
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Deep-Sea Oil Plume Enriches Indigenous Oil-Degrading Bacteria

pmid: 20736401
Diving into Deep Water The Deepwater Horizon oil spill in the Gulf of Mexico was one of the largest oil spills on record. Its setting at the bottom of the sea floor posed an unanticipated risk as substantial amounts of hydrocarbons leaked into the deepwater column. Three separate cruises identified and sampled deep underwater hydrocarbon plumes that existed in May and June, 2010—before the well head was ultimately sealed. Camilli et al. (p. 201 ; published online 19 August) used an automated underwater vehicle to assess the dimensions of a stabilized, diffuse underwater plume of oil that was 22 miles long and estimated the daily quantity of oil released from the well, based on the concentration and dimensions of the plume. Hazen et al. (p. 204 ; published online 26 August) also observed an underwater plume at the same depth and found that hydrocarbon-degrading bacteria were enriched in the plume and were breaking down some parts of the oil. Finally, Valentine et al. (p. 208 ; published online 16 September) found that natural gas, including propane and ethane, were also present in hydrocarbon plumes. These gases were broken down quickly by bacteria, but primed the system for biodegradation of larger hydrocarbons, including those comprising the leaking crude oil. Differences were observed in dissolved oxygen levels in the plumes (a proxy for bacterial respiration), which may reflect differences in the location of sampling or the aging of the plumes.
- Pacific University Oregon United States
- Oklahoma City University United States
- Pacific University Oregon United States
- Lawrence Berkeley National Laboratory United States
- Lawrence Berkeley National Laboratory United States
Oceanospirillaceae, Fatty Acids, Molecular Sequence Data, Chemie, Colony Count, Microbial, Genes, rRNA, Hydrocarbons, Biodegradation, Environmental, Petroleum, Genes, Bacterial, Seawater, Biomass, Environmental Pollution, Gammaproteobacteria, Phospholipids, Phylogeny
Oceanospirillaceae, Fatty Acids, Molecular Sequence Data, Chemie, Colony Count, Microbial, Genes, rRNA, Hydrocarbons, Biodegradation, Environmental, Petroleum, Genes, Bacterial, Seawater, Biomass, Environmental Pollution, Gammaproteobacteria, Phospholipids, Phylogeny
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1K popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 0.1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
