- home
- Advanced Search
- Energy Research
- 15. Life on land
- Energy Research
- 15. Life on land
description Publicationkeyboard_double_arrow_right Article , Journal 2017 Czech RepublicPublisher:Wiley Authors:Felipe Bastida;
Irene F. Torres;Felipe Bastida
Felipe Bastida in OpenAIREManuela Andrés‐Abellán;
Petr Baldrian; +8 AuthorsManuela Andrés‐Abellán
Manuela Andrés‐Abellán in OpenAIREFelipe Bastida;
Irene F. Torres;Felipe Bastida
Felipe Bastida in OpenAIREManuela Andrés‐Abellán;
Petr Baldrian;Manuela Andrés‐Abellán
Manuela Andrés‐Abellán in OpenAIRERubén López‐Mondéjar;
Tomáš Větrovský; Hans H. Richnow;Rubén López‐Mondéjar
Rubén López‐Mondéjar in OpenAIRERobert Starke;
Sara Ondoño;Robert Starke
Robert Starke in OpenAIRECarlos García;
Carlos García
Carlos García in OpenAIREFrancisco R. López‐Serrano;
Francisco R. López‐Serrano
Francisco R. López‐Serrano in OpenAIRENico Jehmlich;
Nico Jehmlich
Nico Jehmlich in OpenAIREdoi: 10.1111/gcb.13790
pmid: 28614633
AbstractClimate change will affect semiarid ecosystems through severe droughts that increase the competition for resources in plant and microbial communities. In these habitats, adaptations to climate change may consist of thinning—that reduces competition for resources through a decrease in tree density and the promotion of plant survival. We deciphered the functional and phylogenetic responses of the microbial community to 60 years of drought induced by rainfall exclusion and how forest management affects its resistance to drought, in a semiarid forest ecosystem dominated byPinus halepensisMill. A multiOMICapproach was applied to reveal novel, community‐based strategies in the face of climate change. The diversity and the composition of the total and active soil microbiome were evaluated by 16SrRNAgene (bacteria) andITS(fungal) sequencing, and by metaproteomics. The microbial biomass was analyzed by phospholipid fatty acids (PLFAs), and the microbially mediated ecosystem multifunctionality was studied by the integration of soil enzyme activities related to the cycles of C, N, and P. The microbial biomass and ecosystem multifunctionality decreased in drought‐plots, as a consequence of the lower soil moisture and poorer plant development, but this decrease was more notable in unthinned plots. The structure and diversity of the total bacterial community was unaffected by drought at phylum and order level, but did so at genus level, and was influenced by seasonality. However, the total fungal community and the active microbial community were more sensitive to drought and were related to ecosystem multifunctionality. Thinning in plots without drought increased the active diversity while the total diversity was not affected. Thinning promoted the resistance of ecosystem multifunctionality to drought through changes in the active microbial community. The integration of total and active microbiome analyses avoids misinterpretations of the links between the soil microbial community and climate change.
Repository of the Cz... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2017Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu170 citations 170 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Repository of the Cz... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2017Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 Spain, SpainPublisher:Elsevier BV Authors: Ana Maria Rey; Felipe Bastida;Marta Díaz-López;
Marta Díaz-López
Marta Díaz-López in OpenAIREJuan Carlos García-Gil;
+7 AuthorsJuan Carlos García-Gil
Juan Carlos García-Gil in OpenAIREAna Maria Rey; Felipe Bastida;Marta Díaz-López;
Marta Díaz-López
Marta Díaz-López in OpenAIREJuan Carlos García-Gil;
Yunkai Li;Juan Carlos García-Gil
Juan Carlos García-Gil in OpenAIREIria Benavente-Ferraces;
Yunpeg Zhou;Iria Benavente-Ferraces
Iria Benavente-Ferraces in OpenAIRECésar Plaza;
César Plaza
César Plaza in OpenAIRERubén López-Mondéjar;
Roxana Rojas;Rubén López-Mondéjar
Rubén López-Mondéjar in OpenAIREJosé L. Moreno;
José L. Moreno
José L. Moreno in OpenAIREhandle: 10261/264172
Changing climatic conditions (warming and decreasing precipitation) have been found to be a threat to the agricultural sustainability of Mediterranean croplands. From the climate change perspective, biochar amendment may interact with the effects of warming and drought stresses on soil ecosystems. However, the responses of soil microbial communities to the joint effects of climate change and biochar in Mediterranean croplands are not sufficiently known. To help fill this knowledge gap, in this work we used a field experiment to determine the effects of partial rain exclusion alone or combined with a soil temperature increase in biochar-amended (20 t ha) and unamended plots under crop rotation on soil chemical properties, enzyme activities, and the microbial community activity, structure, composition, abundance, and functions. The biomass, composition, and activity of the soil bacterial and fungal communities were more responsive to biochar addition than to climate manipulation. Thus, soil chemical parameters, enzyme activities and the relative abundances of bacterial populations were not responsive to the interaction of biochar and climate manipulation, while the predicted functionality of the bacterial community was modified by both factors. Soil β-glucosidase activity significantly decreased in response to biochar addition and climate manipulation, while urease activity was significantly increased by biochar, and protease activity was significantly decreased by climate manipulation. Gram negative and fungal biomasses were significantly affected by the interaction of biochar with climate manipulation. Climate manipulation produced changes in the composition of the soil fungal community without loss of diversity. This study illustrates how the interactions between biochar amendment and future climate change scenarios influence microbially-driven ecosystem services related to the maintenance of nutrient cycles and biodiversity in a Mediterranean agroecosystem. This research was financially supported by the Spanish MICINN MINECO, AEI, FEDER, EU), through the research projects CGL2015-65162-R and AGL2016-75752-R. The authors are also grateful for the AEPP CSIC funds (2020AEP004). We also thank the Spanish Ministry and FEDER funds for the project AGL2017–85755-R (AEI/FEDER, UE), the i-LINK + 2018 (LINKA20069) from CSIC.
Geoderma arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geoderma.2021.115536&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 76visibility views 76 download downloads 175 Powered bymore_vert Geoderma arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geoderma.2021.115536&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Czech Republic, SpainPublisher:Springer Science and Business Media LLC Authors:Petr Baldrian;
Petr Baldrian
Petr Baldrian in OpenAIRERubén López-Mondéjar;
Rubén López-Mondéjar
Rubén López-Mondéjar in OpenAIREPetr Kohout;
Petr Kohout
Petr Kohout in OpenAIREForests influence climate and mitigate global change through the storage of carbon in soils. In turn, these complex ecosystems face important challenges, including increases in carbon dioxide, warming, drought and fire, pest outbreaks and nitrogen deposition. The response of forests to these changes is largely mediated by microorganisms, especially fungi and bacteria. The effects of global change differ among boreal, temperate and tropical forests. The future of forests depends mostly on the performance and balance of fungal symbiotic guilds, saprotrophic fungi and bacteria, and fungal plant pathogens. Drought severely weakens forest resilience, as it triggers adverse processes such as pathogen outbreaks and fires that impact the microbial and forest performance for carbon storage and nutrient turnover. Nitrogen deposition also substantially affects forest microbial processes, with a pronounced effect in the temperate zone. Considering plant-microorganism interactions would help predict the future of forests and identify management strategies to increase ecosystem stability and alleviate climate change effects. In this Review, we describe the impact of global change on the forest ecosystem and its microbiome across different climatic zones. We propose potential approaches to control the adverse effects of global change on forest stability, and present future research directions to understand the changes ahead.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesNature Reviews MicrobiologyArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41579-023-00876-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 112 citations 112 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 46visibility views 46 download downloads 374 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesNature Reviews MicrobiologyArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41579-023-00876-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Elsevier BV Authors:A. Vera;
J.L. Moreno;
J.L. Moreno
J.L. Moreno in OpenAIREJ.A. Siles;
J.A. Siles
J.A. Siles in OpenAIRER. López-Mondejar;
+5 AuthorsR. López-Mondejar
R. López-Mondejar in OpenAIREA. Vera;
J.L. Moreno;
J.L. Moreno
J.L. Moreno in OpenAIREJ.A. Siles;
J.A. Siles
J.A. Siles in OpenAIRER. López-Mondejar;
Y. Zhou; Y. Li;R. López-Mondejar
R. López-Mondejar in OpenAIREC. García;
C. García
C. García in OpenAIREE. Nicolás;
F. Bastida;E. Nicolás
E. Nicolás in OpenAIREWater shortage and low organic carbon content in soil limit soil fertility and crop productivity. The use of desalinated seawater is increasing as an alternative source of irrigation water. However, it has a high boron (B) content that could cause toxicity in the plant-soil microbial system. Here, we evaluated the responses of the soil microbiota and lemon trees to 3 irrigation B doses (0.3, 1, and 15 mg L-1) under two types of soil management (conventional, CS; and organic, OS) in a 180-days pot experiment. High B doses promoted B accumulation in soil, reaching harmful concentrations that affected soil biodiversity. Our results suggest a close interaction between B and organic labile fractions that increased B availability in soil solution. Besides, B addition to soil impacted on microbial biomass. The bacterial community showed sensitivity to the B dose. Organic amendment did not increase B soil adsorption but it favored B plant uptake. The highest B dose had a detrimental impact on plant physiology, finally resulting lethal for the plants. Our study provides a comprehensive assessment of the microbes-plant interactions in soils irrigated with water with high B content. This will be fundamental in the design of future fertirrigation strategies.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAJournal of Hazardous MaterialsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2020.124939&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 89visibility views 89 download downloads 166 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAJournal of Hazardous MaterialsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2020.124939&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Czech RepublicPublisher:American Society for Microbiology Authors:Lladó, S. (Salvador);
Lladó, S. (Salvador)
Lladó, S. (Salvador) in OpenAIRELópez-Mondejár, R. (Rubén);
Baldrian, P. (Petr);López-Mondejár, R. (Rubén)
López-Mondejár, R. (Rubén) in OpenAIRESUMMARY The ecology of forest soils is an important field of research due to the role of forests as carbon sinks. Consequently, a significant amount of information has been accumulated concerning their ecology, especially for temperate and boreal forests. Although most studies have focused on fungi, forest soil bacteria also play important roles in this environment. In forest soils, bacteria inhabit multiple habitats with specific properties, including bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are shaped by nutrient availability and biotic interactions. Bacteria contribute to a range of essential soil processes involved in the cycling of carbon, nitrogen, and phosphorus. They take part in the decomposition of dead plant biomass and are highly important for the decomposition of dead fungal mycelia. In rhizospheres of forest trees, bacteria interact with plant roots and mycorrhizal fungi as commensalists or mycorrhiza helpers. Bacteria also mediate multiple critical steps in the nitrogen cycle, including N fixation. Bacterial communities in forest soils respond to the effects of global change, such as climate warming, increased levels of carbon dioxide, or anthropogenic nitrogen deposition. This response, however, often reflects the specificities of each studied forest ecosystem, and it is still impossible to fully incorporate bacteria into predictive models. The understanding of bacterial ecology in forest soils has advanced dramatically in recent years, but it is still incomplete. The exact extent of the contribution of bacteria to forest ecosystem processes will be recognized only in the future, when the activities of all soil community members are studied simultaneously.
Microbiology and Mol... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2017Data sources: Repository of the Czech Academy of SciencesMicrobiology and Molecular Biology ReviewsArticle . 2017 . Peer-reviewedLicense: ASM Journals Non-Commercial TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1128/mmbr.00063-16&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 467 citations 467 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Microbiology and Mol... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2017Data sources: Repository of the Czech Academy of SciencesMicrobiology and Molecular Biology ReviewsArticle . 2017 . Peer-reviewedLicense: ASM Journals Non-Commercial TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1128/mmbr.00063-16&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley Authors:Robert Starke;
Daniel Morais; Tomáš Větrovský;Robert Starke
Robert Starke in OpenAIRERuben López Mondéjar;
+2 AuthorsRuben López Mondéjar
Ruben López Mondéjar in OpenAIRERobert Starke;
Daniel Morais; Tomáš Větrovský;Robert Starke
Robert Starke in OpenAIRERuben López Mondéjar;
Petr Baldrian;Ruben López Mondéjar
Ruben López Mondéjar in OpenAIREVendula Brabcová;
Vendula Brabcová
Vendula Brabcová in OpenAIREpmid: 32743948
SummaryDead fungal biomass is an abundant source of nutrition in both litter and soil of temperate forests largely decomposed by bacteria. Here, we have examined the utilization of dead fungal biomass by the five dominant bacteria isolated from the in situ decomposition of fungal mycelia using a multiOMIC approach. The genomes of the isolates encoded a broad suite of carbohydrate‐active enzymes, peptidases and transporters. In the extracellular proteome, only Ewingella americana expressed chitinases while the two Pseudomonas isolates attacked chitin by lytic chitin monooxygenase, deacetylation and deamination. Variovorax sp. expressed enzymes acting on the side‐chains of various glucans and the chitin backbone. Surprisingly, despite its genomic potential, Pedobacter sp. did not produce extracellular proteins to decompose fungal mycelia but presumably feeds on simple substrates. The ecological roles of the five individual strains exhibited complementary features for a fast and efficient decomposition of dead fungal biomass by the entire bacterial community.
Environmental Microb... arrow_drop_down Environmental MicrobiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1462-2920.15183&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Microb... arrow_drop_down Environmental MicrobiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1462-2920.15183&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Costa RicaPublisher:Elsevier BV Authors:Gabriela Montes de Oca-Vásquez;
Gabriela Montes de Oca-Vásquez
Gabriela Montes de Oca-Vásquez in OpenAIREFrank Solano-Campos;
Frank Solano-Campos
Frank Solano-Campos in OpenAIREJosé R. Vega-Baudrit;
José R. Vega-Baudrit
José R. Vega-Baudrit in OpenAIRERubén López-Mondéjar;
+3 AuthorsRubén López-Mondéjar
Rubén López-Mondéjar in OpenAIREGabriela Montes de Oca-Vásquez;
Gabriela Montes de Oca-Vásquez
Gabriela Montes de Oca-Vásquez in OpenAIREFrank Solano-Campos;
Frank Solano-Campos
Frank Solano-Campos in OpenAIREJosé R. Vega-Baudrit;
José R. Vega-Baudrit
José R. Vega-Baudrit in OpenAIRERubén López-Mondéjar;
Rubén López-Mondéjar
Rubén López-Mondéjar in OpenAIREAlfonso Vera;
Alfonso Vera
Alfonso Vera in OpenAIREJosé L. Moreno;
Felipe Bastida;José L. Moreno
José L. Moreno in OpenAIREIncreased utilization of silver nanoparticles (AgNPs) can result in an accumulation of these particles in the environment. The potential detrimental effects of AgNPs in soil may be associated with the low fertility of soils in semiarid regions that are usually subjected to restoration through the application of organic amendments. Microbial communities are responsible for fundamental processes related to soil fertility, yet the potential impacts of low and realistic AgNPs concentrations on soil microorganisms are still unknown. We studied the effects of realistic citrate-stabilized AgNPs concentrations (0.015 and 1.5 μg kg-1) at two exposure times (7 and 30 days) on a sandy clay loam Mediterranean soil unamended (SU) and amended with compost (SA). We assessed soil microbial biomass (microbial fatty acids), soil enzyme activities (urease, β-glucosidase, and alkaline phosphatase), and composition of the microbial community (bacterial 16S rRNA gene and fungal ITS2 sequencing) in a microcosm experiment. In the SA, the two concentrations of AgNPs significantly decreased the bacterial biomass after 7 days of incubation. At 30 days of incubation, only a significant decrease in the Gram+ was observed at the highest AgNPs concentration. In contrast, in the SU, there was a significant increase in bacterial biomass after 30 days of incubation at the lowest AgNPs concentration. Overall, we found that fungal biomass was more resistant to AgNPs than bacterial biomass, in both SA and SU. Further, the AgNPs changed the composition of the soil bacterial community in SA, the relative abundance of some bacterial taxa in SA and SU, and fungal richness in SU at 30 days of incubation. However, AgNPs did not affect the activity of extracellular enzymes. This study demonstrates that the exposure time and organic amendments modulate the effects of realistic concentrations of AgNPs in the biomass and composition of the microbial community of a Mediterranean soil.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.140919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.140919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Costa RicaPublisher:Elsevier BV Authors:Gabriela Montes de Oca-Vásquez;
Gabriela Montes de Oca-Vásquez
Gabriela Montes de Oca-Vásquez in OpenAIREFrank Solano-Campos;
Frank Solano-Campos
Frank Solano-Campos in OpenAIREJosé R. Vega-Baudrit;
José R. Vega-Baudrit
José R. Vega-Baudrit in OpenAIRERubén López-Mondéjar;
+4 AuthorsRubén López-Mondéjar
Rubén López-Mondéjar in OpenAIREGabriela Montes de Oca-Vásquez;
Gabriela Montes de Oca-Vásquez
Gabriela Montes de Oca-Vásquez in OpenAIREFrank Solano-Campos;
Frank Solano-Campos
Frank Solano-Campos in OpenAIREJosé R. Vega-Baudrit;
José R. Vega-Baudrit
José R. Vega-Baudrit in OpenAIRERubén López-Mondéjar;
Rubén López-Mondéjar
Rubén López-Mondéjar in OpenAIREIñaki Odriozola;
Iñaki Odriozola
Iñaki Odriozola in OpenAIREAlfonso Vera;
Alfonso Vera
Alfonso Vera in OpenAIREJosé L. Moreno;
Felipe Bastida;José L. Moreno
José L. Moreno in OpenAIREThe increasing use of silver nanoparticles (AgNPs) due to their well-known antimicrobial activity, has led to their accumulation in soil ecosystems. However, the impact of environmental realistic concentrations of AgNPs on the soil microbial community has been scarcely studied. In this work, we have assessed the impact of AgNPs, that mimic real concentrations in nature, on tropical soils cultivated with Coffea arabica under conventional and organic management systems. We evaluated the biomass, extracellular enzyme activities, and diversity of the soil microbial community, in a microcosm experiment as a function of time. After seven days of incubation, we found an increase in microbial biomass in an AgNPs-concentration-independent manner. In contrast, after 60-day-incubation, there was a decrease in Gram+ and actinobacterial biomass, in both soils and all AgNPs concentrations. Soil physico-chemical properties and enzyme activities were not affected overall by AgNPs. Regarding the microbial community composition, only some differences in the relative abundance at phylum and genus level in the fungal community were observed. Our results suggest that environmental concentrations of AgNPs affected microbial biomass but had little impact on microbial diversity and may have little effects on the soil biogeochemical cycles mediated by extracellular enzyme activities.
Journal of Hazardous... arrow_drop_down Journal of Hazardous MaterialsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversidad Nacional Costa Rica (UNA): Repositorio InstitucionalArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2020.122224&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 44 citations 44 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Hazardous... arrow_drop_down Journal of Hazardous MaterialsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversidad Nacional Costa Rica (UNA): Repositorio InstitucionalArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2020.122224&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Authors:Bastida, Felipe;
Bastida, Felipe
Bastida, Felipe in OpenAIRELópez Mondéjar, R.;
Baldrian, P.;López Mondéjar, R.
López Mondéjar, R. in OpenAIREAndrés Abellán, Manuela;
+4 AuthorsAndrés Abellán, Manuela
Andrés Abellán, Manuela in OpenAIREBastida, Felipe;
Bastida, Felipe
Bastida, Felipe in OpenAIRELópez Mondéjar, R.;
Baldrian, P.;López Mondéjar, R.
López Mondéjar, R. in OpenAIREAndrés Abellán, Manuela;
Andrés Abellán, Manuela
Andrés Abellán, Manuela in OpenAIREJehmlich, N.;
Torres, I. F.; García, Carlos;Jehmlich, N.
Jehmlich, N. in OpenAIRELópez Serrano, Francisco Ramón;
López Serrano, Francisco Ramón
López Serrano, Francisco Ramón in OpenAIREThe growth and survival of plants in semiarid Mediterranean forests can be improved through the benefits conferred by thinning, a forest management practice that removes trees and reduces the competition between the remaining ones. Here, we evaluate the impacts of induced drought (the exclusion of 25% of the natural rainfall for 5 years) and thinning, and their interaction, with the objective of determining whether the thinning of Holm oak (Quercus ilex L.) modulates the resistance of the soil microbial community to drought. Sequencing of 16S rRNA and ITS amplicons revealed that drought, thinning, and their interaction influenced the composition of the bacterial community, while the fungal community was exclusively affected by thinning. Thinning consisted of the removal of the aboveground parts of the Holm oak trees, which were thereafter left in forest stand. Thinning contributed to the C and N contents, with parallel increases in microbial biomass, particularly in summer. Drought increased the amounts of total organic C and total N, likely due to the reduced enzyme activities. Indeed, the composition of the bacterial community was modulated primarily by the indirect and long-term effects of drought - the accumulation of soil organic matter - rather than by the direct effect of the lower water content imposed by the drought treatments. Thinning under drought conditions did not increase soil organic C (SOC) content. However, the resistance of the soil microbial community to drought was fostered by thinning, particularly at the functional level, as indicated by the enzyme activities related to C, N and P cycles. These responses were associated to variations in the composition of the microbial communities in thinned, drought-exposed plots, in comparison to unthinned, drought-exposed plots. In conclusion, the interaction between forest management and drought influenced the soil microbial community of a Holm oak-dominated Mediterranean ecosystem.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAThe Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.01.233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 54 citations 54 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAThe Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.01.233&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Czech RepublicPublisher:Oxford University Press (OUP) Authors:López-Mondejár, R. (Rubén);
López-Mondejár, R. (Rubén)
López-Mondejár, R. (Rubén) in OpenAIREBrabcová, V. (Vendula);
Brabcová, V. (Vendula)
Brabcová, V. (Vendula) in OpenAIREŠtursová, M. (Martina);
Davidová, A. (Anna); +3 AuthorsŠtursová, M. (Martina)
Štursová, M. (Martina) in OpenAIRELópez-Mondejár, R. (Rubén);
López-Mondejár, R. (Rubén)
López-Mondejár, R. (Rubén) in OpenAIREBrabcová, V. (Vendula);
Brabcová, V. (Vendula)
Brabcová, V. (Vendula) in OpenAIREŠtursová, M. (Martina);
Davidová, A. (Anna);Štursová, M. (Martina)
Štursová, M. (Martina) in OpenAIREJansa, J. (Jan);
Cajthaml, T. (Tomáš); Baldrian, P. (Petr);Jansa, J. (Jan)
Jansa, J. (Jan) in OpenAIREAbstract Forest soils represent important terrestrial carbon (C) pools where C is primarily fixed in the plant-derived biomass but it flows further through the biomass of fungi and bacteria before it is lost from the ecosystem as CO2 or immobilized in recalcitrant organic matter. Microorganisms are the main drivers of C flow in forests and play critical roles in the C balance through the decomposition of dead biomass of different origins. Here, we track the path of C that enters forest soil by following respiration, microbial biomass production, and C accumulation by individual microbial taxa in soil microcosms upon the addition of 13C-labeled biomass of plant, fungal, and bacterial origin. We demonstrate that both fungi and bacteria are involved in the assimilation and mineralization of C from the major complex sources existing in soil. Decomposer fungi are, however, better suited to utilize plant biomass compounds, whereas the ability to utilize fungal and bacterial biomass is more frequent among bacteria. Due to the ability of microorganisms to recycle microbial biomass, we suggest that the decomposer food web in forest soil displays a network structure with loops between and within individual pools. These results question the present paradigms describing food webs as hierarchical structures with unidirectional flow of C and assumptions about the dominance of fungi in the decomposition of complex organic matter.
The ISME Journal arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2018Data sources: Repository of the Czech Academy of SciencesThe ISME JournalArticle . 2018 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41396-018-0084-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 151 citations 151 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The ISME Journal arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2018Data sources: Repository of the Czech Academy of SciencesThe ISME JournalArticle . 2018 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41396-018-0084-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu