- home
- Advanced Search
- Energy Research
- 14. Life underwater
- Energy Research
- 14. Life underwater
description Publicationkeyboard_double_arrow_right Article , Journal 2011 Canada, Canada, NetherlandsPublisher:Oxford University Press (OUP) Funded by:NWO | Effects of global warming...NWO| Effects of global warming on cryptogam- and microbial diversity and ecosystem functioning in Antarctic ecosystems Project I: Effects of global warming on cryptogam diversity and water use in Antarctic ecosystems Project II: Global-warming induced effectYergeau, E.; Bokhorst, S.F.; Kang, S.; Jizhong, Z.; Greer, C.W.; Aerts, M.A.P.A.; Kowalchuk, G.A.;pmid: 21938020
pmc: PMC3282189
AbstractBecause of severe abiotic limitations, Antarctic soils represent simplified systems, where microorganisms are the principal drivers of nutrient cycling. This relative simplicity makes these ecosystems particularly vulnerable to perturbations, like global warming, and the Antarctic Peninsula is among the most rapidly warming regions on the planet. However, the consequences of the ongoing warming of Antarctica on microorganisms and the processes they mediate are unknown. Here, using 16S rRNA gene pyrosequencing and qPCR, we report highly consistent responses in microbial communities across disparate sub-Antarctic and Antarctic environments in response to 3 years of experimental field warming (+0.5 to 2 °C). Specifically, we found significant increases in the abundance of fungi and bacteria and in the Alphaproteobacteria-to-Acidobacteria ratio, which could result in an increase in soil respiration. Furthermore, shifts toward generalist bacterial communities following warming weakened the linkage between the bacterial taxonomic and functional richness. GeoChip microarray analyses also revealed significant warming effects on functional communities, specifically in the N-cycling microorganisms. Our results demonstrate that soil microorganisms across a range of sub-Antarctic and Antarctic environments can respond consistently and rapidly to increasing temperatures.
The ISME Journal arrow_drop_down The ISME JournalArticle . 2011 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefThe ISME JournalArticle . 2012add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ismej.2011.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 259 citations 259 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The ISME Journal arrow_drop_down The ISME JournalArticle . 2011 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefThe ISME JournalArticle . 2012add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ismej.2011.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Canada, Canada, NetherlandsPublisher:Oxford University Press (OUP) Funded by:NWO | Effects of global warming...NWO| Effects of global warming on cryptogam- and microbial diversity and ecosystem functioning in Antarctic ecosystems Project I: Effects of global warming on cryptogam diversity and water use in Antarctic ecosystems Project II: Global-warming induced effectYergeau, E.; Bokhorst, S.F.; Kang, S.; Jizhong, Z.; Greer, C.W.; Aerts, M.A.P.A.; Kowalchuk, G.A.;pmid: 21938020
pmc: PMC3282189
AbstractBecause of severe abiotic limitations, Antarctic soils represent simplified systems, where microorganisms are the principal drivers of nutrient cycling. This relative simplicity makes these ecosystems particularly vulnerable to perturbations, like global warming, and the Antarctic Peninsula is among the most rapidly warming regions on the planet. However, the consequences of the ongoing warming of Antarctica on microorganisms and the processes they mediate are unknown. Here, using 16S rRNA gene pyrosequencing and qPCR, we report highly consistent responses in microbial communities across disparate sub-Antarctic and Antarctic environments in response to 3 years of experimental field warming (+0.5 to 2 °C). Specifically, we found significant increases in the abundance of fungi and bacteria and in the Alphaproteobacteria-to-Acidobacteria ratio, which could result in an increase in soil respiration. Furthermore, shifts toward generalist bacterial communities following warming weakened the linkage between the bacterial taxonomic and functional richness. GeoChip microarray analyses also revealed significant warming effects on functional communities, specifically in the N-cycling microorganisms. Our results demonstrate that soil microorganisms across a range of sub-Antarctic and Antarctic environments can respond consistently and rapidly to increasing temperatures.
The ISME Journal arrow_drop_down The ISME JournalArticle . 2011 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefThe ISME JournalArticle . 2012add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ismej.2011.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 259 citations 259 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The ISME Journal arrow_drop_down The ISME JournalArticle . 2011 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefThe ISME JournalArticle . 2012add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ismej.2011.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Spain, Finland, SpainPublisher:Springer Science and Business Media LLC Félix Picazo; Lijuan Ren; Juha Aalto; Juha Aalto; Qinglong L. Wu; Janne Soininen; Jizhong Zhou; Jizhong Zhou; Jizhong Zhou; Ji Shen; Emilio O. Casamayor; Annika Vilmi; Yongqin Liu; Jianjun Wang;AbstractBackgroundUnderstanding the large-scale patterns of microbial functional diversity is essential for anticipating climate change impacts on ecosystems worldwide. However, studies of functional biogeography remain scarce for microorganisms, especially in freshwater ecosystems. Here we study 15,289 functional genes of stream biofilm microbes along three elevational gradients in Norway, Spain and China.ResultsWe find that alpha diversity declines towards high elevations and assemblage composition shows increasing turnover with greater elevational distances. These elevational patterns are highly consistent across mountains, kingdoms and functional categories and exhibit the strongest trends in China due to its largest environmental gradients. Across mountains, functional gene assemblages differ in alpha diversity and composition between the mountains in Europe and Asia. Climate, such as mean temperature of the warmest quarter or mean precipitation of the coldest quarter, is the best predictor of alpha diversity and assemblage composition at both mountain and continental scales, with local non-climatic predictors gaining more importance at mountain scale. Under future climate, we project substantial variations in alpha diversity and assemblage composition across the Eurasian river network, primarily occurring in northern and central regions, respectively.ConclusionsWe conclude that climate controls microbial functional gene diversity in streams at large spatial scales; therefore, the underlying ecosystem processes are highly sensitive to climate variations, especially at high latitudes. This biogeographical framework for microbial functional diversity serves as a baseline to anticipate ecosystem responses and biogeochemical feedback to ongoing climate change.
Microbiome arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiRepositorio Institucional Universidad de GranadaArticle . 2025License: CC BYData sources: Repositorio Institucional Universidad de Granadaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40168-020-00873-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 45 citations 45 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 360visibility views 360 download downloads 57 Powered bymore_vert Microbiome arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiRepositorio Institucional Universidad de GranadaArticle . 2025License: CC BYData sources: Repositorio Institucional Universidad de Granadaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40168-020-00873-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Spain, Finland, SpainPublisher:Springer Science and Business Media LLC Félix Picazo; Lijuan Ren; Juha Aalto; Juha Aalto; Qinglong L. Wu; Janne Soininen; Jizhong Zhou; Jizhong Zhou; Jizhong Zhou; Ji Shen; Emilio O. Casamayor; Annika Vilmi; Yongqin Liu; Jianjun Wang;AbstractBackgroundUnderstanding the large-scale patterns of microbial functional diversity is essential for anticipating climate change impacts on ecosystems worldwide. However, studies of functional biogeography remain scarce for microorganisms, especially in freshwater ecosystems. Here we study 15,289 functional genes of stream biofilm microbes along three elevational gradients in Norway, Spain and China.ResultsWe find that alpha diversity declines towards high elevations and assemblage composition shows increasing turnover with greater elevational distances. These elevational patterns are highly consistent across mountains, kingdoms and functional categories and exhibit the strongest trends in China due to its largest environmental gradients. Across mountains, functional gene assemblages differ in alpha diversity and composition between the mountains in Europe and Asia. Climate, such as mean temperature of the warmest quarter or mean precipitation of the coldest quarter, is the best predictor of alpha diversity and assemblage composition at both mountain and continental scales, with local non-climatic predictors gaining more importance at mountain scale. Under future climate, we project substantial variations in alpha diversity and assemblage composition across the Eurasian river network, primarily occurring in northern and central regions, respectively.ConclusionsWe conclude that climate controls microbial functional gene diversity in streams at large spatial scales; therefore, the underlying ecosystem processes are highly sensitive to climate variations, especially at high latitudes. This biogeographical framework for microbial functional diversity serves as a baseline to anticipate ecosystem responses and biogeochemical feedback to ongoing climate change.
Microbiome arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiRepositorio Institucional Universidad de GranadaArticle . 2025License: CC BYData sources: Repositorio Institucional Universidad de Granadaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40168-020-00873-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 45 citations 45 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 360visibility views 360 download downloads 57 Powered bymore_vert Microbiome arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiRepositorio Institucional Universidad de GranadaArticle . 2025License: CC BYData sources: Repositorio Institucional Universidad de Granadaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40168-020-00873-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:American Association for the Advancement of Science (AAAS) Mark E. Conrad; Shariff Osman; Todd Z. DeSantis; Jizhong Zhou; Jizhong Zhou; Alexander J. Probst; Eric Sonnenthal; Zhenmei Lu; Ye Deng; Thana R. Alusi; Hoi-Ying N. Holman; Marcin Zemla; Markus Bill; Chelsea Spier; William T. Stringfellow; William T. Stringfellow; Dominique C. Joyner; Jacob Bælum; Sharon Borglin; Eric A. Dubinsky; Romy Chakraborty; Julian L. Fortney; Patrik D'haeseleer; Terry C. Hazen; Krystle L. Chavarria; Joy D. Van Nostrand; Olivia U. Mason; Regina Lamendella; Yvette M. Piceno; Navjeet Singh; Gary L. Andersen; Manfred Auer; Janet K. Jansson; Lauren M. Tom;pmid: 20736401
Diving into Deep Water The Deepwater Horizon oil spill in the Gulf of Mexico was one of the largest oil spills on record. Its setting at the bottom of the sea floor posed an unanticipated risk as substantial amounts of hydrocarbons leaked into the deepwater column. Three separate cruises identified and sampled deep underwater hydrocarbon plumes that existed in May and June, 2010—before the well head was ultimately sealed. Camilli et al. (p. 201 ; published online 19 August) used an automated underwater vehicle to assess the dimensions of a stabilized, diffuse underwater plume of oil that was 22 miles long and estimated the daily quantity of oil released from the well, based on the concentration and dimensions of the plume. Hazen et al. (p. 204 ; published online 26 August) also observed an underwater plume at the same depth and found that hydrocarbon-degrading bacteria were enriched in the plume and were breaking down some parts of the oil. Finally, Valentine et al. (p. 208 ; published online 16 September) found that natural gas, including propane and ethane, were also present in hydrocarbon plumes. These gases were broken down quickly by bacteria, but primed the system for biodegradation of larger hydrocarbons, including those comprising the leaking crude oil. Differences were observed in dissolved oxygen levels in the plumes (a proxy for bacterial respiration), which may reflect differences in the location of sampling or the aging of the plumes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1195979&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 1K citations 1,035 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1195979&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:American Association for the Advancement of Science (AAAS) Mark E. Conrad; Shariff Osman; Todd Z. DeSantis; Jizhong Zhou; Jizhong Zhou; Alexander J. Probst; Eric Sonnenthal; Zhenmei Lu; Ye Deng; Thana R. Alusi; Hoi-Ying N. Holman; Marcin Zemla; Markus Bill; Chelsea Spier; William T. Stringfellow; William T. Stringfellow; Dominique C. Joyner; Jacob Bælum; Sharon Borglin; Eric A. Dubinsky; Romy Chakraborty; Julian L. Fortney; Patrik D'haeseleer; Terry C. Hazen; Krystle L. Chavarria; Joy D. Van Nostrand; Olivia U. Mason; Regina Lamendella; Yvette M. Piceno; Navjeet Singh; Gary L. Andersen; Manfred Auer; Janet K. Jansson; Lauren M. Tom;pmid: 20736401
Diving into Deep Water The Deepwater Horizon oil spill in the Gulf of Mexico was one of the largest oil spills on record. Its setting at the bottom of the sea floor posed an unanticipated risk as substantial amounts of hydrocarbons leaked into the deepwater column. Three separate cruises identified and sampled deep underwater hydrocarbon plumes that existed in May and June, 2010—before the well head was ultimately sealed. Camilli et al. (p. 201 ; published online 19 August) used an automated underwater vehicle to assess the dimensions of a stabilized, diffuse underwater plume of oil that was 22 miles long and estimated the daily quantity of oil released from the well, based on the concentration and dimensions of the plume. Hazen et al. (p. 204 ; published online 26 August) also observed an underwater plume at the same depth and found that hydrocarbon-degrading bacteria were enriched in the plume and were breaking down some parts of the oil. Finally, Valentine et al. (p. 208 ; published online 16 September) found that natural gas, including propane and ethane, were also present in hydrocarbon plumes. These gases were broken down quickly by bacteria, but primed the system for biodegradation of larger hydrocarbons, including those comprising the leaking crude oil. Differences were observed in dissolved oxygen levels in the plumes (a proxy for bacterial respiration), which may reflect differences in the location of sampling or the aging of the plumes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1195979&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 1K citations 1,035 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1195979&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United States, DenmarkPublisher:Wiley Catriona A. Macdonald; Jizhong Zhou; Jizhong Zhou; Jizhong Zhou; Brajesh K. Singh; Justin Kuczynski; Justin Kuczynski; Waleed Abu Al-Soud; Søren J. Sørensen; Denis J. Wright; Ye Deng; Lucinda Robinson; Rob Knight; Rob Knight; Michael J. Crawley;pmid: 24935069
SummaryHerbivory is an important modulator of plant biodiversity and productivity in grasslands, but our understanding of herbivore‐induced changes on below‐ground processes and communities is limited. Using a long‐term (17 years) experimental site, we evaluated impacts of rabbit and invertebrate grazers on some soil functions involved in carbon cycling, microbial diversity, structure and functional composition. Both rabbit and invertebrate grazing impacted soil functions and microbial community structure. All functional community measures (functions, biogeochemical cycling genes, network association between different taxa) were more strongly affected by invertebrate grazers than rabbits. Furthermore, our results suggest that exclusion of invertebrate grazers decreases both microbial biomass and abundance of genes associated with key biogeochemical cycles, and could thus have long‐term consequences for ecosystem functions. The mechanism behind these impacts are likely to be driven by both direct effects of grazing altering the pattern of nutrient inputs and by indirect effects through changes in plant species composition. However, we could not entirely discount that the pesticide used to exclude invertebrates may have affected some microbial community measures. Nevertheless, our work illustrates that human activity that affects grazing intensity may affect ecosystem functioning and sustainability, as regulated by multi‐trophic interactions between above‐ and below‐ground communities.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/7943s7z5Data sources: Bielefeld Academic Search Engine (BASE)Environmental MicrobiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1462-2920.12539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/7943s7z5Data sources: Bielefeld Academic Search Engine (BASE)Environmental MicrobiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1462-2920.12539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United States, DenmarkPublisher:Wiley Catriona A. Macdonald; Jizhong Zhou; Jizhong Zhou; Jizhong Zhou; Brajesh K. Singh; Justin Kuczynski; Justin Kuczynski; Waleed Abu Al-Soud; Søren J. Sørensen; Denis J. Wright; Ye Deng; Lucinda Robinson; Rob Knight; Rob Knight; Michael J. Crawley;pmid: 24935069
SummaryHerbivory is an important modulator of plant biodiversity and productivity in grasslands, but our understanding of herbivore‐induced changes on below‐ground processes and communities is limited. Using a long‐term (17 years) experimental site, we evaluated impacts of rabbit and invertebrate grazers on some soil functions involved in carbon cycling, microbial diversity, structure and functional composition. Both rabbit and invertebrate grazing impacted soil functions and microbial community structure. All functional community measures (functions, biogeochemical cycling genes, network association between different taxa) were more strongly affected by invertebrate grazers than rabbits. Furthermore, our results suggest that exclusion of invertebrate grazers decreases both microbial biomass and abundance of genes associated with key biogeochemical cycles, and could thus have long‐term consequences for ecosystem functions. The mechanism behind these impacts are likely to be driven by both direct effects of grazing altering the pattern of nutrient inputs and by indirect effects through changes in plant species composition. However, we could not entirely discount that the pesticide used to exclude invertebrates may have affected some microbial community measures. Nevertheless, our work illustrates that human activity that affects grazing intensity may affect ecosystem functioning and sustainability, as regulated by multi‐trophic interactions between above‐ and below‐ground communities.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/7943s7z5Data sources: Bielefeld Academic Search Engine (BASE)Environmental MicrobiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1462-2920.12539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/7943s7z5Data sources: Bielefeld Academic Search Engine (BASE)Environmental MicrobiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1462-2920.12539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2011 Canada, Canada, NetherlandsPublisher:Oxford University Press (OUP) Funded by:NWO | Effects of global warming...NWO| Effects of global warming on cryptogam- and microbial diversity and ecosystem functioning in Antarctic ecosystems Project I: Effects of global warming on cryptogam diversity and water use in Antarctic ecosystems Project II: Global-warming induced effectYergeau, E.; Bokhorst, S.F.; Kang, S.; Jizhong, Z.; Greer, C.W.; Aerts, M.A.P.A.; Kowalchuk, G.A.;pmid: 21938020
pmc: PMC3282189
AbstractBecause of severe abiotic limitations, Antarctic soils represent simplified systems, where microorganisms are the principal drivers of nutrient cycling. This relative simplicity makes these ecosystems particularly vulnerable to perturbations, like global warming, and the Antarctic Peninsula is among the most rapidly warming regions on the planet. However, the consequences of the ongoing warming of Antarctica on microorganisms and the processes they mediate are unknown. Here, using 16S rRNA gene pyrosequencing and qPCR, we report highly consistent responses in microbial communities across disparate sub-Antarctic and Antarctic environments in response to 3 years of experimental field warming (+0.5 to 2 °C). Specifically, we found significant increases in the abundance of fungi and bacteria and in the Alphaproteobacteria-to-Acidobacteria ratio, which could result in an increase in soil respiration. Furthermore, shifts toward generalist bacterial communities following warming weakened the linkage between the bacterial taxonomic and functional richness. GeoChip microarray analyses also revealed significant warming effects on functional communities, specifically in the N-cycling microorganisms. Our results demonstrate that soil microorganisms across a range of sub-Antarctic and Antarctic environments can respond consistently and rapidly to increasing temperatures.
The ISME Journal arrow_drop_down The ISME JournalArticle . 2011 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefThe ISME JournalArticle . 2012add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ismej.2011.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 259 citations 259 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The ISME Journal arrow_drop_down The ISME JournalArticle . 2011 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefThe ISME JournalArticle . 2012add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ismej.2011.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Canada, Canada, NetherlandsPublisher:Oxford University Press (OUP) Funded by:NWO | Effects of global warming...NWO| Effects of global warming on cryptogam- and microbial diversity and ecosystem functioning in Antarctic ecosystems Project I: Effects of global warming on cryptogam diversity and water use in Antarctic ecosystems Project II: Global-warming induced effectYergeau, E.; Bokhorst, S.F.; Kang, S.; Jizhong, Z.; Greer, C.W.; Aerts, M.A.P.A.; Kowalchuk, G.A.;pmid: 21938020
pmc: PMC3282189
AbstractBecause of severe abiotic limitations, Antarctic soils represent simplified systems, where microorganisms are the principal drivers of nutrient cycling. This relative simplicity makes these ecosystems particularly vulnerable to perturbations, like global warming, and the Antarctic Peninsula is among the most rapidly warming regions on the planet. However, the consequences of the ongoing warming of Antarctica on microorganisms and the processes they mediate are unknown. Here, using 16S rRNA gene pyrosequencing and qPCR, we report highly consistent responses in microbial communities across disparate sub-Antarctic and Antarctic environments in response to 3 years of experimental field warming (+0.5 to 2 °C). Specifically, we found significant increases in the abundance of fungi and bacteria and in the Alphaproteobacteria-to-Acidobacteria ratio, which could result in an increase in soil respiration. Furthermore, shifts toward generalist bacterial communities following warming weakened the linkage between the bacterial taxonomic and functional richness. GeoChip microarray analyses also revealed significant warming effects on functional communities, specifically in the N-cycling microorganisms. Our results demonstrate that soil microorganisms across a range of sub-Antarctic and Antarctic environments can respond consistently and rapidly to increasing temperatures.
The ISME Journal arrow_drop_down The ISME JournalArticle . 2011 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefThe ISME JournalArticle . 2012add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ismej.2011.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 259 citations 259 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The ISME Journal arrow_drop_down The ISME JournalArticle . 2011 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: CrossrefThe ISME JournalArticle . 2012add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ismej.2011.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Spain, Finland, SpainPublisher:Springer Science and Business Media LLC Félix Picazo; Lijuan Ren; Juha Aalto; Juha Aalto; Qinglong L. Wu; Janne Soininen; Jizhong Zhou; Jizhong Zhou; Jizhong Zhou; Ji Shen; Emilio O. Casamayor; Annika Vilmi; Yongqin Liu; Jianjun Wang;AbstractBackgroundUnderstanding the large-scale patterns of microbial functional diversity is essential for anticipating climate change impacts on ecosystems worldwide. However, studies of functional biogeography remain scarce for microorganisms, especially in freshwater ecosystems. Here we study 15,289 functional genes of stream biofilm microbes along three elevational gradients in Norway, Spain and China.ResultsWe find that alpha diversity declines towards high elevations and assemblage composition shows increasing turnover with greater elevational distances. These elevational patterns are highly consistent across mountains, kingdoms and functional categories and exhibit the strongest trends in China due to its largest environmental gradients. Across mountains, functional gene assemblages differ in alpha diversity and composition between the mountains in Europe and Asia. Climate, such as mean temperature of the warmest quarter or mean precipitation of the coldest quarter, is the best predictor of alpha diversity and assemblage composition at both mountain and continental scales, with local non-climatic predictors gaining more importance at mountain scale. Under future climate, we project substantial variations in alpha diversity and assemblage composition across the Eurasian river network, primarily occurring in northern and central regions, respectively.ConclusionsWe conclude that climate controls microbial functional gene diversity in streams at large spatial scales; therefore, the underlying ecosystem processes are highly sensitive to climate variations, especially at high latitudes. This biogeographical framework for microbial functional diversity serves as a baseline to anticipate ecosystem responses and biogeochemical feedback to ongoing climate change.
Microbiome arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiRepositorio Institucional Universidad de GranadaArticle . 2025License: CC BYData sources: Repositorio Institucional Universidad de Granadaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40168-020-00873-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 45 citations 45 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 360visibility views 360 download downloads 57 Powered bymore_vert Microbiome arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiRepositorio Institucional Universidad de GranadaArticle . 2025License: CC BYData sources: Repositorio Institucional Universidad de Granadaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40168-020-00873-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Spain, Finland, SpainPublisher:Springer Science and Business Media LLC Félix Picazo; Lijuan Ren; Juha Aalto; Juha Aalto; Qinglong L. Wu; Janne Soininen; Jizhong Zhou; Jizhong Zhou; Jizhong Zhou; Ji Shen; Emilio O. Casamayor; Annika Vilmi; Yongqin Liu; Jianjun Wang;AbstractBackgroundUnderstanding the large-scale patterns of microbial functional diversity is essential for anticipating climate change impacts on ecosystems worldwide. However, studies of functional biogeography remain scarce for microorganisms, especially in freshwater ecosystems. Here we study 15,289 functional genes of stream biofilm microbes along three elevational gradients in Norway, Spain and China.ResultsWe find that alpha diversity declines towards high elevations and assemblage composition shows increasing turnover with greater elevational distances. These elevational patterns are highly consistent across mountains, kingdoms and functional categories and exhibit the strongest trends in China due to its largest environmental gradients. Across mountains, functional gene assemblages differ in alpha diversity and composition between the mountains in Europe and Asia. Climate, such as mean temperature of the warmest quarter or mean precipitation of the coldest quarter, is the best predictor of alpha diversity and assemblage composition at both mountain and continental scales, with local non-climatic predictors gaining more importance at mountain scale. Under future climate, we project substantial variations in alpha diversity and assemblage composition across the Eurasian river network, primarily occurring in northern and central regions, respectively.ConclusionsWe conclude that climate controls microbial functional gene diversity in streams at large spatial scales; therefore, the underlying ecosystem processes are highly sensitive to climate variations, especially at high latitudes. This biogeographical framework for microbial functional diversity serves as a baseline to anticipate ecosystem responses and biogeochemical feedback to ongoing climate change.
Microbiome arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiRepositorio Institucional Universidad de GranadaArticle . 2025License: CC BYData sources: Repositorio Institucional Universidad de Granadaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40168-020-00873-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 45 citations 45 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 360visibility views 360 download downloads 57 Powered bymore_vert Microbiome arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2020 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiRepositorio Institucional Universidad de GranadaArticle . 2025License: CC BYData sources: Repositorio Institucional Universidad de Granadaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40168-020-00873-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:American Association for the Advancement of Science (AAAS) Mark E. Conrad; Shariff Osman; Todd Z. DeSantis; Jizhong Zhou; Jizhong Zhou; Alexander J. Probst; Eric Sonnenthal; Zhenmei Lu; Ye Deng; Thana R. Alusi; Hoi-Ying N. Holman; Marcin Zemla; Markus Bill; Chelsea Spier; William T. Stringfellow; William T. Stringfellow; Dominique C. Joyner; Jacob Bælum; Sharon Borglin; Eric A. Dubinsky; Romy Chakraborty; Julian L. Fortney; Patrik D'haeseleer; Terry C. Hazen; Krystle L. Chavarria; Joy D. Van Nostrand; Olivia U. Mason; Regina Lamendella; Yvette M. Piceno; Navjeet Singh; Gary L. Andersen; Manfred Auer; Janet K. Jansson; Lauren M. Tom;pmid: 20736401
Diving into Deep Water The Deepwater Horizon oil spill in the Gulf of Mexico was one of the largest oil spills on record. Its setting at the bottom of the sea floor posed an unanticipated risk as substantial amounts of hydrocarbons leaked into the deepwater column. Three separate cruises identified and sampled deep underwater hydrocarbon plumes that existed in May and June, 2010—before the well head was ultimately sealed. Camilli et al. (p. 201 ; published online 19 August) used an automated underwater vehicle to assess the dimensions of a stabilized, diffuse underwater plume of oil that was 22 miles long and estimated the daily quantity of oil released from the well, based on the concentration and dimensions of the plume. Hazen et al. (p. 204 ; published online 26 August) also observed an underwater plume at the same depth and found that hydrocarbon-degrading bacteria were enriched in the plume and were breaking down some parts of the oil. Finally, Valentine et al. (p. 208 ; published online 16 September) found that natural gas, including propane and ethane, were also present in hydrocarbon plumes. These gases were broken down quickly by bacteria, but primed the system for biodegradation of larger hydrocarbons, including those comprising the leaking crude oil. Differences were observed in dissolved oxygen levels in the plumes (a proxy for bacterial respiration), which may reflect differences in the location of sampling or the aging of the plumes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1195979&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 1K citations 1,035 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1195979&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:American Association for the Advancement of Science (AAAS) Mark E. Conrad; Shariff Osman; Todd Z. DeSantis; Jizhong Zhou; Jizhong Zhou; Alexander J. Probst; Eric Sonnenthal; Zhenmei Lu; Ye Deng; Thana R. Alusi; Hoi-Ying N. Holman; Marcin Zemla; Markus Bill; Chelsea Spier; William T. Stringfellow; William T. Stringfellow; Dominique C. Joyner; Jacob Bælum; Sharon Borglin; Eric A. Dubinsky; Romy Chakraborty; Julian L. Fortney; Patrik D'haeseleer; Terry C. Hazen; Krystle L. Chavarria; Joy D. Van Nostrand; Olivia U. Mason; Regina Lamendella; Yvette M. Piceno; Navjeet Singh; Gary L. Andersen; Manfred Auer; Janet K. Jansson; Lauren M. Tom;pmid: 20736401
Diving into Deep Water The Deepwater Horizon oil spill in the Gulf of Mexico was one of the largest oil spills on record. Its setting at the bottom of the sea floor posed an unanticipated risk as substantial amounts of hydrocarbons leaked into the deepwater column. Three separate cruises identified and sampled deep underwater hydrocarbon plumes that existed in May and June, 2010—before the well head was ultimately sealed. Camilli et al. (p. 201 ; published online 19 August) used an automated underwater vehicle to assess the dimensions of a stabilized, diffuse underwater plume of oil that was 22 miles long and estimated the daily quantity of oil released from the well, based on the concentration and dimensions of the plume. Hazen et al. (p. 204 ; published online 26 August) also observed an underwater plume at the same depth and found that hydrocarbon-degrading bacteria were enriched in the plume and were breaking down some parts of the oil. Finally, Valentine et al. (p. 208 ; published online 16 September) found that natural gas, including propane and ethane, were also present in hydrocarbon plumes. These gases were broken down quickly by bacteria, but primed the system for biodegradation of larger hydrocarbons, including those comprising the leaking crude oil. Differences were observed in dissolved oxygen levels in the plumes (a proxy for bacterial respiration), which may reflect differences in the location of sampling or the aging of the plumes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1195979&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 1K citations 1,035 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1195979&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United States, DenmarkPublisher:Wiley Catriona A. Macdonald; Jizhong Zhou; Jizhong Zhou; Jizhong Zhou; Brajesh K. Singh; Justin Kuczynski; Justin Kuczynski; Waleed Abu Al-Soud; Søren J. Sørensen; Denis J. Wright; Ye Deng; Lucinda Robinson; Rob Knight; Rob Knight; Michael J. Crawley;pmid: 24935069
SummaryHerbivory is an important modulator of plant biodiversity and productivity in grasslands, but our understanding of herbivore‐induced changes on below‐ground processes and communities is limited. Using a long‐term (17 years) experimental site, we evaluated impacts of rabbit and invertebrate grazers on some soil functions involved in carbon cycling, microbial diversity, structure and functional composition. Both rabbit and invertebrate grazing impacted soil functions and microbial community structure. All functional community measures (functions, biogeochemical cycling genes, network association between different taxa) were more strongly affected by invertebrate grazers than rabbits. Furthermore, our results suggest that exclusion of invertebrate grazers decreases both microbial biomass and abundance of genes associated with key biogeochemical cycles, and could thus have long‐term consequences for ecosystem functions. The mechanism behind these impacts are likely to be driven by both direct effects of grazing altering the pattern of nutrient inputs and by indirect effects through changes in plant species composition. However, we could not entirely discount that the pesticide used to exclude invertebrates may have affected some microbial community measures. Nevertheless, our work illustrates that human activity that affects grazing intensity may affect ecosystem functioning and sustainability, as regulated by multi‐trophic interactions between above‐ and below‐ground communities.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/7943s7z5Data sources: Bielefeld Academic Search Engine (BASE)Environmental MicrobiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1462-2920.12539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/7943s7z5Data sources: Bielefeld Academic Search Engine (BASE)Environmental MicrobiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1462-2920.12539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United States, DenmarkPublisher:Wiley Catriona A. Macdonald; Jizhong Zhou; Jizhong Zhou; Jizhong Zhou; Brajesh K. Singh; Justin Kuczynski; Justin Kuczynski; Waleed Abu Al-Soud; Søren J. Sørensen; Denis J. Wright; Ye Deng; Lucinda Robinson; Rob Knight; Rob Knight; Michael J. Crawley;pmid: 24935069
SummaryHerbivory is an important modulator of plant biodiversity and productivity in grasslands, but our understanding of herbivore‐induced changes on below‐ground processes and communities is limited. Using a long‐term (17 years) experimental site, we evaluated impacts of rabbit and invertebrate grazers on some soil functions involved in carbon cycling, microbial diversity, structure and functional composition. Both rabbit and invertebrate grazing impacted soil functions and microbial community structure. All functional community measures (functions, biogeochemical cycling genes, network association between different taxa) were more strongly affected by invertebrate grazers than rabbits. Furthermore, our results suggest that exclusion of invertebrate grazers decreases both microbial biomass and abundance of genes associated with key biogeochemical cycles, and could thus have long‐term consequences for ecosystem functions. The mechanism behind these impacts are likely to be driven by both direct effects of grazing altering the pattern of nutrient inputs and by indirect effects through changes in plant species composition. However, we could not entirely discount that the pesticide used to exclude invertebrates may have affected some microbial community measures. Nevertheless, our work illustrates that human activity that affects grazing intensity may affect ecosystem functioning and sustainability, as regulated by multi‐trophic interactions between above‐ and below‐ground communities.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/7943s7z5Data sources: Bielefeld Academic Search Engine (BASE)Environmental MicrobiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1462-2920.12539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/7943s7z5Data sources: Bielefeld Academic Search Engine (BASE)Environmental MicrobiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1462-2920.12539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu