- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Argentina, Argentina, Brazil, Turkey, Denmark, Germany, Turkey, France, AustraliaPublisher:American Meteorological Society Katja Winger; Silvina Alicia Solman; Silvina Alicia Solman; Claas Teichmann; Jonathan Spinoni; Fredolin Tangang; Gustavo Naumann; Ole Bøssing Christensen; Erika Coppola; Torben Koenigk; Delei Li; Filippo Giorgi; Jürgen Vogt; George Zittis; Daniela Jacob; Edoardo Bucchignani; Marta Llopart; Alessandro Dosio; Paulo Barbosa; Burkhardt Rockel; Panos Hadjinicolaou; Jack Katzfey; Jozef Syktus; Niall McCormick; Tereza Cavazos; Tugba Ozturk; Jason P. Evans; Jens Hesselbjerg Christensen; Jens Hesselbjerg Christensen; Beate Geyer; John J. Cassano; Rosmeri Porfírio da Rocha; Robert Vautard; Grigory Nikulin; René Laprise; M. Levent Kurnaz; Christopher Lennard; Hans-Juergen Panitz;AbstractTwo questions motivated this study: 1) Will meteorological droughts become more frequent and severe during the twenty-first century? 2) Given the projected global temperature rise, to what extent does the inclusion of temperature (in addition to precipitation) in drought indicators play a role in future meteorological droughts? To answer, we analyzed the changes in drought frequency, severity, and historically undocumented extreme droughts over 1981–2100, using the standardized precipitation index (SPI; including precipitation only) and standardized precipitation-evapotranspiration index (SPEI; indirectly including temperature), and under two representative concentration pathways (RCP4.5 and RCP8.5). As input data, we employed 103 high-resolution (0.44°) simulations from the Coordinated Regional Climate Downscaling Experiment (CORDEX), based on a combination of 16 global circulation models (GCMs) and 20 regional circulation models (RCMs). This is the first study on global drought projections including RCMs based on such a large ensemble of RCMs. Based on precipitation only, ~15% of the global land is likely to experience more frequent and severe droughts during 2071–2100 versus 1981–2010 for both scenarios. This increase is larger (~47% under RCP4.5, ~49% under RCP8.5) when precipitation and temperature are used. Both SPI and SPEI project more frequent and severe droughts, especially under RCP8.5, over southern South America, the Mediterranean region, southern Africa, southeastern China, Japan, and southern Australia. A decrease in drought is projected for high latitudes in Northern Hemisphere and Southeast Asia. If temperature is included, drought characteristics are projected to increase over North America, Amazonia, central Europe and Asia, the Horn of Africa, India, and central Australia; if only precipitation is considered, they are found to decrease over those areas.
Işık Üniversitesi: D... arrow_drop_down Işık Üniversitesi: DSpace RepositoryArticle . 2020License: CC BY NC NDFull-Text: https://hdl.handle.net/11729/2362Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-04234306Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-04234306Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemIşık University Institutional RepositoryArticle . 2020Data sources: Işık University Institutional RepositoryDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jcli-d-19-0084.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 264 citations 264 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Işık Üniversitesi: D... arrow_drop_down Işık Üniversitesi: DSpace RepositoryArticle . 2020License: CC BY NC NDFull-Text: https://hdl.handle.net/11729/2362Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-04234306Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-04234306Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemIşık University Institutional RepositoryArticle . 2020Data sources: Işık University Institutional RepositoryDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jcli-d-19-0084.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:IOP Publishing Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP160102107Clive A McAlpine; Alex Johnson; Alvaro Salazar; Jozef Syktus; Kerrie Wilson; Erik Meijaard; Leonie Seabrook; Paul Dargusch; Haziq Nordin; Douglas Sheil;The equatorial island of Borneo is a deforestation hotspot. However, the influence of forest loss on the island’s climate remains largely unexplored. Here, we examine how forest loss is related to changes in ground-based records of temperature (1961–2007) and precipitation (1951–2007), and MODIS data for temperature (2002–2016). Analyses were performed for the entire island, lowland areas (15% forest loss had a >15% reduction in rainfall. We conclude that loss of forest in Borneo has increased local daily temperatures and temperature extremes, and reduced daily precipitation.
Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aaa4ff&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aaa4ff&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 Australia, Brazil, BrazilPublisher:Elsevier BV McAlpine, C.A.; Ryan, J.G.; Seabrook, L.; Thomas, S.; Dargusch, P. J.; Syktus, J.I.; Pielke, R.A. Sr.; Etter, A.E.; Fearnside, P.M.; Laurance, W.F.;Climate change policies currently focus on reducing the concentration of industrial atmospheric greenhouse gases due to burning fossil fuels and deforestation, but pay limited attention to feedbacks between the land surface and the climate system. In tropical and subtropical regions, forests and woodlands play an important role in the climate system by buffering climate extremes, maintaining the hydrological cycle and sequestering carbon. Despite the obvious significance of these feedbacks to the functioning of the climate system, deforestation continues apace. It is critical, therefore, that a broader focus be developed that includes the restoration of feedbacks between vegetation and climate. In this paper, we present a synthesis of the best available, policy-relevant science on the feedbacks between the land surface and the climate system, with a focus on tropical and subtropical regions. On the basis of this science, we argue for a stronger integration of land-use and climate-change policies. These policies need to include a virtual halt to all deforestation and an acceleration of investment in strategic reforestation, supported by a comprehensive global forest monitoring program. Without these actions, the degradation of the Earth's ecosystems will become exacerbated as their resilience is eroded by accelerated changes in temperature, precipitation and extreme weather events.
Current Opinion in E... arrow_drop_down Current Opinion in Environmental SustainabilityArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cosust.2010.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Current Opinion in E... arrow_drop_down Current Opinion in Environmental SustainabilityArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cosust.2010.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Springer Science and Business Media LLC Michael R. Grose; Jozef Syktus; Marcus Thatcher; Jason P. Evans; Fei Ji; Tony Rafter; Tom Remenyi;Change to precipitation in a warming climate holds many implications for water management into the future, and an enhancement of a precipitation decrease or increase on or around mountains would have numerous impacts. Here, an intermediate resolution regional climate model (RCM) ensemble projects enhanced precipitation decrease on the windward slopes of over many mid-latitude mountains in winter, consistent with theory and model studies of idealised mountain ranges. This ensemble projects that an increase in convective rainfall determines the sign of total rainfall change in many regions in summer, only some of which are on or near mountains such as the European Alps. These same projected changes are present in inland slopes of the Australian Alps compared to surrounding regions as simulated by three RCM ensembles (the intermediate resolution and two high resolution ensembles), which agree on an enhanced precipitation decrease on the windward slopes in winter and spring, as well as an enhanced precipitation increase in summer driven by an increase in convective rainfall. The ensembles disagree on an enhanced precipitation decrease in autumn. The results represent regional-scale added value in the climate change signal of projections from high resolution models in cooler seasons, but suggest that the specific model components such as convection schemes strongly influence projections of summer rainfall change. Confidence in the simulation of change in convective rainfall, or convection-permitting modelling may be needed to raise confidence in summer rainfall projections over mountains.
Climate Dynamics arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-019-04736-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Climate Dynamics arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-019-04736-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United Kingdom, Australia, United Kingdom, United KingdomPublisher:Wiley Butt, Nathalie; Seabrook, Leonie; Maron, Martine; Law, Bradley S.; Dawson, Terence P.; Syktus, Jozef; McAlpine, Clive A.;AbstractForest vertebrate fauna provide critical services, such as pollination and seed dispersal, which underpin functional and resilient ecosystems. In turn, many of these fauna are dependent on the flowering phenology of the plant species of such ecosystems. The impact of changes in climate, including climate extremes, on the interaction between these fauna and flora has not been identified or elucidated, yet influences on flowering phenology are already evident. These changes are well documented in the mid to high latitudes. However, there is emerging evidence that the flowering phenology, nectar/pollen production, and fruit production of long‐lived trees in tropical and subtropical forests are also being impacted by changes in the frequency and severity of climate extremes. Here, we examine the implications of these changes for vertebrate fauna dependent on these resources. We review the literature to establish evidence for links between climate extremes and flowering phenology, elucidating the nature of relationships between different vertebrate taxa and flowering regimes. We combine this information with climate change projections to postulate about the likely impacts on nectar, pollen and fruit resource availability and the consequences for dependent vertebrate fauna. The most recent climate projections show that the frequency and intensity of climate extremes will increase during the 21st century. These changes are likely to significantly alter mass flowering and fruiting events in the tropics and subtropics, which are frequently cued by climate extremes, such as intensive rainfall events or rapid temperature shifts. We find that in these systems the abundance and duration of resource availability for vertebrate fauna is likely to fluctuate, and the time intervals between episodes of high resource availability to increase. The combined impact of these changes has the potential to result in cascading effects on ecosystems through changes in pollinator and seed dispersal ecology, and demands a focused research effort.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKing's College, London: Research PortalArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12869&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 124 citations 124 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKing's College, London: Research PortalArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12869&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 AustraliaPublisher:Springer Science and Business Media LLC Funded by:ARC | Modelling the potential o..., ARC | Impact of reforestation o...ARC| Modelling the potential of large-scale revegetation to reduce the impacts of climate change in semi-arid Australia ,ARC| Impact of reforestation on the mitigation of climate extremes in eastern Australia resulting from global warmingAuthors: Syktus, Jozef I.; McAlpine, Clive A.;AbstractDeforestation and climate change are interconnected and represent major environmental challenges. Here, we explore the capacity of regional-scale restoration of marginal agricultural lands to savanna woodlands in Australia to reduce warming and drying resulting from increased concentration of greenhouse gases. We show that restoration triggers a positive feedback loop between the land surface and the atmosphere, characterised by increased evaporative fraction, eddy dissipation and turbulent mixing in the boundary-layer resulting in enhanced cloud formation and precipitation over the restored regions. The increased evapotranspiration results from the capacity deep-rooted woody vegetation to access soil moisture. As a consequence, the increase in precipitation provides additional moisture to soil and trees, thus reinforcing the positive feedback loop. Restoration reduced the rate of warming and drying under the transient increase in the radiative forcing of greenhouse gas emissions (RCP8.5). At the continental scale, average summer warming for all land areas was reduced by 0.18 oC from 4.1 oC for the period 2056–2075 compared to 1986–2005. For the restored regions (representing 20% of Australia), the averaged surface temperature increase was 3.2 °C which is 0.82 °C cooler compared to agricultural landscapes. Further, there was reduction of 12% in the summer drying of the near-surface soil for the restored regions.
Scientific Reports arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep29194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Scientific Reports arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep29194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 AustraliaPublisher:American Geophysical Union (AGU) McAlpine, C. A.; Syktus, J.; Deo, R. C.; Lawrence, P. J.; McGowan, H. A.; Watterson, I. G.; Phinn, Stuart;doi: 10.1029/2007gl031524
The Australian landscape has been transformed extensively since European settlement. However, the potential impact of historical land cover change (LCC) on regional climate has been a secondary consideration in the climate change projections. In this study, we analyzed data from a pair of ensembles (10 members each) for the period 1951–2003 to quantify changes in regional climate by comparing results from pre‐European and modern‐day land cover characteristics. The results of the sensitivity simulations showed the following: a statistically significant warming of the surface temperature, especially for summer in eastern Australia (0.4–2°C) and southwest Western Australia (0.4–0.8°C); a statistically significant decrease in summer rainfall in southeast Australia; and increased surface temperature in eastern regions during the 2002/2003 El Niño drought event. The simulated magnitude and pattern of change indicates that LCC has potentially been an important contributing factor to the observed changes in regional climate of Australia.
Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)University of Southern Queensland: USQ ePrintsArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2007gl031524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 77 citations 77 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)University of Southern Queensland: USQ ePrintsArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2007gl031524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Francis H. S. Chiew; Hongxing Zheng; Nicholas J. Potter; Stephen P. Charles; Marcus Thatcher; Fei Ji; Jozef Syktus; David E. Robertson; David A. Post;doi: 10.3390/w14172730
The paper compares future streamflow projections for 133 catchments in the Murray–Darling Basin simulated by a hydrological model with future rainfall inputs generated from different methods informed by climate change signals from different global climate models and dynamically downscaled datasets. The results show a large range in future projections of hydrological metrics, mainly because of the uncertainty in rainfall projections within and across the different climate projection datasets. Dynamical downscaling provides simulations at higher spatial resolutions, but projections from different datasets can be very different. The large number of approaches help provide a robust understanding of future hydroclimate conditions, but they can also be confusing. For water resources management, it may be prudent to communicate just a couple of future scenarios for impact assessments with stakeholders and policymakers, particularly when practically all of the projections indicate a drier future in the Basin. The median projection for 2046–2075 relative to 1981–2010 for a high global warming scenario is a 20% decline in streamflow across the Basin. More detailed assessments of the impact and adaptation options could then use all of the available datasets to represent the full modelled range of plausible futures.
Water arrow_drop_down WaterOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4441/14/17/2730/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w14172730&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Water arrow_drop_down WaterOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4441/14/17/2730/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w14172730&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 AustraliaPublisher:Wiley McAlpine, C. A.; Syktus, J. I.; Ryan, J. G.; Deo, R. C.; McKeon, G. M.; McGowan, H. A.; Phinn, S. R.;AbstractGlobal climate change is the major and most urgent global environmental issue. Australia is already experiencing climate change as evidenced by higher temperatures and more frequent and severe droughts. These impacts are compounded by increasing land use pressures on natural resources and native ecosystems. This paper provides a synthesis of the interactions, feedbacks and risks of natural climate variability, climate change and land use/land cover change (LUCC) impacting on the Australian continent and how they vary regionally. We review evidence of climate change and underlying processes resulting from interactions between global warming caused by increased concentration of atmospheric greenhouse gases and modification of the land surface. The consequences of ignoring the effect of LUCC on current and future droughts in Australia could have catastrophic consequences for the nation's environment, economy and communities. We highlight the need for more integrated, long‐term and adaptive policies and regional natural resource management strategies that restore the beneficial feedbacks between native vegetation cover and local‐regional climate, to help ameliorate the impact of global warming.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Southern Queensland: USQ ePrintsArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2009.01939.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu129 citations 129 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Southern Queensland: USQ ePrintsArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2009.01939.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article 2007 AustraliaPublisher:Springer Berlin Heidelberg Henry, Beverley; McKeon, Greg; Syktus, Jozef; Carter, John; Day, Ken; Rayner, David;Effective response by government and individuals to the risk of land degradation requires an understanding of regional climate variations and the impacts of climate and management on condition and productivity of land and vegetation resources. Analysis of past land degradation and climate variability provides some understanding of vulnerability to current and future climate changes and the information needs for more sustainable management. We describe experience in providing climate risk assessment information for managing for the risk of land degradation in north-eastern Australian arid and semi-arid regions used for extensive grazing. However, we note that information based on historical climate variability, which has been relied on in the past, will now also have to factor in the influence of human-induced climate change. Examples illustrate trends in climate for Australia over the past decade and the impacts on indicators of resource condition. The analysis highlights the benefits of insights into past trends and variability in rainfall and other climate variables based on extended historic databases. This understanding in turn supports more reliable regional climate projections and decision support information for governments and land managers to better manage the risk of land degradation now and in the future.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2007 . Peer-reviewedData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsPart of book or chapter of book . 2007Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-540-72438-4_11&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2007 . Peer-reviewedData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsPart of book or chapter of book . 2007Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-540-72438-4_11&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Argentina, Argentina, Brazil, Turkey, Denmark, Germany, Turkey, France, AustraliaPublisher:American Meteorological Society Katja Winger; Silvina Alicia Solman; Silvina Alicia Solman; Claas Teichmann; Jonathan Spinoni; Fredolin Tangang; Gustavo Naumann; Ole Bøssing Christensen; Erika Coppola; Torben Koenigk; Delei Li; Filippo Giorgi; Jürgen Vogt; George Zittis; Daniela Jacob; Edoardo Bucchignani; Marta Llopart; Alessandro Dosio; Paulo Barbosa; Burkhardt Rockel; Panos Hadjinicolaou; Jack Katzfey; Jozef Syktus; Niall McCormick; Tereza Cavazos; Tugba Ozturk; Jason P. Evans; Jens Hesselbjerg Christensen; Jens Hesselbjerg Christensen; Beate Geyer; John J. Cassano; Rosmeri Porfírio da Rocha; Robert Vautard; Grigory Nikulin; René Laprise; M. Levent Kurnaz; Christopher Lennard; Hans-Juergen Panitz;AbstractTwo questions motivated this study: 1) Will meteorological droughts become more frequent and severe during the twenty-first century? 2) Given the projected global temperature rise, to what extent does the inclusion of temperature (in addition to precipitation) in drought indicators play a role in future meteorological droughts? To answer, we analyzed the changes in drought frequency, severity, and historically undocumented extreme droughts over 1981–2100, using the standardized precipitation index (SPI; including precipitation only) and standardized precipitation-evapotranspiration index (SPEI; indirectly including temperature), and under two representative concentration pathways (RCP4.5 and RCP8.5). As input data, we employed 103 high-resolution (0.44°) simulations from the Coordinated Regional Climate Downscaling Experiment (CORDEX), based on a combination of 16 global circulation models (GCMs) and 20 regional circulation models (RCMs). This is the first study on global drought projections including RCMs based on such a large ensemble of RCMs. Based on precipitation only, ~15% of the global land is likely to experience more frequent and severe droughts during 2071–2100 versus 1981–2010 for both scenarios. This increase is larger (~47% under RCP4.5, ~49% under RCP8.5) when precipitation and temperature are used. Both SPI and SPEI project more frequent and severe droughts, especially under RCP8.5, over southern South America, the Mediterranean region, southern Africa, southeastern China, Japan, and southern Australia. A decrease in drought is projected for high latitudes in Northern Hemisphere and Southeast Asia. If temperature is included, drought characteristics are projected to increase over North America, Amazonia, central Europe and Asia, the Horn of Africa, India, and central Australia; if only precipitation is considered, they are found to decrease over those areas.
Işık Üniversitesi: D... arrow_drop_down Işık Üniversitesi: DSpace RepositoryArticle . 2020License: CC BY NC NDFull-Text: https://hdl.handle.net/11729/2362Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-04234306Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-04234306Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemIşık University Institutional RepositoryArticle . 2020Data sources: Işık University Institutional RepositoryDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jcli-d-19-0084.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 264 citations 264 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Işık Üniversitesi: D... arrow_drop_down Işık Üniversitesi: DSpace RepositoryArticle . 2020License: CC BY NC NDFull-Text: https://hdl.handle.net/11729/2362Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-04234306Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-04234306Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemIşık University Institutional RepositoryArticle . 2020Data sources: Işık University Institutional RepositoryDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jcli-d-19-0084.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:IOP Publishing Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP160102107Clive A McAlpine; Alex Johnson; Alvaro Salazar; Jozef Syktus; Kerrie Wilson; Erik Meijaard; Leonie Seabrook; Paul Dargusch; Haziq Nordin; Douglas Sheil;The equatorial island of Borneo is a deforestation hotspot. However, the influence of forest loss on the island’s climate remains largely unexplored. Here, we examine how forest loss is related to changes in ground-based records of temperature (1961–2007) and precipitation (1951–2007), and MODIS data for temperature (2002–2016). Analyses were performed for the entire island, lowland areas (15% forest loss had a >15% reduction in rainfall. We conclude that loss of forest in Borneo has increased local daily temperatures and temperature extremes, and reduced daily precipitation.
Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aaa4ff&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Queensland Universit... arrow_drop_down Queensland University of Technology: QUT ePrintsArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aaa4ff&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 Australia, Brazil, BrazilPublisher:Elsevier BV McAlpine, C.A.; Ryan, J.G.; Seabrook, L.; Thomas, S.; Dargusch, P. J.; Syktus, J.I.; Pielke, R.A. Sr.; Etter, A.E.; Fearnside, P.M.; Laurance, W.F.;Climate change policies currently focus on reducing the concentration of industrial atmospheric greenhouse gases due to burning fossil fuels and deforestation, but pay limited attention to feedbacks between the land surface and the climate system. In tropical and subtropical regions, forests and woodlands play an important role in the climate system by buffering climate extremes, maintaining the hydrological cycle and sequestering carbon. Despite the obvious significance of these feedbacks to the functioning of the climate system, deforestation continues apace. It is critical, therefore, that a broader focus be developed that includes the restoration of feedbacks between vegetation and climate. In this paper, we present a synthesis of the best available, policy-relevant science on the feedbacks between the land surface and the climate system, with a focus on tropical and subtropical regions. On the basis of this science, we argue for a stronger integration of land-use and climate-change policies. These policies need to include a virtual halt to all deforestation and an acceleration of investment in strategic reforestation, supported by a comprehensive global forest monitoring program. Without these actions, the degradation of the Earth's ecosystems will become exacerbated as their resilience is eroded by accelerated changes in temperature, precipitation and extreme weather events.
Current Opinion in E... arrow_drop_down Current Opinion in Environmental SustainabilityArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cosust.2010.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Current Opinion in E... arrow_drop_down Current Opinion in Environmental SustainabilityArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cosust.2010.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Springer Science and Business Media LLC Michael R. Grose; Jozef Syktus; Marcus Thatcher; Jason P. Evans; Fei Ji; Tony Rafter; Tom Remenyi;Change to precipitation in a warming climate holds many implications for water management into the future, and an enhancement of a precipitation decrease or increase on or around mountains would have numerous impacts. Here, an intermediate resolution regional climate model (RCM) ensemble projects enhanced precipitation decrease on the windward slopes of over many mid-latitude mountains in winter, consistent with theory and model studies of idealised mountain ranges. This ensemble projects that an increase in convective rainfall determines the sign of total rainfall change in many regions in summer, only some of which are on or near mountains such as the European Alps. These same projected changes are present in inland slopes of the Australian Alps compared to surrounding regions as simulated by three RCM ensembles (the intermediate resolution and two high resolution ensembles), which agree on an enhanced precipitation decrease on the windward slopes in winter and spring, as well as an enhanced precipitation increase in summer driven by an increase in convective rainfall. The ensembles disagree on an enhanced precipitation decrease in autumn. The results represent regional-scale added value in the climate change signal of projections from high resolution models in cooler seasons, but suggest that the specific model components such as convection schemes strongly influence projections of summer rainfall change. Confidence in the simulation of change in convective rainfall, or convection-permitting modelling may be needed to raise confidence in summer rainfall projections over mountains.
Climate Dynamics arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-019-04736-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Climate Dynamics arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-019-04736-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United Kingdom, Australia, United Kingdom, United KingdomPublisher:Wiley Butt, Nathalie; Seabrook, Leonie; Maron, Martine; Law, Bradley S.; Dawson, Terence P.; Syktus, Jozef; McAlpine, Clive A.;AbstractForest vertebrate fauna provide critical services, such as pollination and seed dispersal, which underpin functional and resilient ecosystems. In turn, many of these fauna are dependent on the flowering phenology of the plant species of such ecosystems. The impact of changes in climate, including climate extremes, on the interaction between these fauna and flora has not been identified or elucidated, yet influences on flowering phenology are already evident. These changes are well documented in the mid to high latitudes. However, there is emerging evidence that the flowering phenology, nectar/pollen production, and fruit production of long‐lived trees in tropical and subtropical forests are also being impacted by changes in the frequency and severity of climate extremes. Here, we examine the implications of these changes for vertebrate fauna dependent on these resources. We review the literature to establish evidence for links between climate extremes and flowering phenology, elucidating the nature of relationships between different vertebrate taxa and flowering regimes. We combine this information with climate change projections to postulate about the likely impacts on nectar, pollen and fruit resource availability and the consequences for dependent vertebrate fauna. The most recent climate projections show that the frequency and intensity of climate extremes will increase during the 21st century. These changes are likely to significantly alter mass flowering and fruiting events in the tropics and subtropics, which are frequently cued by climate extremes, such as intensive rainfall events or rapid temperature shifts. We find that in these systems the abundance and duration of resource availability for vertebrate fauna is likely to fluctuate, and the time intervals between episodes of high resource availability to increase. The combined impact of these changes has the potential to result in cascading effects on ecosystems through changes in pollinator and seed dispersal ecology, and demands a focused research effort.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKing's College, London: Research PortalArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12869&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 124 citations 124 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKing's College, London: Research PortalArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12869&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 AustraliaPublisher:Springer Science and Business Media LLC Funded by:ARC | Modelling the potential o..., ARC | Impact of reforestation o...ARC| Modelling the potential of large-scale revegetation to reduce the impacts of climate change in semi-arid Australia ,ARC| Impact of reforestation on the mitigation of climate extremes in eastern Australia resulting from global warmingAuthors: Syktus, Jozef I.; McAlpine, Clive A.;AbstractDeforestation and climate change are interconnected and represent major environmental challenges. Here, we explore the capacity of regional-scale restoration of marginal agricultural lands to savanna woodlands in Australia to reduce warming and drying resulting from increased concentration of greenhouse gases. We show that restoration triggers a positive feedback loop between the land surface and the atmosphere, characterised by increased evaporative fraction, eddy dissipation and turbulent mixing in the boundary-layer resulting in enhanced cloud formation and precipitation over the restored regions. The increased evapotranspiration results from the capacity deep-rooted woody vegetation to access soil moisture. As a consequence, the increase in precipitation provides additional moisture to soil and trees, thus reinforcing the positive feedback loop. Restoration reduced the rate of warming and drying under the transient increase in the radiative forcing of greenhouse gas emissions (RCP8.5). At the continental scale, average summer warming for all land areas was reduced by 0.18 oC from 4.1 oC for the period 2056–2075 compared to 1986–2005. For the restored regions (representing 20% of Australia), the averaged surface temperature increase was 3.2 °C which is 0.82 °C cooler compared to agricultural landscapes. Further, there was reduction of 12% in the summer drying of the near-surface soil for the restored regions.
Scientific Reports arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep29194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Scientific Reports arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep29194&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 AustraliaPublisher:American Geophysical Union (AGU) McAlpine, C. A.; Syktus, J.; Deo, R. C.; Lawrence, P. J.; McGowan, H. A.; Watterson, I. G.; Phinn, Stuart;doi: 10.1029/2007gl031524
The Australian landscape has been transformed extensively since European settlement. However, the potential impact of historical land cover change (LCC) on regional climate has been a secondary consideration in the climate change projections. In this study, we analyzed data from a pair of ensembles (10 members each) for the period 1951–2003 to quantify changes in regional climate by comparing results from pre‐European and modern‐day land cover characteristics. The results of the sensitivity simulations showed the following: a statistically significant warming of the surface temperature, especially for summer in eastern Australia (0.4–2°C) and southwest Western Australia (0.4–0.8°C); a statistically significant decrease in summer rainfall in southeast Australia; and increased surface temperature in eastern regions during the 2002/2003 El Niño drought event. The simulated magnitude and pattern of change indicates that LCC has potentially been an important contributing factor to the observed changes in regional climate of Australia.
Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)University of Southern Queensland: USQ ePrintsArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2007gl031524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 77 citations 77 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Geophysical Research... arrow_drop_down Geophysical Research LettersArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)University of Southern Queensland: USQ ePrintsArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2007gl031524&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Francis H. S. Chiew; Hongxing Zheng; Nicholas J. Potter; Stephen P. Charles; Marcus Thatcher; Fei Ji; Jozef Syktus; David E. Robertson; David A. Post;doi: 10.3390/w14172730
The paper compares future streamflow projections for 133 catchments in the Murray–Darling Basin simulated by a hydrological model with future rainfall inputs generated from different methods informed by climate change signals from different global climate models and dynamically downscaled datasets. The results show a large range in future projections of hydrological metrics, mainly because of the uncertainty in rainfall projections within and across the different climate projection datasets. Dynamical downscaling provides simulations at higher spatial resolutions, but projections from different datasets can be very different. The large number of approaches help provide a robust understanding of future hydroclimate conditions, but they can also be confusing. For water resources management, it may be prudent to communicate just a couple of future scenarios for impact assessments with stakeholders and policymakers, particularly when practically all of the projections indicate a drier future in the Basin. The median projection for 2046–2075 relative to 1981–2010 for a high global warming scenario is a 20% decline in streamflow across the Basin. More detailed assessments of the impact and adaptation options could then use all of the available datasets to represent the full modelled range of plausible futures.
Water arrow_drop_down WaterOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4441/14/17/2730/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w14172730&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Water arrow_drop_down WaterOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4441/14/17/2730/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w14172730&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 AustraliaPublisher:Wiley McAlpine, C. A.; Syktus, J. I.; Ryan, J. G.; Deo, R. C.; McKeon, G. M.; McGowan, H. A.; Phinn, S. R.;AbstractGlobal climate change is the major and most urgent global environmental issue. Australia is already experiencing climate change as evidenced by higher temperatures and more frequent and severe droughts. These impacts are compounded by increasing land use pressures on natural resources and native ecosystems. This paper provides a synthesis of the interactions, feedbacks and risks of natural climate variability, climate change and land use/land cover change (LUCC) impacting on the Australian continent and how they vary regionally. We review evidence of climate change and underlying processes resulting from interactions between global warming caused by increased concentration of atmospheric greenhouse gases and modification of the land surface. The consequences of ignoring the effect of LUCC on current and future droughts in Australia could have catastrophic consequences for the nation's environment, economy and communities. We highlight the need for more integrated, long‐term and adaptive policies and regional natural resource management strategies that restore the beneficial feedbacks between native vegetation cover and local‐regional climate, to help ameliorate the impact of global warming.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Southern Queensland: USQ ePrintsArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2009.01939.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu129 citations 129 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Southern Queensland: USQ ePrintsArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2009.01939.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article 2007 AustraliaPublisher:Springer Berlin Heidelberg Henry, Beverley; McKeon, Greg; Syktus, Jozef; Carter, John; Day, Ken; Rayner, David;Effective response by government and individuals to the risk of land degradation requires an understanding of regional climate variations and the impacts of climate and management on condition and productivity of land and vegetation resources. Analysis of past land degradation and climate variability provides some understanding of vulnerability to current and future climate changes and the information needs for more sustainable management. We describe experience in providing climate risk assessment information for managing for the risk of land degradation in north-eastern Australian arid and semi-arid regions used for extensive grazing. However, we note that information based on historical climate variability, which has been relied on in the past, will now also have to factor in the influence of human-induced climate change. Examples illustrate trends in climate for Australia over the past decade and the impacts on indicators of resource condition. The analysis highlights the benefits of insights into past trends and variability in rainfall and other climate variables based on extended historic databases. This understanding in turn supports more reliable regional climate projections and decision support information for governments and land managers to better manage the risk of land degradation now and in the future.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2007 . Peer-reviewedData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsPart of book or chapter of book . 2007Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-540-72438-4_11&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2007 . Peer-reviewedData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsPart of book or chapter of book . 2007Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-540-72438-4_11&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu