- home
- Advanced Search
Filters
Year range
-chevron_right GOField of Science
SDG [Beta]
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Richard Bergman; Sevda Alanya-Rosenbaum;Abstract Forest residue biomass can be used as bioenergy feedstock, however, issues associated with its properties including low density and high moisture content constrains its valorization. Using mobile conversion technologies that can operate in remote areas and are capable of converting forest residues into high quality energy products can address the issues associated with its valorization for renewable energy production. This study evaluated environmental sustainability of using an integrated novel system of semi-mobile biomass conversion technologies (BCTs) to utilize low-value forest residue biomass as high value bioenergy products. A cradle-to-grave life cycle assessment (LCA) and resource use assessment on a unit-process level was conducted for two bio-products: nontorrefied briquettes (NTB) and torrefied briquettes (TOB). Their use for production of useful thermal energy in wood stoves for domestic heating and electricity at power plants were investigated along with their alternatives. The analyses were performed with SimaPro 8.5 using the DATASMART database. The impact assessment results showed a notable decrease in global warming (GW) impact when substituting fossil fuels with these two bio-products. Specifically, for domestic heating on an equivalent energy basis, a 50% substitution of propane with NTB and TOB showed GHG emission reductions of 46% and 41%, respectively. For electricity generation, 10% cofiring at coal power plant with NTB and TOB showed GHG emission reductions of 6% and 8%, respectively. For the TOB supply chain, a large portion of the GW impact of the came from the torrefaction process and followed by the drying process. This was due to the propane use in these processes. Comparative analysis showed that near-woods biomass conversion for TOB production instead of processing feedstock at an in-town facility with access to grid electricity found 48%–55% lower GW impact for both electricity and heat generation scenarios, respectively. Resourced footprint analysis showed that most exergy extraction from the natural environment came from the drying process for NTB supply chain. In the TOB product system, torrefaction was the major contributor.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.05.298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.05.298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthAuthors: Richard Bergman; Kamalakanta Sahoo; Karl Englund; Seyed Hashem Mousavi-Avval;doi: 10.3390/en15041559
Biochar produced from low-value forest biomass can provide substantial benefits to ecosystems and mitigate climate change-induced risks such as forest fires. Forest residues from restoration activities and timber harvest and biochar itself are bulky and thus incur high logistic costs, so are considered major bottlenecks for the commercialization of the biochar industry. The objectives of this study were to assess the environmental footprints and techno-economic feasibility of converting forest residues in Pacific Northwest United States into biochar pellets using portable systems followed by delivery of the final product to end-users for land application (dispersion). Two portable systems (Biochar Solutions Incorporated (BSI) and Air Curtain Burner (ACB)) were considered for biochar production. A cradle-to-grave lifecycle assessment (LCA) and a discounted cash flow analysis method were used to quantify the environmental impacts and minimum selling price (MSP) of biochar. The global warming (GW) impact of biochar production through BSI and ACB was estimated to be 306–444, and 750–1016 kgCO₂eq/tonne biochar applied to the field, respectively. The MSP of biochar produced through BSI and ACB was 1674–1909 and 528–1051 USD/tonne biochar applied to the field, respectively. Pelletizing of biochar reduced GW impacts during outbound logistics (~8–20%) but increased emissions during pelletizing (~1–9%). Results show the BSI system was a more viable option in terms of GW impact, whereas the ACB system can produce biochar with lower MSP. The results of the study conclude that the production of biochar pellets through the two portable systems and applied to fields can be both an environmentally beneficial and economically viable option.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Authors: Sevda Alanya‐Rosenbaum; Richard Bergman; Brad Gething; Seyed Hashem Mousavi‐Avval;doi: 10.1002/bbb.2379
AbstractWood pallets are ubiquitous products that can be recovered and reused to enhance their service life and environmental performance. Repair/remanufacturing has an important role in extending the service life of the wood pallet. To quantify environmental performances of wood pallet reuse, this study developed representative life cycle inventory data for pallet repair/remanufacturing in the United States based on comprehensive industry‐wide production data for 2018. A gate‐to‐gate life cycle assessment covering raw material supply, raw material transportation and pallet repair/remanufacturing showed that repair/remanufacturing often had the highest impacts, including primary energy consumption at 5.09 MJ and global warming impact at 0.355 kg CO2 eq per repaired/remanufactured pallet. Electricity consumed onsite followed by nail input and the fuel used by forklifts during the manufacturing drove much of the impacts on the environment. The results of this study provide valuable information on the repair/remanufacturing impacts, allowing quantification and evaluation of the recovery stage on the overall environmental performance of wood pallets. © 2022 Society of Chemical Industry and John Wiley & Sons, Ltd.
Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.2379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.2379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Kamalakanta Sahoo; Kamalakanta Sahoo; Richard Bergman; Sudhagar Mani; Edward Bilek;Abstract Wildfires are getting extreme and more frequent because of increased fuel loads in the forest and extended dry conditions. Prevention of wildfire by fuel treatment methods will generate forest residues in large volumes, which in addition to available logging residues, can be used to produce biofuels and bioproducts. In this study, the techno-economic assessment of three portable systems to produce woodchips briquettes (WCB), torrefied-woodchips briquettes (TWCB) and biochar from forest residues were evaluated using pilot-scale experimental data. A discounted cash flow rate of return method was used to estimate minimum selling prices (MSPs) for each product, to conduct sensitivity analyses, and to identify potential cost-reduction strategies. Using a before-finance-and-tax 16.5% nominal required return on investment, and a mean transport distance of 200 km, the estimated delivered MSPs per oven-dry metric ton (ODMT) of WCB, TWCB, and biochar were $162, $274, and $1044 respectively. The capital investment (16–30%), labor cost (23–28%), and feedstock cost (10–13%) without stumpage cost were the major factors influencing the MSP of solid biofuels and biochar. However, the MSPs of WCB, TWCB, and biochar could be reduced to $65, $145, and $470/ODMT respectively with technologically improved portable systems. In addition, the MSPs of solid biofuels and biochar could be further reduced by renewable energy and carbon credits, if the greenhouse gas (GHG) reduction potentials are quantified and remunerated. In conclusion, portable systems could be economically feasible to use forest residues and make useful products at current market prices while simultaneously reducing potential wildfires and GHG emissions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.10.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 130 citations 130 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.10.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Authors: Shaobo Liang; Hongmei Gu; Richard Bergman;doi: 10.3390/su13147831
Global construction industry has a huge influence on world primary energy consumption, spending, and greenhouse gas (GHGs) emissions. To better understand these factors for mass timber construction, this work quantified the life cycle environmental and economic performances of a high-rise mass timber building in U.S. Pacific Northwest region through the use of life-cycle assessment (LCA) and life-cycle cost analysis (LCCA). Using the TRACI impact category method, the cradle-to-grave LCA results showed better environmental performances for the mass timber building relative to conventional concrete building, with 3153 kg CO2-eq per m2 floor area compared to 3203 CO2-eq per m2 floor area, respectively. Over 90% of GHGs emissions occur at the operational stage with a 60-year study period. The end-of-life recycling of mass timber could provide carbon offset of 364 kg CO2-eq per m2 floor that lowers the GHG emissions of the mass timber building to a total 12% lower GHGs emissions than concrete building. The LCCA results showed that mass timber building had total life cycle cost of $3976 per m2 floor area that was 9.6% higher than concrete building, driven mainly by upfront construction costs related to the mass timber material. Uncertainty analysis of mass timber product pricing provided a pathway for builders to make mass timber buildings cost competitive. The integration of LCA and LCCA on mass timber building study can contribute more information to the decision makers such as building developers and policymakers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13147831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13147831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthAmit Upadhyay; Maureen E. Puettmann; Troy Runge; Kamalakanta Sahoo; Kamalakanta Sahoo; Richard Bergman; Edward Bilek;Producing biochar from forest residues can help resolve environmental issues by reducing forest fires and mitigating climate change. However, transportation and storage of biomass to a centralized facility are often cost-prohibitive and a major hurdle for the economic feasibility of producing biobased products, including biochar. The purpose of this study was to evaluate the environmental impacts and economic feasibility of manufacturing biochar from forest residues with small-scale portable production systems. This study evaluated the environmental performance and economic feasibility of biochar produced through three portable systems (biochar solutions incorporated (BSI), Oregon Kiln (OK), and air curtain burner (ACB)) using forest residues in the United States (US). Cradle-to-grave life-cycle assessment (LCA) and techno-economic analysis (TEA) were used to quantify environmental impacts and minimal selling price (MSP) of biochar respectively considering different power sources, production sites, and feedstock qualities. The results illustrated that the global warming (GW) impact of biochar production through BSI, OK, and ACB was 0.25–1.0, 0.55, and 0.61-t CO2eq/t biochar applied to the field, respectively. Considering carbon-sequestration, 1-t of biochar produced with the portable system at a near-forest site and applied to the field reduced the GW impact by 0.89–2.6 t CO2eq. For biochar production, the environmental performance of the BSI system improved substantially (60–70%) when it was powered by a gasifier-based generator instead of a diesel generator. Similarly, near-forest(off-grid) biochar production operations performed better environmentally than the operations at in-town sites due to the reduction in the forest residues transportation emissions. Overall, the net GW impact of biochar produced from forest residues can reduce environmental impacts (i.e., 1–10 times lower CO2eq emissions) compared with slash-pile burning. The MSP per tonne of biochar produced through BSI, OK, and ACB was $3,000–$5,000, $1,600, and $580 respectively considering 100 working days per year. However, with improved BSI systems when allowed to operate throughout the year, the MSP can be reduced to below $1000/t of biochar. Furthermore, considering current government grants and subsidies (i.e.,$12,600/ha for making biochar production from forest residues), the MSP of biochar can be reduced substantially (30–387%) depending on the type of portable system used. The portable small-scale production systems could be environmentally beneficial and economically feasible options to make biochar from forest residues at competitive prices given current government incentives in the US where excess forest biomass and forest residues left in the forest increase the risk of forest fires.
The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-020-01830-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-020-01830-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Zhongjia Chen; Hongmei Gu; Richard Bergman; Shaobo Liang;doi: 10.3390/su12114708
Buildings consume large amounts of materials and energy, making them one of the highest environmental impactors. Quantifying the impact of building materials can be critical to developing an effective greenhouse gas mitigation strategy. Using Athena Impact Estimator for Buildings (IE4B), this paper compares cradle-to-grave life-cycle assessment (LCA) results for a 12-story building constructed from cross-laminated timber (CLT) and a functionally equivalent reinforced concrete (RC) building. Following EN 15978 framework, environmental impacts for stages A1–A5 (product to construction), B2, B4, and B6 (use), C1–C4 (end of life), and D (beyond the building life) were evaluated in detail along resource efficiency. For material resource efficiency, total mass of the CLT building was 33.2% less than the alternative RC building. For modules A to C and not considering operational energy use (B6), LCA results show a 20.6% reduction in embodied carbon achieved for the CLT building, compared to the RC building. For modules A to D and not considering B6, the embodied carbon assessment revealed that for the CLT building, 6.57 × 105 kg CO2 eq was emitted, whereas for the equivalent RC building, 2.16 × 106 kg CO2 eq was emitted, and emissions from CLT building was 70% lower than that from RC building. Additionally, 1.84 × 106 kg of CO2 eq was stored in the wood material used in the CLT building during its lifetime. Building material selection should be considered for the urgent need to reduce global climate change impacts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12114708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 68 citations 68 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12114708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthKamalakanta Sahoo; Richard Bergman; Sevda Alanya-Rosenbaum; Hongmei Gu; Shaobo Liang;doi: 10.3390/su11174722
Climate change, environmental degradation, and limited resources are motivations for sustainable forest management. Forests, the most abundant renewable resource on earth, used to make a wide variety of forest-based products for human consumption. To provide a scientific measure of a product’s sustainability and environmental performance, the life cycle assessment (LCA) method is used. This article provides a comprehensive review of environmental performances of forest-based products including traditional building products, emerging (mass-timber) building products and nanomaterials using attributional LCA. Across the supply chain, the product manufacturing life-cycle stage tends to have the largest environmental impacts. However, forest management activities and logistics tend to have the greatest economic impact. In addition, environmental trade-offs exist when regulating emissions as indicated by the latest traditional wood building product LCAs. Interpretation of these LCA results can guide new product development using biomaterials, future (mass) building systems and policy-making on mitigating climate change. Key challenges include handling of uncertainties in the supply chain and complex interactions of environment, material conversion, resource use for product production and quantifying the emissions released.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11174722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 55 citations 55 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11174722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:MDPI AG Authors: Nathaniel Anderson; Hongmei Gu; Richard Bergman;doi: 10.3390/en14248472
There is increasing demand in environmental remediation and other sectors for specialized sorbents made from renewable materials rather than hard coals and minerals. The proliferation of new pyrolysis technologies to produce bio-based energy, fuels, chemicals, and bioproducts from biomass has left significant gaps in our understanding of how the various carbonaceous materials produced by these systems respond to processes intended to improve their adsorption properties and commercial value. This study used conventional steam activation in an industrial rotary calciner to produce activated carbon (AC) from softwood biochars made by three novel pyrolysis systems. Steam was injected across four heating zones ranging from 816 °C to 927 °C during paired trials conducted at calciner retention times of 45 min and 60 min. The surface area of the three biochars increased from 2.0, 177.3, and 289.1 m2 g−1 to 868.4, 1092.9, and 744.8 m2 g−1, respectively. AC iodine number ranged from 951 to 1218 mg g−1, comparing favorably to commercial AC produced from bituminous coal and coconut shell. The results of this study can be used to operationalize steam activation as a post-processing treatment for biochar and to expand markets for biochar as a precursor in the manufacture of specialized industrial sorbents.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Richard Bergman; Kamalakanta Sahoo; Kamalakanta Sahoo; Hongmin Dong; Shunli Wang; Umakanta Jena; Troy Runge;Abstract The meat industry in the US generates considerable amount of slaughterhouse waste (SHW), which is typically converted into more useable products through the rendering process. Although rendering generates sellable fat and meal commodities, it has large environmental impacts because it is energy intensive. Anaerobic digestion (AD) is a promising technology for treating SHW and reducing environmental impact through biogas production to generate heat or electricity, as well as by enabling nutrient recovery and pathogen reduction. This study compared the life-cycle energy use and global warming impact of treating SHW with traditional rendering with AD to produce heat and electricity. The study also considered the co-digestion of SHW with the organic fraction of municipal solid waste (OFMSW) and sewage sludge. A cradle-to-grave life-cycle assessment (LCA) method was used to quantify the energy use and greenhouse gas (GHG) emissions of these systems for treating SHW. We compared three scenarios: (1) AD of SHW, (2) Co-AD of SHW with OFMSW, and (3) Co-AD of SHW with sewage sludge to reference systems of simple rendering and composting. The study findings revealed that the total cradle-to-gate energy use and GHG emissions by treating SHW with AD and co-AD were 0.5−6.7 GJ/1000 kg-SHW and 400−834 kg-CO₂-eq/1000 kg-SHW, whereas for the rendering control scenarios total cradle-to-gate energy use and GHG emissions were 1.9 GJ/1000 kg-SHW and 96.4 kg-CO₂-eq/1000 kg-SHW, respectively. However, considering all the benefits of treating SHW with co-AD, including the displacement of fossil fuel and electricity and nitrogen fertilizers generated as system outputs, these systems perform better than the rendering process. Compared to the reference systems, the GHG reduction potential of treating SHW with co-AD varied between 426.8 and 524.0 kg-CO₂-eq/1000 kg-SHW. Among all input parameters, methane (CH₄) leak from the AD system, and nitrogen fertilizer displacement were the most sensitive parameters affecting the results. By implementing AD of SHW in meat industries in the southeast US, the energy production and GHG emissions reduction potential were estimated to be 22–29 × 10⁶ GJ and 1.6–2.0 × 109 kg-CO₂-eq per year, respectively. The results indicate that the AD of SHW can substantially reduce GHG emissions of the US meat industry as well as produce bioenergy to provide energy security in the US.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2021.126038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2021.126038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Richard Bergman; Sevda Alanya-Rosenbaum;Abstract Forest residue biomass can be used as bioenergy feedstock, however, issues associated with its properties including low density and high moisture content constrains its valorization. Using mobile conversion technologies that can operate in remote areas and are capable of converting forest residues into high quality energy products can address the issues associated with its valorization for renewable energy production. This study evaluated environmental sustainability of using an integrated novel system of semi-mobile biomass conversion technologies (BCTs) to utilize low-value forest residue biomass as high value bioenergy products. A cradle-to-grave life cycle assessment (LCA) and resource use assessment on a unit-process level was conducted for two bio-products: nontorrefied briquettes (NTB) and torrefied briquettes (TOB). Their use for production of useful thermal energy in wood stoves for domestic heating and electricity at power plants were investigated along with their alternatives. The analyses were performed with SimaPro 8.5 using the DATASMART database. The impact assessment results showed a notable decrease in global warming (GW) impact when substituting fossil fuels with these two bio-products. Specifically, for domestic heating on an equivalent energy basis, a 50% substitution of propane with NTB and TOB showed GHG emission reductions of 46% and 41%, respectively. For electricity generation, 10% cofiring at coal power plant with NTB and TOB showed GHG emission reductions of 6% and 8%, respectively. For the TOB supply chain, a large portion of the GW impact of the came from the torrefaction process and followed by the drying process. This was due to the propane use in these processes. Comparative analysis showed that near-woods biomass conversion for TOB production instead of processing feedstock at an in-town facility with access to grid electricity found 48%–55% lower GW impact for both electricity and heat generation scenarios, respectively. Resourced footprint analysis showed that most exergy extraction from the natural environment came from the drying process for NTB supply chain. In the TOB product system, torrefaction was the major contributor.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.05.298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.05.298&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthAuthors: Richard Bergman; Kamalakanta Sahoo; Karl Englund; Seyed Hashem Mousavi-Avval;doi: 10.3390/en15041559
Biochar produced from low-value forest biomass can provide substantial benefits to ecosystems and mitigate climate change-induced risks such as forest fires. Forest residues from restoration activities and timber harvest and biochar itself are bulky and thus incur high logistic costs, so are considered major bottlenecks for the commercialization of the biochar industry. The objectives of this study were to assess the environmental footprints and techno-economic feasibility of converting forest residues in Pacific Northwest United States into biochar pellets using portable systems followed by delivery of the final product to end-users for land application (dispersion). Two portable systems (Biochar Solutions Incorporated (BSI) and Air Curtain Burner (ACB)) were considered for biochar production. A cradle-to-grave lifecycle assessment (LCA) and a discounted cash flow analysis method were used to quantify the environmental impacts and minimum selling price (MSP) of biochar. The global warming (GW) impact of biochar production through BSI and ACB was estimated to be 306–444, and 750–1016 kgCO₂eq/tonne biochar applied to the field, respectively. The MSP of biochar produced through BSI and ACB was 1674–1909 and 528–1051 USD/tonne biochar applied to the field, respectively. Pelletizing of biochar reduced GW impacts during outbound logistics (~8–20%) but increased emissions during pelletizing (~1–9%). Results show the BSI system was a more viable option in terms of GW impact, whereas the ACB system can produce biochar with lower MSP. The results of the study conclude that the production of biochar pellets through the two portable systems and applied to fields can be both an environmentally beneficial and economically viable option.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Authors: Sevda Alanya‐Rosenbaum; Richard Bergman; Brad Gething; Seyed Hashem Mousavi‐Avval;doi: 10.1002/bbb.2379
AbstractWood pallets are ubiquitous products that can be recovered and reused to enhance their service life and environmental performance. Repair/remanufacturing has an important role in extending the service life of the wood pallet. To quantify environmental performances of wood pallet reuse, this study developed representative life cycle inventory data for pallet repair/remanufacturing in the United States based on comprehensive industry‐wide production data for 2018. A gate‐to‐gate life cycle assessment covering raw material supply, raw material transportation and pallet repair/remanufacturing showed that repair/remanufacturing often had the highest impacts, including primary energy consumption at 5.09 MJ and global warming impact at 0.355 kg CO2 eq per repaired/remanufactured pallet. Electricity consumed onsite followed by nail input and the fuel used by forklifts during the manufacturing drove much of the impacts on the environment. The results of this study provide valuable information on the repair/remanufacturing impacts, allowing quantification and evaluation of the recovery stage on the overall environmental performance of wood pallets. © 2022 Society of Chemical Industry and John Wiley & Sons, Ltd.
Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.2379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.2379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Kamalakanta Sahoo; Kamalakanta Sahoo; Richard Bergman; Sudhagar Mani; Edward Bilek;Abstract Wildfires are getting extreme and more frequent because of increased fuel loads in the forest and extended dry conditions. Prevention of wildfire by fuel treatment methods will generate forest residues in large volumes, which in addition to available logging residues, can be used to produce biofuels and bioproducts. In this study, the techno-economic assessment of three portable systems to produce woodchips briquettes (WCB), torrefied-woodchips briquettes (TWCB) and biochar from forest residues were evaluated using pilot-scale experimental data. A discounted cash flow rate of return method was used to estimate minimum selling prices (MSPs) for each product, to conduct sensitivity analyses, and to identify potential cost-reduction strategies. Using a before-finance-and-tax 16.5% nominal required return on investment, and a mean transport distance of 200 km, the estimated delivered MSPs per oven-dry metric ton (ODMT) of WCB, TWCB, and biochar were $162, $274, and $1044 respectively. The capital investment (16–30%), labor cost (23–28%), and feedstock cost (10–13%) without stumpage cost were the major factors influencing the MSP of solid biofuels and biochar. However, the MSPs of WCB, TWCB, and biochar could be reduced to $65, $145, and $470/ODMT respectively with technologically improved portable systems. In addition, the MSPs of solid biofuels and biochar could be further reduced by renewable energy and carbon credits, if the greenhouse gas (GHG) reduction potentials are quantified and remunerated. In conclusion, portable systems could be economically feasible to use forest residues and make useful products at current market prices while simultaneously reducing potential wildfires and GHG emissions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.10.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 130 citations 130 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.10.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Authors: Shaobo Liang; Hongmei Gu; Richard Bergman;doi: 10.3390/su13147831
Global construction industry has a huge influence on world primary energy consumption, spending, and greenhouse gas (GHGs) emissions. To better understand these factors for mass timber construction, this work quantified the life cycle environmental and economic performances of a high-rise mass timber building in U.S. Pacific Northwest region through the use of life-cycle assessment (LCA) and life-cycle cost analysis (LCCA). Using the TRACI impact category method, the cradle-to-grave LCA results showed better environmental performances for the mass timber building relative to conventional concrete building, with 3153 kg CO2-eq per m2 floor area compared to 3203 CO2-eq per m2 floor area, respectively. Over 90% of GHGs emissions occur at the operational stage with a 60-year study period. The end-of-life recycling of mass timber could provide carbon offset of 364 kg CO2-eq per m2 floor that lowers the GHG emissions of the mass timber building to a total 12% lower GHGs emissions than concrete building. The LCCA results showed that mass timber building had total life cycle cost of $3976 per m2 floor area that was 9.6% higher than concrete building, driven mainly by upfront construction costs related to the mass timber material. Uncertainty analysis of mass timber product pricing provided a pathway for builders to make mass timber buildings cost competitive. The integration of LCA and LCCA on mass timber building study can contribute more information to the decision makers such as building developers and policymakers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13147831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13147831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthAmit Upadhyay; Maureen E. Puettmann; Troy Runge; Kamalakanta Sahoo; Kamalakanta Sahoo; Richard Bergman; Edward Bilek;Producing biochar from forest residues can help resolve environmental issues by reducing forest fires and mitigating climate change. However, transportation and storage of biomass to a centralized facility are often cost-prohibitive and a major hurdle for the economic feasibility of producing biobased products, including biochar. The purpose of this study was to evaluate the environmental impacts and economic feasibility of manufacturing biochar from forest residues with small-scale portable production systems. This study evaluated the environmental performance and economic feasibility of biochar produced through three portable systems (biochar solutions incorporated (BSI), Oregon Kiln (OK), and air curtain burner (ACB)) using forest residues in the United States (US). Cradle-to-grave life-cycle assessment (LCA) and techno-economic analysis (TEA) were used to quantify environmental impacts and minimal selling price (MSP) of biochar respectively considering different power sources, production sites, and feedstock qualities. The results illustrated that the global warming (GW) impact of biochar production through BSI, OK, and ACB was 0.25–1.0, 0.55, and 0.61-t CO2eq/t biochar applied to the field, respectively. Considering carbon-sequestration, 1-t of biochar produced with the portable system at a near-forest site and applied to the field reduced the GW impact by 0.89–2.6 t CO2eq. For biochar production, the environmental performance of the BSI system improved substantially (60–70%) when it was powered by a gasifier-based generator instead of a diesel generator. Similarly, near-forest(off-grid) biochar production operations performed better environmentally than the operations at in-town sites due to the reduction in the forest residues transportation emissions. Overall, the net GW impact of biochar produced from forest residues can reduce environmental impacts (i.e., 1–10 times lower CO2eq emissions) compared with slash-pile burning. The MSP per tonne of biochar produced through BSI, OK, and ACB was $3,000–$5,000, $1,600, and $580 respectively considering 100 working days per year. However, with improved BSI systems when allowed to operate throughout the year, the MSP can be reduced to below $1000/t of biochar. Furthermore, considering current government grants and subsidies (i.e.,$12,600/ha for making biochar production from forest residues), the MSP of biochar can be reduced substantially (30–387%) depending on the type of portable system used. The portable small-scale production systems could be environmentally beneficial and economically feasible options to make biochar from forest residues at competitive prices given current government incentives in the US where excess forest biomass and forest residues left in the forest increase the risk of forest fires.
The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-020-01830-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The International Jo... arrow_drop_down The International Journal of Life Cycle AssessmentArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11367-020-01830-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Zhongjia Chen; Hongmei Gu; Richard Bergman; Shaobo Liang;doi: 10.3390/su12114708
Buildings consume large amounts of materials and energy, making them one of the highest environmental impactors. Quantifying the impact of building materials can be critical to developing an effective greenhouse gas mitigation strategy. Using Athena Impact Estimator for Buildings (IE4B), this paper compares cradle-to-grave life-cycle assessment (LCA) results for a 12-story building constructed from cross-laminated timber (CLT) and a functionally equivalent reinforced concrete (RC) building. Following EN 15978 framework, environmental impacts for stages A1–A5 (product to construction), B2, B4, and B6 (use), C1–C4 (end of life), and D (beyond the building life) were evaluated in detail along resource efficiency. For material resource efficiency, total mass of the CLT building was 33.2% less than the alternative RC building. For modules A to C and not considering operational energy use (B6), LCA results show a 20.6% reduction in embodied carbon achieved for the CLT building, compared to the RC building. For modules A to D and not considering B6, the embodied carbon assessment revealed that for the CLT building, 6.57 × 105 kg CO2 eq was emitted, whereas for the equivalent RC building, 2.16 × 106 kg CO2 eq was emitted, and emissions from CLT building was 70% lower than that from RC building. Additionally, 1.84 × 106 kg of CO2 eq was stored in the wood material used in the CLT building during its lifetime. Building material selection should be considered for the urgent need to reduce global climate change impacts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12114708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 68 citations 68 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12114708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthKamalakanta Sahoo; Richard Bergman; Sevda Alanya-Rosenbaum; Hongmei Gu; Shaobo Liang;doi: 10.3390/su11174722
Climate change, environmental degradation, and limited resources are motivations for sustainable forest management. Forests, the most abundant renewable resource on earth, used to make a wide variety of forest-based products for human consumption. To provide a scientific measure of a product’s sustainability and environmental performance, the life cycle assessment (LCA) method is used. This article provides a comprehensive review of environmental performances of forest-based products including traditional building products, emerging (mass-timber) building products and nanomaterials using attributional LCA. Across the supply chain, the product manufacturing life-cycle stage tends to have the largest environmental impacts. However, forest management activities and logistics tend to have the greatest economic impact. In addition, environmental trade-offs exist when regulating emissions as indicated by the latest traditional wood building product LCAs. Interpretation of these LCA results can guide new product development using biomaterials, future (mass) building systems and policy-making on mitigating climate change. Key challenges include handling of uncertainties in the supply chain and complex interactions of environment, material conversion, resource use for product production and quantifying the emissions released.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11174722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 55 citations 55 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11174722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:MDPI AG Authors: Nathaniel Anderson; Hongmei Gu; Richard Bergman;doi: 10.3390/en14248472
There is increasing demand in environmental remediation and other sectors for specialized sorbents made from renewable materials rather than hard coals and minerals. The proliferation of new pyrolysis technologies to produce bio-based energy, fuels, chemicals, and bioproducts from biomass has left significant gaps in our understanding of how the various carbonaceous materials produced by these systems respond to processes intended to improve their adsorption properties and commercial value. This study used conventional steam activation in an industrial rotary calciner to produce activated carbon (AC) from softwood biochars made by three novel pyrolysis systems. Steam was injected across four heating zones ranging from 816 °C to 927 °C during paired trials conducted at calciner retention times of 45 min and 60 min. The surface area of the three biochars increased from 2.0, 177.3, and 289.1 m2 g−1 to 868.4, 1092.9, and 744.8 m2 g−1, respectively. AC iodine number ranged from 951 to 1218 mg g−1, comparing favorably to commercial AC produced from bituminous coal and coconut shell. The results of this study can be used to operationalize steam activation as a post-processing treatment for biochar and to expand markets for biochar as a precursor in the manufacture of specialized industrial sorbents.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Richard Bergman; Kamalakanta Sahoo; Kamalakanta Sahoo; Hongmin Dong; Shunli Wang; Umakanta Jena; Troy Runge;Abstract The meat industry in the US generates considerable amount of slaughterhouse waste (SHW), which is typically converted into more useable products through the rendering process. Although rendering generates sellable fat and meal commodities, it has large environmental impacts because it is energy intensive. Anaerobic digestion (AD) is a promising technology for treating SHW and reducing environmental impact through biogas production to generate heat or electricity, as well as by enabling nutrient recovery and pathogen reduction. This study compared the life-cycle energy use and global warming impact of treating SHW with traditional rendering with AD to produce heat and electricity. The study also considered the co-digestion of SHW with the organic fraction of municipal solid waste (OFMSW) and sewage sludge. A cradle-to-grave life-cycle assessment (LCA) method was used to quantify the energy use and greenhouse gas (GHG) emissions of these systems for treating SHW. We compared three scenarios: (1) AD of SHW, (2) Co-AD of SHW with OFMSW, and (3) Co-AD of SHW with sewage sludge to reference systems of simple rendering and composting. The study findings revealed that the total cradle-to-gate energy use and GHG emissions by treating SHW with AD and co-AD were 0.5−6.7 GJ/1000 kg-SHW and 400−834 kg-CO₂-eq/1000 kg-SHW, whereas for the rendering control scenarios total cradle-to-gate energy use and GHG emissions were 1.9 GJ/1000 kg-SHW and 96.4 kg-CO₂-eq/1000 kg-SHW, respectively. However, considering all the benefits of treating SHW with co-AD, including the displacement of fossil fuel and electricity and nitrogen fertilizers generated as system outputs, these systems perform better than the rendering process. Compared to the reference systems, the GHG reduction potential of treating SHW with co-AD varied between 426.8 and 524.0 kg-CO₂-eq/1000 kg-SHW. Among all input parameters, methane (CH₄) leak from the AD system, and nitrogen fertilizer displacement were the most sensitive parameters affecting the results. By implementing AD of SHW in meat industries in the southeast US, the energy production and GHG emissions reduction potential were estimated to be 22–29 × 10⁶ GJ and 1.6–2.0 × 109 kg-CO₂-eq per year, respectively. The results indicate that the AD of SHW can substantially reduce GHG emissions of the US meat industry as well as produce bioenergy to provide energy security in the US.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2021.126038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2021.126038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu