Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ LAReferencia - Red F...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Agricultural and Forest Meteorology
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The sustainability of a sugarcane plantation in Brazil assessed by the eddy covariance fluxes of greenhouse gases

Authors: Osvaldo M.R. Cabral; Helber Custódio Freitas; Santiago Viana Cuadra; Cristiano Alberto de Andrade; Nilza Patricia Ramos; Priscila Grutzmacher; Marcelo Galdos; +3 Authors

The sustainability of a sugarcane plantation in Brazil assessed by the eddy covariance fluxes of greenhouse gases

Abstract

Abstract The sustainability of sugarcane farming for biofuel has recently become a subject of debate, because its expansion may contribute significantly to global climate change mitigation. Here we report greenhouse gases (GHG) fluxes, measured by the eddy covariance method, from a commercial scale rain-fed sugarcane plantation representative of the leading bioethanol production area in southeast Brazil. The measurements covered two harvests, during which the field received nitrogen fertilization and trash was not removed. The cumulative fluxes for nitrous oxide (N2O) (62.4 ± 1.3 and 52.3 ± 1.8 g N2O CO2 eq. m−2 for the first and second years, respectively) and methane (CH4) (12.1 ± 1.7 and 10.4 ± 2.3 g CH4 CO2 eq. m−2 for the first and second years, respectively) were minor sources to the atmosphere in comparison with the net ecosystem exchange (NEE) of carbon dioxide (CO2), whose sink dominated the balances (−7643. ± 129. and -4615. ± 124. g CO2 m−2 for the first and second years, respectively). Compared to the first year, the observed NEE in the second year decreased by 40%, as it covered the first re-growth from the stubble (ratoon) and exhibited a shorter growth cycle than the first year (304 versus 390 days). The second year also included the partial decomposition of the trash remaining on the soil after the first harvest (1581 ± 301 g CO2 m−2). The net ecosystem carbon balances (NECB), obtained as the cumulative fluxes of GHGs and the stalk dry biomass removed in the harvests (4923 ± 459 and 3929 ± 352 g CO2 m−2 for the first and second years, respectively) were -2646 ± 459 and -623 ± 352 g CO2 m−2 for the first and second years, respectively. Although the yields in stalk fresh weight (SFW) were representative of the region (9.9 and 8.2 kg SFW m−2, in the first and second year respectively) other factors caused a decrease of 76% in NECB, stressing the importance of the CO2 balance (assimilation versus respiration). Nevertheless, this sugarcane agro-system was an overall carbon sink with the N2O and CH4 emitted totals being offset by the net carbon gain.

Country
Brazil
Keywords

Nitrous oxide, Sugar cane, 551, Carbon dioxide, Biomass, Trash decomposition, Methane

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%
Green