement. De même, en augmentant le [CO2] de 360 à 540 ppm, les modèles ont simulé une augmentation du rendement allant de 6% à 31%. L'étalonnage du modèle n'a pas réduit la variabilité entre les modèles, mais a eu un effet inattendu sur la modification des réponses du rendement à la température pour certains des modèles. La forte incertitude dans les réponses des modèles indique l'applicabilité limitée des modèles individuels pour les projections alimentaires du changement climatique. Cependant, la moyenne d'ensemble des simulations à travers les modèles était un outil efficace pour réduire la forte incertitude dans les simulations de rendement du soja associées aux modèles individuels et à leur paramétrage. Les réponses du rendement moyen de l'ensemble à la température et au [CO2] étaient similaires à celles rapportées dans la littérature. Notre étude est la première démonstration des avantages obtenus en utilisant un ensemble de modèles de légumineuses à grains pour les projections alimentaires du changement climatique, et souligne qu'un développement plus poussé du modèle du soja avec des expériences sous des [CO2] et des températures élevées est nécessaire pour réduire l'incertitude des modèles individuels. Una estimación precisa del rendimiento de los cultivos en escenarios de cambio climático es esencial para cuantificar nuestra capacidad para alimentar a una población en crecimiento y desarrollar adaptaciones agronómicas para satisfacer la demanda futura de alimentos. Todavía falta una evaluación coordinada de las simulaciones de rendimiento a partir de modelos ecofisiológicos basados en procesos para la evaluación del impacto del cambio climático para la soja, la leguminosa de grano más cultivada y la principal fuente de proteínas en nuestra cadena alimentaria. En este primer estudio multimodelo de soja, utilizamos diez modelos prominentes capaces de simular el rendimiento de la soja a diferentes temperaturas y concentraciones de CO2 atmosférico [CO2] para cuantificar la incertidumbre en las simulaciones de rendimiento de soja en respuesta a estos factores. Los modelos se parametrizaron por primera vez con datos medidos de alta calidad de cinco entornos contrastantes. Encontramos una variabilidad considerable entre los modelos en las respuestas de rendimiento simuladas al aumento de la temperatura y [CO2]. Por ejemplo, bajo un aumento de temperatura de + 3 ° C en nuestra ubicación más fresca en Argentina, algunos modelos simularon que el rendimiento se reduciría hasta un 24%, mientras que otros simularon aumentos de rendimiento de hasta un 29%. En nuestra ubicación más cálida en Brasil, los modelos simularon una reducción del rendimiento que va desde una disminución del 38% con un aumento de temperatura de + 3 ° C hasta ningún efecto en el rendimiento. Del mismo modo, al aumentar [CO2] de 360 a 540 ppm, los modelos simularon un aumento del rendimiento que osciló entre el 6% y el 31%. La calibración del modelo no redujo la variabilidad entre los modelos, pero tuvo un efecto inesperado en la modificación de las respuestas de rendimiento a la temperatura para algunos de los modelos. La alta incertidumbre en las respuestas de los modelos indica la aplicabilidad limitada de los modelos individuales para las proyecciones alimentarias del cambio climático. Sin embargo, la media del conjunto de simulaciones entre modelos fue una herramienta efectiva para reducir la alta incertidumbre en las simulaciones de rendimiento de soja asociadas con modelos individuales y su parametrización. Las respuestas de rendimiento medio del conjunto a la temperatura y [CO2] fueron similares a las informadas en la literatura. Nuestro estudio es la primera demostración de los beneficios logrados al utilizar un conjunto de modelos de leguminosas de grano para las proyecciones de alimentos del cambio climático, y destaca que se necesita un mayor desarrollo del modelo de soja con experimentos bajo [CO2] y temperatura elevadas para reducir la incertidumbre de los modelos individuales. An accurate estimation of crop yield under climate change scenarios is essential to quantify our ability to feed a growing population and develop agronomic adaptations to meet future food demand. A coordinated evaluation of yield simulations from process-based eco-physiological models for climate change impact assessment is still missing for soybean, the most widely grown grain legume and the main source of protein in our food chain. In this first soybean multi-model study, we used ten prominent models capable of simulating soybean yield under varying temperature and atmospheric CO2 concentration [CO2] to quantify the uncertainty in soybean yield simulations in response to these factors. Models were first parametrized with high quality measured data from five contrasting environments. We found considerable variability among models in simulated yield responses to increasing temperature and [CO2]. For example, under a + 3 °C temperature rise in our coolest location in Argentina, some models simulated that yield would reduce as much as 24%, while others simulated yield increases up to 29%. In our warmest location in Brazil, the models simulated a yield reduction ranging from a 38% decrease under + 3 °C temperature rise to no effect on yield. Similarly, when increasing [CO2] from 360 to 540 ppm, the models simulated a yield increase that ranged from 6% to 31%. Model calibration did not reduce variability across models but had an unexpected effect on modifying yield responses to temperature for some of the models. The high uncertainty in model responses indicates the limited applicability of individual models for climate change food projections. However, the ensemble mean of simulations across models was an effective tool to reduce the high uncertainty in soybean yield simulations associated with individual models and their parametrization. Ensemble mean yield responses to temperature and [CO2] were similar to those reported from the literature. Our study is the first demonstration of the benefits achieved from using an ensemble of grain legume models for climate change food projections, and highlights that further soybean model development with experiments under elevated [CO2] and temperature is needed to reduce the uncertainty from the individual models. يعد التقدير الدقيق لمحصول المحاصيل في ظل سيناريوهات تغير المناخ أمرًا ضروريًا لتحديد قدرتنا على إطعام عدد متزايد من السكان وتطوير التكيفات الزراعية لتلبية الطلب على الغذاء في المستقبل. لا يزال التقييم المنسق لمحاكاة الغلة من النماذج الفسيولوجية البيئية القائمة على العمليات لتقييم تأثير تغير المناخ مفقودًا بالنسبة لفول الصويا، وهو بقول الحبوب الأكثر زراعة على نطاق واسع والمصدر الرئيسي للبروتين في سلسلتنا الغذائية. في هذه الدراسة الأولى متعددة النماذج لفول الصويا، استخدمنا عشرة نماذج بارزة قادرة على محاكاة محصول فول الصويا تحت درجات حرارة متفاوتة وتركيز ثاني أكسيد الكربون في الغلاف الجوي [CO2] لقياس عدم اليقين في محاكاة محصول فول الصويا استجابة لهذه العوامل. تم قياس النماذج أولاً ببيانات مقاسة عالية الجودة من خمس بيئات متباينة. وجدنا تباينًا كبيرًا بين النماذج في استجابات العائد المحاكاة لزيادة درجة الحرارة و [CO2]. على سبيل المثال، في ظل ارتفاع درجة الحرارة بمقدار + 3 درجات مئوية في أروع موقع لنا في الأرجنتين، قامت بعض النماذج بمحاكاة أن العائد سيقلل بنسبة تصل إلى 24 ٪، بينما يزيد العائد المحاكى الآخر بنسبة تصل إلى 29 ٪. في موقعنا الأكثر دفئًا في البرازيل، قامت النماذج بمحاكاة انخفاض العائد الذي يتراوح بين انخفاض بنسبة 38 ٪ تحت + ارتفاع درجة حرارة 3 درجات مئوية إلى عدم التأثير على العائد. وبالمثل، عند زيادة [ثاني أكسيد الكربون] من 360 إلى 540 جزء في المليون، قامت النماذج بمحاكاة زيادة العائد التي تراوحت من 6 ٪ إلى 31 ٪. لم تقلل معايرة النموذج من التباين عبر النماذج ولكن كان لها تأثير غير متوقع على تعديل استجابات الخضوع لدرجة الحرارة لبعض النماذج. يشير عدم اليقين الشديد في الاستجابات النموذجية إلى التطبيق المحدود للنماذج الفردية للتوقعات الغذائية لتغير المناخ. ومع ذلك، كان المتوسط الجماعي للمحاكاة عبر النماذج أداة فعالة للحد من عدم اليقين العالي في محاكاة غلة فول الصويا المرتبطة بالنماذج الفردية ومعلماتها. كانت استجابات متوسط العائد على درجة الحرارة و [CO2] متشابهة مع تلك الواردة في الأدبيات. دراستنا هي أول عرض توضيحي للفوائد التي تحققت من استخدام مجموعة من نماذج البقوليات لتوقعات تغير المناخ الغذائية، وتسلط الضوء على الحاجة إلى مزيد من تطوير نموذج فول الصويا مع التجارب تحت [CO2] ودرجة الحرارة المرتفعة لتقليل عدم اليقين من النماذج الفردية.
UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2022.126482&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2022.126482&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 BrazilPublisher:Elsevier BV Authors: Osvaldo M.R. Cabral; Helber Custódio Freitas; Santiago Viana Cuadra; Cristiano Alberto de Andrade; +6 AuthorsOsvaldo M.R. Cabral; Helber Custódio Freitas; Santiago Viana Cuadra; Cristiano Alberto de Andrade; Nilza Patricia Ramos; Priscila Grutzmacher; Marcelo Galdos; Ana Paula Contador Packer; Humberto Ribeiro da Rocha; Paulo Rossi;handle: 11449/198239
Abstract The sustainability of sugarcane farming for biofuel has recently become a subject of debate, because its expansion may contribute significantly to global climate change mitigation. Here we report greenhouse gases (GHG) fluxes, measured by the eddy covariance method, from a commercial scale rain-fed sugarcane plantation representative of the leading bioethanol production area in southeast Brazil. The measurements covered two harvests, during which the field received nitrogen fertilization and trash was not removed. The cumulative fluxes for nitrous oxide (N2O) (62.4 ± 1.3 and 52.3 ± 1.8 g N2O CO2 eq. m−2 for the first and second years, respectively) and methane (CH4) (12.1 ± 1.7 and 10.4 ± 2.3 g CH4 CO2 eq. m−2 for the first and second years, respectively) were minor sources to the atmosphere in comparison with the net ecosystem exchange (NEE) of carbon dioxide (CO2), whose sink dominated the balances (−7643. ± 129. and -4615. ± 124. g CO2 m−2 for the first and second years, respectively). Compared to the first year, the observed NEE in the second year decreased by 40%, as it covered the first re-growth from the stubble (ratoon) and exhibited a shorter growth cycle than the first year (304 versus 390 days). The second year also included the partial decomposition of the trash remaining on the soil after the first harvest (1581 ± 301 g CO2 m−2). The net ecosystem carbon balances (NECB), obtained as the cumulative fluxes of GHGs and the stalk dry biomass removed in the harvests (4923 ± 459 and 3929 ± 352 g CO2 m−2 for the first and second years, respectively) were -2646 ± 459 and -623 ± 352 g CO2 m−2 for the first and second years, respectively. Although the yields in stalk fresh weight (SFW) were representative of the region (9.9 and 8.2 kg SFW m−2, in the first and second year respectively) other factors caused a decrease of 76% in NECB, stressing the importance of the CO2 balance (assimilation versus respiration). Nevertheless, this sugarcane agro-system was an overall carbon sink with the N2O and CH4 emitted totals being offset by the net carbon gain.
LAReferencia - Red F... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2019.107864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2019.107864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 BrazilPublisher:Elsevier BV Authors: Osvaldo M.R. Cabral; Helber Custódio Freitas; Santiago Viana Cuadra; Cristiano Alberto de Andrade; +6 AuthorsOsvaldo M.R. Cabral; Helber Custódio Freitas; Santiago Viana Cuadra; Cristiano Alberto de Andrade; Nilza Patricia Ramos; Priscila Grutzmacher; Marcelo Galdos; Ana Paula Contador Packer; Humberto Ribeiro da Rocha; Paulo Rossi;handle: 11449/198239
Abstract The sustainability of sugarcane farming for biofuel has recently become a subject of debate, because its expansion may contribute significantly to global climate change mitigation. Here we report greenhouse gases (GHG) fluxes, measured by the eddy covariance method, from a commercial scale rain-fed sugarcane plantation representative of the leading bioethanol production area in southeast Brazil. The measurements covered two harvests, during which the field received nitrogen fertilization and trash was not removed. The cumulative fluxes for nitrous oxide (N2O) (62.4 ± 1.3 and 52.3 ± 1.8 g N2O CO2 eq. m−2 for the first and second years, respectively) and methane (CH4) (12.1 ± 1.7 and 10.4 ± 2.3 g CH4 CO2 eq. m−2 for the first and second years, respectively) were minor sources to the atmosphere in comparison with the net ecosystem exchange (NEE) of carbon dioxide (CO2), whose sink dominated the balances (−7643. ± 129. and -4615. ± 124. g CO2 m−2 for the first and second years, respectively). Compared to the first year, the observed NEE in the second year decreased by 40%, as it covered the first re-growth from the stubble (ratoon) and exhibited a shorter growth cycle than the first year (304 versus 390 days). The second year also included the partial decomposition of the trash remaining on the soil after the first harvest (1581 ± 301 g CO2 m−2). The net ecosystem carbon balances (NECB), obtained as the cumulative fluxes of GHGs and the stalk dry biomass removed in the harvests (4923 ± 459 and 3929 ± 352 g CO2 m−2 for the first and second years, respectively) were -2646 ± 459 and -623 ± 352 g CO2 m−2 for the first and second years, respectively. Although the yields in stalk fresh weight (SFW) were representative of the region (9.9 and 8.2 kg SFW m−2, in the first and second year respectively) other factors caused a decrease of 76% in NECB, stressing the importance of the CO2 balance (assimilation versus respiration). Nevertheless, this sugarcane agro-system was an overall carbon sink with the N2O and CH4 emitted totals being offset by the net carbon gain.
LAReferencia - Red F... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2019.107864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2019.107864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Wiley Murilo S. Vianna; Karina W. Williams; Emma W. Littleton; Osvaldo Cabral; Carlos Eduardo P. Cerri; Quirijn De Jong van Lier; Toby R. Marthews; Garry Hayman; Marcelo Zeri; Santiago V. Cuadra; Andrew J. Challinor; Fabio R. Marin; Marcelo V. Galdos;doi: 10.1111/gcbb.12989
AbstractBioenergy from sugarcane production is considered a key mitigation strategy for global warming. Improving its representation in land surface models is important to further understand the interactions between climate and bioenergy production, supporting accurate climate projections and decision‐making. This study aimed to calibrate and evaluate the Joint UK Land Environment Simulator (JULES) for climate impact assessments in sugarcane. A dataset composed of soil moisture, water and carbon fluxes and biomass measurements from field experiments across Brazil was used to calibrate and evaluate JULES‐crop and JULES‐BE parametrizations. The ability to predict the spatiotemporal variability of sugarcane yields and the impact of climate change was also tested at five Brazilian microregions. Parameters related to sugarcane allometry, crop growth and development were derived and tested for JULES‐crop and JULES‐BE, together with the response to atmospheric carbon dioxide, temperature and low‐water availability (CTW‐response). Both parametrizations showed comparable performance to other sugarcane dynamic models, with a root mean squared error of 6.75 and 6.05 t ha−1 for stalk dry matter for JULES‐crop and JULES‐BE, respectively. The parametrizations were also able to replicate the average yield patterns observed in the five microregions over 30 years when the yield gap factors were taken into account, with the correlation (r) between simulated and observed interannual variability of yields ranging from 0.33 to 0.56. An overall small positive trend was found in future yield projections of sugarcane using the new calibrations, with exception of the Jataí mesoregion which showed a clear negative trend for the SSP5 scenario from the years 2070 to 2100. Our simulations showed that an abrupt negative impact on sugarcane yields is expected if daytime temperatures above 35°C become more frequent. The newly calibrated version of JULES can be applied regionally and globally to help understand the interactions between climate and bioenergy production.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Wiley Murilo S. Vianna; Karina W. Williams; Emma W. Littleton; Osvaldo Cabral; Carlos Eduardo P. Cerri; Quirijn De Jong van Lier; Toby R. Marthews; Garry Hayman; Marcelo Zeri; Santiago V. Cuadra; Andrew J. Challinor; Fabio R. Marin; Marcelo V. Galdos;doi: 10.1111/gcbb.12989
AbstractBioenergy from sugarcane production is considered a key mitigation strategy for global warming. Improving its representation in land surface models is important to further understand the interactions between climate and bioenergy production, supporting accurate climate projections and decision‐making. This study aimed to calibrate and evaluate the Joint UK Land Environment Simulator (JULES) for climate impact assessments in sugarcane. A dataset composed of soil moisture, water and carbon fluxes and biomass measurements from field experiments across Brazil was used to calibrate and evaluate JULES‐crop and JULES‐BE parametrizations. The ability to predict the spatiotemporal variability of sugarcane yields and the impact of climate change was also tested at five Brazilian microregions. Parameters related to sugarcane allometry, crop growth and development were derived and tested for JULES‐crop and JULES‐BE, together with the response to atmospheric carbon dioxide, temperature and low‐water availability (CTW‐response). Both parametrizations showed comparable performance to other sugarcane dynamic models, with a root mean squared error of 6.75 and 6.05 t ha−1 for stalk dry matter for JULES‐crop and JULES‐BE, respectively. The parametrizations were also able to replicate the average yield patterns observed in the five microregions over 30 years when the yield gap factors were taken into account, with the correlation (r) between simulated and observed interannual variability of yields ranging from 0.33 to 0.56. An overall small positive trend was found in future yield projections of sugarcane using the new calibrations, with exception of the Jataí mesoregion which showed a clear negative trend for the SSP5 scenario from the years 2070 to 2100. Our simulations showed that an abrupt negative impact on sugarcane yields is expected if daytime temperatures above 35°C become more frequent. The newly calibrated version of JULES can be applied regionally and globally to help understand the interactions between climate and bioenergy production.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu