- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Wiley Luisa Fontoura; Osmar J. Luiz; Kyle J. A. Zawada; Kyle J. A. Zawada; Andrew H. Baird; Maria Dornelas; Joseph Maina; Mariana Álvarez-Noriega; Joshua S. Madin; Rachael M. Woods; Stephanie D’agata; Stephanie D’agata; Nader Boutros; Elizabeth M. P. Madin; Damaris Torres-Pulliza; Oscar Pizarro;doi: 10.1111/gcb.14911
pmid: 31697006
AbstractRapid intensification of environmental disturbances has sparked widespread decline and compositional shifts in foundation species in ecosystems worldwide. Now, an emergent challenge is to understand the consequences of shifts and losses in such habitat‐forming species for associated communities and ecosystem processes. Recently, consecutive coral bleaching events shifted the morphological makeup of habitat‐forming coral assemblages on the Great Barrier Reef (GBR). Considering the disparity of coral morphological growth forms in shelter provision for reef fishes, we investigated how shifts in the morphological structure of coral assemblages affect the abundance of juvenile and adult reef fishes. We used a temporal dataset from shallow reefs in the northern GBR to estimate coral convexity (a fine‐scale quantitative morphological trait) and two widely used coral habitat descriptors (coral cover and reef rugosity) for disentangling the effects of coral morphology on reef fish assemblages. Changes in coral convexity, rather than live coral cover or reef rugosity, disproportionately affected juvenile reef fishes when compared to adults, and explained more than 20% of juvenile decline. The magnitude of this effect varied by fish body size with juveniles of small‐bodied species showing higher vulnerability to changes in coral morphology. Our findings suggest that continued large‐scale shifts in the relative abundance of morphological groups within coral assemblages are likely to affect population replenishment and dynamics of future reef fish communities. The different responses of juvenile and adult fishes according to habitat descriptors indicate that focusing on coarse‐scale metrics alone may mask fine‐scale ecological responses that are key to understand ecosystem functioning and resilience. Nonetheless, quantifying coral morphological traits may contribute to forecasting the structure of reef fish communities on novel reef ecosystems shaped by climate change.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Wiley Luisa Fontoura; Osmar J. Luiz; Kyle J. A. Zawada; Kyle J. A. Zawada; Andrew H. Baird; Maria Dornelas; Joseph Maina; Mariana Álvarez-Noriega; Joshua S. Madin; Rachael M. Woods; Stephanie D’agata; Stephanie D’agata; Nader Boutros; Elizabeth M. P. Madin; Damaris Torres-Pulliza; Oscar Pizarro;doi: 10.1111/gcb.14911
pmid: 31697006
AbstractRapid intensification of environmental disturbances has sparked widespread decline and compositional shifts in foundation species in ecosystems worldwide. Now, an emergent challenge is to understand the consequences of shifts and losses in such habitat‐forming species for associated communities and ecosystem processes. Recently, consecutive coral bleaching events shifted the morphological makeup of habitat‐forming coral assemblages on the Great Barrier Reef (GBR). Considering the disparity of coral morphological growth forms in shelter provision for reef fishes, we investigated how shifts in the morphological structure of coral assemblages affect the abundance of juvenile and adult reef fishes. We used a temporal dataset from shallow reefs in the northern GBR to estimate coral convexity (a fine‐scale quantitative morphological trait) and two widely used coral habitat descriptors (coral cover and reef rugosity) for disentangling the effects of coral morphology on reef fish assemblages. Changes in coral convexity, rather than live coral cover or reef rugosity, disproportionately affected juvenile reef fishes when compared to adults, and explained more than 20% of juvenile decline. The magnitude of this effect varied by fish body size with juveniles of small‐bodied species showing higher vulnerability to changes in coral morphology. Our findings suggest that continued large‐scale shifts in the relative abundance of morphological groups within coral assemblages are likely to affect population replenishment and dynamics of future reef fish communities. The different responses of juvenile and adult fishes according to habitat descriptors indicate that focusing on coarse‐scale metrics alone may mask fine‐scale ecological responses that are key to understand ecosystem functioning and resilience. Nonetheless, quantifying coral morphological traits may contribute to forecasting the structure of reef fish communities on novel reef ecosystems shaped by climate change.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 United Kingdom, United States, United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | RCN: Synthesizing Deep Ti..., NSF | Dimensions: Collaborative..., EC | BIOTIME +1 projectsNSF| RCN: Synthesizing Deep Time and Recent Community Ecology ,NSF| Dimensions: Collaborative: The climate cascade: functional and evolutionary consequences of climatic change on species, trait, and genetic diversity in a temperate ant community ,EC| BIOTIME ,NSF| Collaborative Research: Forecasting and forestalling tipping points in an aquatic ecosystemMagurran, Anne; Dornelas, Maria; Moyes, Faye Helen; Gotelli, Nicholas J; McGill, Brian;AbstractThe role human activities play in reshaping biodiversity is increasingly apparent in terrestrial ecosystems. However, the responses of entire marine assemblages are not well-understood, in part, because few monitoring programs incorporate both spatial and temporal replication. Here, we analyse an exceptionally comprehensive 29-year time series of North Atlantic groundfish assemblages monitored over 5° latitude to the west of Scotland. These fish assemblages show no systematic change in species richness through time, but steady change in species composition, leading to an increase in spatial homogenization: the species identity of colder northern localities increasingly resembles that of warmer southern localities. This biotic homogenization mirrors the spatial pattern of unevenly rising ocean temperatures over the same time period suggesting that climate change is primarily responsible for the spatial homogenization we observe. In this and other ecosystems, apparent constancy in species richness may mask major changes in species composition driven by anthropogenic change.
The University of Ve... arrow_drop_down The University of Vermont: ScholarWorks @ UVMArticle . 2015License: CC BYFull-Text: https://scholarworks.uvm.edu/casfac/58Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2015License: CC BYFull-Text: https://hdl.handle.net/10023/7534Data sources: Bielefeld Academic Search Engine (BASE)St Andrews Research RepositoryArticle . 2015 . Peer-reviewedData sources: St Andrews Research Repositoryhttp://dx.doi.org/10.1038/ncom...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms9405&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 187 citations 187 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The University of Ve... arrow_drop_down The University of Vermont: ScholarWorks @ UVMArticle . 2015License: CC BYFull-Text: https://scholarworks.uvm.edu/casfac/58Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2015License: CC BYFull-Text: https://hdl.handle.net/10023/7534Data sources: Bielefeld Academic Search Engine (BASE)St Andrews Research RepositoryArticle . 2015 . Peer-reviewedData sources: St Andrews Research Repositoryhttp://dx.doi.org/10.1038/ncom...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms9405&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 United Kingdom, United States, United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | RCN: Synthesizing Deep Ti..., NSF | Dimensions: Collaborative..., EC | BIOTIME +1 projectsNSF| RCN: Synthesizing Deep Time and Recent Community Ecology ,NSF| Dimensions: Collaborative: The climate cascade: functional and evolutionary consequences of climatic change on species, trait, and genetic diversity in a temperate ant community ,EC| BIOTIME ,NSF| Collaborative Research: Forecasting and forestalling tipping points in an aquatic ecosystemMagurran, Anne; Dornelas, Maria; Moyes, Faye Helen; Gotelli, Nicholas J; McGill, Brian;AbstractThe role human activities play in reshaping biodiversity is increasingly apparent in terrestrial ecosystems. However, the responses of entire marine assemblages are not well-understood, in part, because few monitoring programs incorporate both spatial and temporal replication. Here, we analyse an exceptionally comprehensive 29-year time series of North Atlantic groundfish assemblages monitored over 5° latitude to the west of Scotland. These fish assemblages show no systematic change in species richness through time, but steady change in species composition, leading to an increase in spatial homogenization: the species identity of colder northern localities increasingly resembles that of warmer southern localities. This biotic homogenization mirrors the spatial pattern of unevenly rising ocean temperatures over the same time period suggesting that climate change is primarily responsible for the spatial homogenization we observe. In this and other ecosystems, apparent constancy in species richness may mask major changes in species composition driven by anthropogenic change.
The University of Ve... arrow_drop_down The University of Vermont: ScholarWorks @ UVMArticle . 2015License: CC BYFull-Text: https://scholarworks.uvm.edu/casfac/58Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2015License: CC BYFull-Text: https://hdl.handle.net/10023/7534Data sources: Bielefeld Academic Search Engine (BASE)St Andrews Research RepositoryArticle . 2015 . Peer-reviewedData sources: St Andrews Research Repositoryhttp://dx.doi.org/10.1038/ncom...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms9405&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 187 citations 187 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The University of Ve... arrow_drop_down The University of Vermont: ScholarWorks @ UVMArticle . 2015License: CC BYFull-Text: https://scholarworks.uvm.edu/casfac/58Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2015License: CC BYFull-Text: https://hdl.handle.net/10023/7534Data sources: Bielefeld Academic Search Engine (BASE)St Andrews Research RepositoryArticle . 2015 . Peer-reviewedData sources: St Andrews Research Repositoryhttp://dx.doi.org/10.1038/ncom...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms9405&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:American Association for the Advancement of Science (AAAS) Funded by:EC | TraChangeEC| TraChangeMartins, Inês S.; Schrodt, Franziska; Blowes, Shane A.; Bates, Amanda E.; Bjorkman, Anne D.; Brambilla, Viviana; Carvajal-Quintero, Juan; Chow, Cher F. Y.; Daskalova, Gergana N.; Edwards, Kyle; Eisenhauer, Nico; Field, Richard; Fontrodona-Eslava, Ada; Henn, Jonathan J.; van Klink, Roel; Madin, Joshua S.; Magurran, Anne E.; McWilliam, Michael; Moyes, Faye; Pugh, Brittany; Sagouis, Alban; Trindade-Santos, Isaac; McGill, Brian J.; Chase, Jonathan M.; Dornelas, Maria;pmid: 37676959
Biotic responses to global change include directional shifts in organismal traits. Body size, an integrative trait that determines demographic rates and ecosystem functions, is thought to be shrinking in the Anthropocene. Here, we assessed the prevalence of body size change in six taxon groups across 5025 assemblage time series spanning 1960 to 2020. Using the Price equation to partition this change into within-species body size versus compositional changes, we detected prevailing decreases in body size through time driven primarily by fish, with more variable patterns in other taxa. We found that change in assemblage composition contributes more to body size changes than within-species trends, but both components show substantial variation in magnitude and direction. The biomass of assemblages remains quite stable as decreases in body size trade off with increases in abundance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adg6006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adg6006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:American Association for the Advancement of Science (AAAS) Funded by:EC | TraChangeEC| TraChangeMartins, Inês S.; Schrodt, Franziska; Blowes, Shane A.; Bates, Amanda E.; Bjorkman, Anne D.; Brambilla, Viviana; Carvajal-Quintero, Juan; Chow, Cher F. Y.; Daskalova, Gergana N.; Edwards, Kyle; Eisenhauer, Nico; Field, Richard; Fontrodona-Eslava, Ada; Henn, Jonathan J.; van Klink, Roel; Madin, Joshua S.; Magurran, Anne E.; McWilliam, Michael; Moyes, Faye; Pugh, Brittany; Sagouis, Alban; Trindade-Santos, Isaac; McGill, Brian J.; Chase, Jonathan M.; Dornelas, Maria;pmid: 37676959
Biotic responses to global change include directional shifts in organismal traits. Body size, an integrative trait that determines demographic rates and ecosystem functions, is thought to be shrinking in the Anthropocene. Here, we assessed the prevalence of body size change in six taxon groups across 5025 assemblage time series spanning 1960 to 2020. Using the Price equation to partition this change into within-species body size versus compositional changes, we detected prevailing decreases in body size through time driven primarily by fish, with more variable patterns in other taxa. We found that change in assemblage composition contributes more to body size changes than within-species trends, but both components show substantial variation in magnitude and direction. The biomass of assemblages remains quite stable as decreases in body size trade off with increases in abundance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adg6006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adg6006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Australia, United Kingdom, United KingdomPublisher:The Royal Society Authors: Maria Dornelas; Joshua S. Madin; Andrew H. Baird; Sean R. Connolly;Predicting demographic rates is a critical part of forecasting the future of ecosystems under global change. Here, we test if growth rates can be predicted from morphological traits for a highly diverse group of colonial symbiotic organisms: scleractinian corals. We ask whether growth is isometric or allometric among corals, and whether most variation in coral growth rates occurs at the level of the species or morphological group. We estimate growth as change in planar area for 11 species, across five morphological groups and over 5 years. We show that coral growth rates are best predicted from colony size and morphology rather than species. Coral size follows a power scaling law with a constant exponent of 0.91. Despite being colonial organisms, corals have consistent allometric scaling in growth. This consistency simplifies the task of projecting community responses to disturbance and climate change.
Proceedings of the R... arrow_drop_down St Andrews Research RepositoryArticle . 2017 . Peer-reviewedData sources: St Andrews Research RepositoryProceedings of the Royal Society B Biological SciencesArticle . 2017 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2018Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphJames Cook University, Australia: ResearchOnline@JCUArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2017.0053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down St Andrews Research RepositoryArticle . 2017 . Peer-reviewedData sources: St Andrews Research RepositoryProceedings of the Royal Society B Biological SciencesArticle . 2017 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2018Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphJames Cook University, Australia: ResearchOnline@JCUArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2017.0053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Australia, United Kingdom, United KingdomPublisher:The Royal Society Authors: Maria Dornelas; Joshua S. Madin; Andrew H. Baird; Sean R. Connolly;Predicting demographic rates is a critical part of forecasting the future of ecosystems under global change. Here, we test if growth rates can be predicted from morphological traits for a highly diverse group of colonial symbiotic organisms: scleractinian corals. We ask whether growth is isometric or allometric among corals, and whether most variation in coral growth rates occurs at the level of the species or morphological group. We estimate growth as change in planar area for 11 species, across five morphological groups and over 5 years. We show that coral growth rates are best predicted from colony size and morphology rather than species. Coral size follows a power scaling law with a constant exponent of 0.91. Despite being colonial organisms, corals have consistent allometric scaling in growth. This consistency simplifies the task of projecting community responses to disturbance and climate change.
Proceedings of the R... arrow_drop_down St Andrews Research RepositoryArticle . 2017 . Peer-reviewedData sources: St Andrews Research RepositoryProceedings of the Royal Society B Biological SciencesArticle . 2017 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2018Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphJames Cook University, Australia: ResearchOnline@JCUArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2017.0053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down St Andrews Research RepositoryArticle . 2017 . Peer-reviewedData sources: St Andrews Research RepositoryProceedings of the Royal Society B Biological SciencesArticle . 2017 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2018Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphJames Cook University, Australia: ResearchOnline@JCUArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2017.0053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type , Preprint 2019 United Kingdom, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:UKRI | SPITFIRE - the Southampto..., WT | Institutional Strategic S..., EC | BioCHANGE +1 projectsUKRI| SPITFIRE - the Southampton Partnership for Innovative Training of Future Investigators Researching the Environment ,WT| Institutional Strategic Support Fund Phase2 FY2014/16 ,EC| BioCHANGE ,DFG| German Centre for Integrative Biodiversity Research - iDivAmanda E. Bates; Maria Dornelas; Shane A. Blowes; Anne E. Magurran; Sarah R. Supp; Aafke M. Schipper; Aafke M. Schipper; Conor Waldock; Conor Waldock; Laura H. Antão; Laura H. Antão;AbstractClimate change is reshaping global biodiversity as species respond to changing temperatures. However, the net effects of climate-driven species redistribution on local assemblage diversity remain unknown. Here, we relate trends in species richness and abundance from 21,500 terrestrial and marine assemblage time series across temperate regions (23.5-60.0°) to changes in air or sea surface temperature. We find a strong coupling between biodiversity and temperature changes in the marine realm, which is conditional on the baseline climate. We detect increases in species richness with increasing temperature that is twice as pronounced in warmer locations, while abundance declines with warming in the warmest marine locations. In contrast, we did not detect systematic temperature-related richness or abundance trends on land, despite a greater magnitude of warming. We also found no evidence for an interaction between biodiversity change and latitude, further emphasizing the importance of baseline climate in structuring assemblages. As the world is committed to further warming, significant challenges remain in maintaining local biodiversity amongst the non-uniform inflow and outflow of “climate migrants” across distinct regions, especially in the ocean.
e-Prints Soton arrow_drop_down Nature Ecology & EvolutionArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-020-1185-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 191 citations 191 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down Nature Ecology & EvolutionArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-020-1185-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type , Preprint 2019 United Kingdom, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:UKRI | SPITFIRE - the Southampto..., WT | Institutional Strategic S..., EC | BioCHANGE +1 projectsUKRI| SPITFIRE - the Southampton Partnership for Innovative Training of Future Investigators Researching the Environment ,WT| Institutional Strategic Support Fund Phase2 FY2014/16 ,EC| BioCHANGE ,DFG| German Centre for Integrative Biodiversity Research - iDivAmanda E. Bates; Maria Dornelas; Shane A. Blowes; Anne E. Magurran; Sarah R. Supp; Aafke M. Schipper; Aafke M. Schipper; Conor Waldock; Conor Waldock; Laura H. Antão; Laura H. Antão;AbstractClimate change is reshaping global biodiversity as species respond to changing temperatures. However, the net effects of climate-driven species redistribution on local assemblage diversity remain unknown. Here, we relate trends in species richness and abundance from 21,500 terrestrial and marine assemblage time series across temperate regions (23.5-60.0°) to changes in air or sea surface temperature. We find a strong coupling between biodiversity and temperature changes in the marine realm, which is conditional on the baseline climate. We detect increases in species richness with increasing temperature that is twice as pronounced in warmer locations, while abundance declines with warming in the warmest marine locations. In contrast, we did not detect systematic temperature-related richness or abundance trends on land, despite a greater magnitude of warming. We also found no evidence for an interaction between biodiversity change and latitude, further emphasizing the importance of baseline climate in structuring assemblages. As the world is committed to further warming, significant challenges remain in maintaining local biodiversity amongst the non-uniform inflow and outflow of “climate migrants” across distinct regions, especially in the ocean.
e-Prints Soton arrow_drop_down Nature Ecology & EvolutionArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-020-1185-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 191 citations 191 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down Nature Ecology & EvolutionArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-020-1185-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 France, Spain, United KingdomPublisher:Wiley Funded by:FCT | CIIMAR, FCT | CIIMAR, EC | MERCESFCT| CIIMAR ,FCT| CIIMAR ,EC| MERCESDaniel Gómez‐Gras; Cristina Linares; Maria Dornelas; Joshua S. Madin; Viviana Brambilla; Jean‐Baptiste Ledoux; Paula López‐Sendino; Nathaniel Bensoussan; Joaquim Garrabou;AbstractQuantifying changes in functional community structure driven by disturbance is critical to anticipate potential shifts in ecosystem functioning. However, how marine heatwaves (MHWs) affect the functional structure of temperate coral‐dominated communities is poorly understood. Here, we used five long‐term (> 10 years) records of Mediterranean coralligenous assemblages in a multi‐taxa, trait‐based analysis to investigate MHW‐driven changes in functional structure. We show that, despite stability in functional richness (i.e. the range of species functional traits), MHW‐impacted assemblages experienced long‐term directional changes in functional identity (i.e. their dominant trait values). Declining traits included large sizes, long lifespans, arborescent morphologies, filter‐feeding strategies or calcified skeletons. These traits, which were mostly supported by few sensitive and irreplaceable species from a single functional group (habitat‐forming octocorals), disproportionally influence certain ecosystem functions (e.g. 3D‐habitat provision). Hence, MHWs are leading to assemblages that are deficient in key functional traits, with likely consequences for the ecosystem functioning.
University of St And... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2021License: CC BY NCFull-Text: https://hdl.handle.net/10023/21643Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 62visibility views 62 download downloads 227 Powered bymore_vert University of St And... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2021License: CC BY NCFull-Text: https://hdl.handle.net/10023/21643Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 France, Spain, United KingdomPublisher:Wiley Funded by:FCT | CIIMAR, FCT | CIIMAR, EC | MERCESFCT| CIIMAR ,FCT| CIIMAR ,EC| MERCESDaniel Gómez‐Gras; Cristina Linares; Maria Dornelas; Joshua S. Madin; Viviana Brambilla; Jean‐Baptiste Ledoux; Paula López‐Sendino; Nathaniel Bensoussan; Joaquim Garrabou;AbstractQuantifying changes in functional community structure driven by disturbance is critical to anticipate potential shifts in ecosystem functioning. However, how marine heatwaves (MHWs) affect the functional structure of temperate coral‐dominated communities is poorly understood. Here, we used five long‐term (> 10 years) records of Mediterranean coralligenous assemblages in a multi‐taxa, trait‐based analysis to investigate MHW‐driven changes in functional structure. We show that, despite stability in functional richness (i.e. the range of species functional traits), MHW‐impacted assemblages experienced long‐term directional changes in functional identity (i.e. their dominant trait values). Declining traits included large sizes, long lifespans, arborescent morphologies, filter‐feeding strategies or calcified skeletons. These traits, which were mostly supported by few sensitive and irreplaceable species from a single functional group (habitat‐forming octocorals), disproportionally influence certain ecosystem functions (e.g. 3D‐habitat provision). Hence, MHWs are leading to assemblages that are deficient in key functional traits, with likely consequences for the ecosystem functioning.
University of St And... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2021License: CC BY NCFull-Text: https://hdl.handle.net/10023/21643Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 62visibility views 62 download downloads 227 Powered bymore_vert University of St And... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2021License: CC BY NCFull-Text: https://hdl.handle.net/10023/21643Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 Portugal, United Kingdom, United States, Australia, United States, United KingdomPublisher:The Royal Society Funded by:EC | BIOTIMEEC| BIOTIMELise Øvreås; Kevin J. Gaston; Anne E. Magurran; Brian J. McGill; Maria Dornelas; A. C. Studeny; A. C. Studeny; Robert K. Colwell; Mark Vellend; Nicolas J. Gotelli; Thomas P. Curtis; Peter J. Mumby; Hélène Morlon; Matthew A. Kosnik; Robin L. Chazdon; Anne Chao; Stephen T. Buckland; Jenny L. McCune;Growing concern about biodiversity loss underscores the need to quantify and understand temporal change. Here, we review the opportunities presented by biodiversity time series, and address three related issues: (i) recognizing the characteristics of temporal data; (ii) selecting appropriate statistical procedures for analysing temporal data; and (iii) inferring and forecasting biodiversity change. With regard to the first issue, we draw attention to defining characteristics of biodiversity time series—lack of physical boundaries, uni-dimensionality, autocorrelation and directionality—that inform the choice of analytic methods. Second, we explore methods of quantifying change in biodiversity at different timescales, noting that autocorrelation can be viewed as a feature that sheds light on the underlying structure of temporal change. Finally, we address the transition from inferring to forecasting biodiversity change, highlighting potential pitfalls associated with phase-shifts and novel conditions.
The University of Ve... arrow_drop_down The University of Vermont: ScholarWorks @ UVMArticle . 2013License: CC BYFull-Text: https://scholarworks.uvm.edu/casfac/102Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2012License: CC BYFull-Text: https://hdl.handle.net/10023/3284Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallSt Andrews Research RepositoryArticle . 2012 . Peer-reviewedData sources: St Andrews Research RepositoryUSC Research Bank research dataArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticle . 2013 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2013Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphRepositório Institucional da Universidade de AveiroArticle . 2018Data sources: Repositório Institucional da Universidade de Aveirohttp://dx.doi.org/10.1098/rspb...Article . Peer-reviewedData sources: European Union Open Data PortalThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2012.1931&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 203 citations 203 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The University of Ve... arrow_drop_down The University of Vermont: ScholarWorks @ UVMArticle . 2013License: CC BYFull-Text: https://scholarworks.uvm.edu/casfac/102Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2012License: CC BYFull-Text: https://hdl.handle.net/10023/3284Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallSt Andrews Research RepositoryArticle . 2012 . Peer-reviewedData sources: St Andrews Research RepositoryUSC Research Bank research dataArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticle . 2013 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2013Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphRepositório Institucional da Universidade de AveiroArticle . 2018Data sources: Repositório Institucional da Universidade de Aveirohttp://dx.doi.org/10.1098/rspb...Article . Peer-reviewedData sources: European Union Open Data PortalThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2012.1931&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 Portugal, United Kingdom, United States, Australia, United States, United KingdomPublisher:The Royal Society Funded by:EC | BIOTIMEEC| BIOTIMELise Øvreås; Kevin J. Gaston; Anne E. Magurran; Brian J. McGill; Maria Dornelas; A. C. Studeny; A. C. Studeny; Robert K. Colwell; Mark Vellend; Nicolas J. Gotelli; Thomas P. Curtis; Peter J. Mumby; Hélène Morlon; Matthew A. Kosnik; Robin L. Chazdon; Anne Chao; Stephen T. Buckland; Jenny L. McCune;Growing concern about biodiversity loss underscores the need to quantify and understand temporal change. Here, we review the opportunities presented by biodiversity time series, and address three related issues: (i) recognizing the characteristics of temporal data; (ii) selecting appropriate statistical procedures for analysing temporal data; and (iii) inferring and forecasting biodiversity change. With regard to the first issue, we draw attention to defining characteristics of biodiversity time series—lack of physical boundaries, uni-dimensionality, autocorrelation and directionality—that inform the choice of analytic methods. Second, we explore methods of quantifying change in biodiversity at different timescales, noting that autocorrelation can be viewed as a feature that sheds light on the underlying structure of temporal change. Finally, we address the transition from inferring to forecasting biodiversity change, highlighting potential pitfalls associated with phase-shifts and novel conditions.
The University of Ve... arrow_drop_down The University of Vermont: ScholarWorks @ UVMArticle . 2013License: CC BYFull-Text: https://scholarworks.uvm.edu/casfac/102Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2012License: CC BYFull-Text: https://hdl.handle.net/10023/3284Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallSt Andrews Research RepositoryArticle . 2012 . Peer-reviewedData sources: St Andrews Research RepositoryUSC Research Bank research dataArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticle . 2013 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2013Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphRepositório Institucional da Universidade de AveiroArticle . 2018Data sources: Repositório Institucional da Universidade de Aveirohttp://dx.doi.org/10.1098/rspb...Article . Peer-reviewedData sources: European Union Open Data PortalThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2012.1931&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 203 citations 203 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The University of Ve... arrow_drop_down The University of Vermont: ScholarWorks @ UVMArticle . 2013License: CC BYFull-Text: https://scholarworks.uvm.edu/casfac/102Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2012License: CC BYFull-Text: https://hdl.handle.net/10023/3284Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallSt Andrews Research RepositoryArticle . 2012 . Peer-reviewedData sources: St Andrews Research RepositoryUSC Research Bank research dataArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticle . 2013 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2013Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphRepositório Institucional da Universidade de AveiroArticle . 2018Data sources: Repositório Institucional da Universidade de Aveirohttp://dx.doi.org/10.1098/rspb...Article . Peer-reviewedData sources: European Union Open Data PortalThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2012.1931&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Portugal, AustraliaPublisher:Wiley Funded by:EC | BIOTIMEEC| BIOTIMEAuthors: Dornelas, Maria; Phillip, Dawn A.T.; Magurran, Anne E.;handle: 10773/24738
Aim: To test the hypothesis that communities with higher diversity have more predictable properties by examining patterns of community structure along a species richness gradient. Location: Trinidad and Tobago (11°00 N, 61°00 W), on the South American continental shelf, opposite the Orinoco River delta, north-east Venezuela. Methods: We used quantile regressions to investigate how three total abundance, absolute and relative dominance measures – numerical abundance, biomass and energy use, respectively – change across a species richness gradient. We investigated which allocation rule best mimics community assembly in this species richness gradient by examining the abundance of the dominant species and comparing it with predictions of niche apportionment models. Results: All measures of total abundance increase on average across the gradient, but the upper limit remains constant. On average, absolute dominance is constant, but the distance between the upper and lower limits decreases along the gradient. Relative dominance decreases with species richness. Observed dominance patterns are best described by Tokeshi's random fraction model. Main conclusions: Our results show that both total abundance and absolute dominance become increasingly variable as biodiversity decreases. Consequently, our study suggests that ecosystem properties are less predictable when biodiversity is lower.
Global Ecology and B... arrow_drop_down Global Ecology and BiogeographyArticle . 2011 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefRepositório Institucional da Universidade de AveiroArticle . 2018Data sources: Repositório Institucional da Universidade de Aveirohttp://dx.doi.org/10.1111/j.14...Article . Peer-reviewedData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1466-8238.2010.00640.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Global Ecology and B... arrow_drop_down Global Ecology and BiogeographyArticle . 2011 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefRepositório Institucional da Universidade de AveiroArticle . 2018Data sources: Repositório Institucional da Universidade de Aveirohttp://dx.doi.org/10.1111/j.14...Article . Peer-reviewedData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1466-8238.2010.00640.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Portugal, AustraliaPublisher:Wiley Funded by:EC | BIOTIMEEC| BIOTIMEAuthors: Dornelas, Maria; Phillip, Dawn A.T.; Magurran, Anne E.;handle: 10773/24738
Aim: To test the hypothesis that communities with higher diversity have more predictable properties by examining patterns of community structure along a species richness gradient. Location: Trinidad and Tobago (11°00 N, 61°00 W), on the South American continental shelf, opposite the Orinoco River delta, north-east Venezuela. Methods: We used quantile regressions to investigate how three total abundance, absolute and relative dominance measures – numerical abundance, biomass and energy use, respectively – change across a species richness gradient. We investigated which allocation rule best mimics community assembly in this species richness gradient by examining the abundance of the dominant species and comparing it with predictions of niche apportionment models. Results: All measures of total abundance increase on average across the gradient, but the upper limit remains constant. On average, absolute dominance is constant, but the distance between the upper and lower limits decreases along the gradient. Relative dominance decreases with species richness. Observed dominance patterns are best described by Tokeshi's random fraction model. Main conclusions: Our results show that both total abundance and absolute dominance become increasingly variable as biodiversity decreases. Consequently, our study suggests that ecosystem properties are less predictable when biodiversity is lower.
Global Ecology and B... arrow_drop_down Global Ecology and BiogeographyArticle . 2011 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefRepositório Institucional da Universidade de AveiroArticle . 2018Data sources: Repositório Institucional da Universidade de Aveirohttp://dx.doi.org/10.1111/j.14...Article . Peer-reviewedData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1466-8238.2010.00640.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Global Ecology and B... arrow_drop_down Global Ecology and BiogeographyArticle . 2011 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefRepositório Institucional da Universidade de AveiroArticle . 2018Data sources: Repositório Institucional da Universidade de Aveirohttp://dx.doi.org/10.1111/j.14...Article . Peer-reviewedData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1466-8238.2010.00640.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Funded by:EC | BIOTIMEEC| BIOTIMEAuthors: Brian J. McGill; Maria Dornelas; Nicholas J. Gotelli; Anne E. Magurran;pmid: 25542312
Humans are transforming the biosphere in unprecedented ways, raising the important question of how these impacts are changing biodiversity. Here we argue that our understanding of biodiversity trends in the Anthropocene, and our ability to protect the natural world, is impeded by a failure to consider different types of biodiversity measured at different spatial scales. We propose that ecologists should recognize and assess 15 distinct categories of biodiversity trend. We summarize what is known about each of these 15 categories, identify major gaps in our current knowledge, and recommend the next steps required for better understanding of trends in biodiversity.
Trends in Ecology & ... arrow_drop_down Trends in Ecology & EvolutionArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.tr...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2014.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu539 citations 539 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Trends in Ecology & ... arrow_drop_down Trends in Ecology & EvolutionArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.tr...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2014.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Funded by:EC | BIOTIMEEC| BIOTIMEAuthors: Brian J. McGill; Maria Dornelas; Nicholas J. Gotelli; Anne E. Magurran;pmid: 25542312
Humans are transforming the biosphere in unprecedented ways, raising the important question of how these impacts are changing biodiversity. Here we argue that our understanding of biodiversity trends in the Anthropocene, and our ability to protect the natural world, is impeded by a failure to consider different types of biodiversity measured at different spatial scales. We propose that ecologists should recognize and assess 15 distinct categories of biodiversity trend. We summarize what is known about each of these 15 categories, identify major gaps in our current knowledge, and recommend the next steps required for better understanding of trends in biodiversity.
Trends in Ecology & ... arrow_drop_down Trends in Ecology & EvolutionArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.tr...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2014.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu539 citations 539 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Trends in Ecology & ... arrow_drop_down Trends in Ecology & EvolutionArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.tr...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2014.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:Wiley Vicki R. Dale; Mark Bolton; Maria Dornelas; Anne E. Magurran; Roy Dennis; Roger Broad; Nick J. Riddiford; Paul V. Harvey; Roger Riddington; Deryk N. Shaw; David Parnaby; Jane M. Reid;AbstractSpecies exploiting seasonal environments must alter timings of key life‐history events in response to large‐scale climatic changes in order to maintain trophic synchrony with required resources. Yet, substantial among‐species variation in long‐term phenological changes has been observed. Advancing from simply describing such variation towards predicting future phenological responses requires studies that rigorously quantify and explain variation in the direction and magnitude of changing timings across diverse species in relation to key ecological and life‐history variables. Accordingly, we fitted multi‐quantile regressions to 59 years of multi‐species data on spring and autumn bird migration timings through northern Scotland. We demonstrate substantial variation in changes in timings among 72 species, and tested whether such variation can be explained by species ecology, life‐history and changes in local abundance. Consistent with predictions, species that advanced their migration timing in one or both seasons had more seasonally restricted diet types, fewer suitable breeding habitat types, shorter generation lengths and capability to produce multiple offspring broods per year. In contrast, species with less seasonally restricted diet types and that produce single annual offspring broods, showed no change. Meanwhile, contrary to prediction, long‐distance and short‐distance migrants advanced migration timings similarly. Changes in migration timing also varied with changes in local migratory abundance, such that species with increasing seasonal abundance apparently altered their migration timing, whilst species with decreasing abundance did not. Such patterns broadly concur with expectation given adaptive changes in migration timing. However, we demonstrate that similar patterns can be generated by numerical sampling given changing local abundances. Any apparent phenology‐abundance relationships should, therefore, be carefully validated and interpreted. Overall, our results show that migrant bird species with differing ecologies and life‐histories showed systematically differing phenological changes over six decades contextualised by large‐scale environmental changes, potentially facilitating future predictions and altering temporal dynamics of seasonal species co‐occurrences.
University of St And... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2024License: CC BYFull-Text: https://hdl.handle.net/10023/30277Data sources: Bielefeld Academic Search Engine (BASE)St Andrews Research RepositoryArticle . 2024 . Peer-reviewedData sources: St Andrews Research RepositoryAberdeen University Research Archive (AURA)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17400&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of St And... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2024License: CC BYFull-Text: https://hdl.handle.net/10023/30277Data sources: Bielefeld Academic Search Engine (BASE)St Andrews Research RepositoryArticle . 2024 . Peer-reviewedData sources: St Andrews Research RepositoryAberdeen University Research Archive (AURA)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17400&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:Wiley Vicki R. Dale; Mark Bolton; Maria Dornelas; Anne E. Magurran; Roy Dennis; Roger Broad; Nick J. Riddiford; Paul V. Harvey; Roger Riddington; Deryk N. Shaw; David Parnaby; Jane M. Reid;AbstractSpecies exploiting seasonal environments must alter timings of key life‐history events in response to large‐scale climatic changes in order to maintain trophic synchrony with required resources. Yet, substantial among‐species variation in long‐term phenological changes has been observed. Advancing from simply describing such variation towards predicting future phenological responses requires studies that rigorously quantify and explain variation in the direction and magnitude of changing timings across diverse species in relation to key ecological and life‐history variables. Accordingly, we fitted multi‐quantile regressions to 59 years of multi‐species data on spring and autumn bird migration timings through northern Scotland. We demonstrate substantial variation in changes in timings among 72 species, and tested whether such variation can be explained by species ecology, life‐history and changes in local abundance. Consistent with predictions, species that advanced their migration timing in one or both seasons had more seasonally restricted diet types, fewer suitable breeding habitat types, shorter generation lengths and capability to produce multiple offspring broods per year. In contrast, species with less seasonally restricted diet types and that produce single annual offspring broods, showed no change. Meanwhile, contrary to prediction, long‐distance and short‐distance migrants advanced migration timings similarly. Changes in migration timing also varied with changes in local migratory abundance, such that species with increasing seasonal abundance apparently altered their migration timing, whilst species with decreasing abundance did not. Such patterns broadly concur with expectation given adaptive changes in migration timing. However, we demonstrate that similar patterns can be generated by numerical sampling given changing local abundances. Any apparent phenology‐abundance relationships should, therefore, be carefully validated and interpreted. Overall, our results show that migrant bird species with differing ecologies and life‐histories showed systematically differing phenological changes over six decades contextualised by large‐scale environmental changes, potentially facilitating future predictions and altering temporal dynamics of seasonal species co‐occurrences.
University of St And... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2024License: CC BYFull-Text: https://hdl.handle.net/10023/30277Data sources: Bielefeld Academic Search Engine (BASE)St Andrews Research RepositoryArticle . 2024 . Peer-reviewedData sources: St Andrews Research RepositoryAberdeen University Research Archive (AURA)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17400&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of St And... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2024License: CC BYFull-Text: https://hdl.handle.net/10023/30277Data sources: Bielefeld Academic Search Engine (BASE)St Andrews Research RepositoryArticle . 2024 . Peer-reviewedData sources: St Andrews Research RepositoryAberdeen University Research Archive (AURA)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17400&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Wiley Luisa Fontoura; Osmar J. Luiz; Kyle J. A. Zawada; Kyle J. A. Zawada; Andrew H. Baird; Maria Dornelas; Joseph Maina; Mariana Álvarez-Noriega; Joshua S. Madin; Rachael M. Woods; Stephanie D’agata; Stephanie D’agata; Nader Boutros; Elizabeth M. P. Madin; Damaris Torres-Pulliza; Oscar Pizarro;doi: 10.1111/gcb.14911
pmid: 31697006
AbstractRapid intensification of environmental disturbances has sparked widespread decline and compositional shifts in foundation species in ecosystems worldwide. Now, an emergent challenge is to understand the consequences of shifts and losses in such habitat‐forming species for associated communities and ecosystem processes. Recently, consecutive coral bleaching events shifted the morphological makeup of habitat‐forming coral assemblages on the Great Barrier Reef (GBR). Considering the disparity of coral morphological growth forms in shelter provision for reef fishes, we investigated how shifts in the morphological structure of coral assemblages affect the abundance of juvenile and adult reef fishes. We used a temporal dataset from shallow reefs in the northern GBR to estimate coral convexity (a fine‐scale quantitative morphological trait) and two widely used coral habitat descriptors (coral cover and reef rugosity) for disentangling the effects of coral morphology on reef fish assemblages. Changes in coral convexity, rather than live coral cover or reef rugosity, disproportionately affected juvenile reef fishes when compared to adults, and explained more than 20% of juvenile decline. The magnitude of this effect varied by fish body size with juveniles of small‐bodied species showing higher vulnerability to changes in coral morphology. Our findings suggest that continued large‐scale shifts in the relative abundance of morphological groups within coral assemblages are likely to affect population replenishment and dynamics of future reef fish communities. The different responses of juvenile and adult fishes according to habitat descriptors indicate that focusing on coarse‐scale metrics alone may mask fine‐scale ecological responses that are key to understand ecosystem functioning and resilience. Nonetheless, quantifying coral morphological traits may contribute to forecasting the structure of reef fish communities on novel reef ecosystems shaped by climate change.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Wiley Luisa Fontoura; Osmar J. Luiz; Kyle J. A. Zawada; Kyle J. A. Zawada; Andrew H. Baird; Maria Dornelas; Joseph Maina; Mariana Álvarez-Noriega; Joshua S. Madin; Rachael M. Woods; Stephanie D’agata; Stephanie D’agata; Nader Boutros; Elizabeth M. P. Madin; Damaris Torres-Pulliza; Oscar Pizarro;doi: 10.1111/gcb.14911
pmid: 31697006
AbstractRapid intensification of environmental disturbances has sparked widespread decline and compositional shifts in foundation species in ecosystems worldwide. Now, an emergent challenge is to understand the consequences of shifts and losses in such habitat‐forming species for associated communities and ecosystem processes. Recently, consecutive coral bleaching events shifted the morphological makeup of habitat‐forming coral assemblages on the Great Barrier Reef (GBR). Considering the disparity of coral morphological growth forms in shelter provision for reef fishes, we investigated how shifts in the morphological structure of coral assemblages affect the abundance of juvenile and adult reef fishes. We used a temporal dataset from shallow reefs in the northern GBR to estimate coral convexity (a fine‐scale quantitative morphological trait) and two widely used coral habitat descriptors (coral cover and reef rugosity) for disentangling the effects of coral morphology on reef fish assemblages. Changes in coral convexity, rather than live coral cover or reef rugosity, disproportionately affected juvenile reef fishes when compared to adults, and explained more than 20% of juvenile decline. The magnitude of this effect varied by fish body size with juveniles of small‐bodied species showing higher vulnerability to changes in coral morphology. Our findings suggest that continued large‐scale shifts in the relative abundance of morphological groups within coral assemblages are likely to affect population replenishment and dynamics of future reef fish communities. The different responses of juvenile and adult fishes according to habitat descriptors indicate that focusing on coarse‐scale metrics alone may mask fine‐scale ecological responses that are key to understand ecosystem functioning and resilience. Nonetheless, quantifying coral morphological traits may contribute to forecasting the structure of reef fish communities on novel reef ecosystems shaped by climate change.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 United Kingdom, United States, United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | RCN: Synthesizing Deep Ti..., NSF | Dimensions: Collaborative..., EC | BIOTIME +1 projectsNSF| RCN: Synthesizing Deep Time and Recent Community Ecology ,NSF| Dimensions: Collaborative: The climate cascade: functional and evolutionary consequences of climatic change on species, trait, and genetic diversity in a temperate ant community ,EC| BIOTIME ,NSF| Collaborative Research: Forecasting and forestalling tipping points in an aquatic ecosystemMagurran, Anne; Dornelas, Maria; Moyes, Faye Helen; Gotelli, Nicholas J; McGill, Brian;AbstractThe role human activities play in reshaping biodiversity is increasingly apparent in terrestrial ecosystems. However, the responses of entire marine assemblages are not well-understood, in part, because few monitoring programs incorporate both spatial and temporal replication. Here, we analyse an exceptionally comprehensive 29-year time series of North Atlantic groundfish assemblages monitored over 5° latitude to the west of Scotland. These fish assemblages show no systematic change in species richness through time, but steady change in species composition, leading to an increase in spatial homogenization: the species identity of colder northern localities increasingly resembles that of warmer southern localities. This biotic homogenization mirrors the spatial pattern of unevenly rising ocean temperatures over the same time period suggesting that climate change is primarily responsible for the spatial homogenization we observe. In this and other ecosystems, apparent constancy in species richness may mask major changes in species composition driven by anthropogenic change.
The University of Ve... arrow_drop_down The University of Vermont: ScholarWorks @ UVMArticle . 2015License: CC BYFull-Text: https://scholarworks.uvm.edu/casfac/58Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2015License: CC BYFull-Text: https://hdl.handle.net/10023/7534Data sources: Bielefeld Academic Search Engine (BASE)St Andrews Research RepositoryArticle . 2015 . Peer-reviewedData sources: St Andrews Research Repositoryhttp://dx.doi.org/10.1038/ncom...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms9405&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 187 citations 187 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The University of Ve... arrow_drop_down The University of Vermont: ScholarWorks @ UVMArticle . 2015License: CC BYFull-Text: https://scholarworks.uvm.edu/casfac/58Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2015License: CC BYFull-Text: https://hdl.handle.net/10023/7534Data sources: Bielefeld Academic Search Engine (BASE)St Andrews Research RepositoryArticle . 2015 . Peer-reviewedData sources: St Andrews Research Repositoryhttp://dx.doi.org/10.1038/ncom...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms9405&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 United Kingdom, United States, United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | RCN: Synthesizing Deep Ti..., NSF | Dimensions: Collaborative..., EC | BIOTIME +1 projectsNSF| RCN: Synthesizing Deep Time and Recent Community Ecology ,NSF| Dimensions: Collaborative: The climate cascade: functional and evolutionary consequences of climatic change on species, trait, and genetic diversity in a temperate ant community ,EC| BIOTIME ,NSF| Collaborative Research: Forecasting and forestalling tipping points in an aquatic ecosystemMagurran, Anne; Dornelas, Maria; Moyes, Faye Helen; Gotelli, Nicholas J; McGill, Brian;AbstractThe role human activities play in reshaping biodiversity is increasingly apparent in terrestrial ecosystems. However, the responses of entire marine assemblages are not well-understood, in part, because few monitoring programs incorporate both spatial and temporal replication. Here, we analyse an exceptionally comprehensive 29-year time series of North Atlantic groundfish assemblages monitored over 5° latitude to the west of Scotland. These fish assemblages show no systematic change in species richness through time, but steady change in species composition, leading to an increase in spatial homogenization: the species identity of colder northern localities increasingly resembles that of warmer southern localities. This biotic homogenization mirrors the spatial pattern of unevenly rising ocean temperatures over the same time period suggesting that climate change is primarily responsible for the spatial homogenization we observe. In this and other ecosystems, apparent constancy in species richness may mask major changes in species composition driven by anthropogenic change.
The University of Ve... arrow_drop_down The University of Vermont: ScholarWorks @ UVMArticle . 2015License: CC BYFull-Text: https://scholarworks.uvm.edu/casfac/58Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2015License: CC BYFull-Text: https://hdl.handle.net/10023/7534Data sources: Bielefeld Academic Search Engine (BASE)St Andrews Research RepositoryArticle . 2015 . Peer-reviewedData sources: St Andrews Research Repositoryhttp://dx.doi.org/10.1038/ncom...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms9405&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 187 citations 187 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The University of Ve... arrow_drop_down The University of Vermont: ScholarWorks @ UVMArticle . 2015License: CC BYFull-Text: https://scholarworks.uvm.edu/casfac/58Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2015License: CC BYFull-Text: https://hdl.handle.net/10023/7534Data sources: Bielefeld Academic Search Engine (BASE)St Andrews Research RepositoryArticle . 2015 . Peer-reviewedData sources: St Andrews Research Repositoryhttp://dx.doi.org/10.1038/ncom...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms9405&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:American Association for the Advancement of Science (AAAS) Funded by:EC | TraChangeEC| TraChangeMartins, Inês S.; Schrodt, Franziska; Blowes, Shane A.; Bates, Amanda E.; Bjorkman, Anne D.; Brambilla, Viviana; Carvajal-Quintero, Juan; Chow, Cher F. Y.; Daskalova, Gergana N.; Edwards, Kyle; Eisenhauer, Nico; Field, Richard; Fontrodona-Eslava, Ada; Henn, Jonathan J.; van Klink, Roel; Madin, Joshua S.; Magurran, Anne E.; McWilliam, Michael; Moyes, Faye; Pugh, Brittany; Sagouis, Alban; Trindade-Santos, Isaac; McGill, Brian J.; Chase, Jonathan M.; Dornelas, Maria;pmid: 37676959
Biotic responses to global change include directional shifts in organismal traits. Body size, an integrative trait that determines demographic rates and ecosystem functions, is thought to be shrinking in the Anthropocene. Here, we assessed the prevalence of body size change in six taxon groups across 5025 assemblage time series spanning 1960 to 2020. Using the Price equation to partition this change into within-species body size versus compositional changes, we detected prevailing decreases in body size through time driven primarily by fish, with more variable patterns in other taxa. We found that change in assemblage composition contributes more to body size changes than within-species trends, but both components show substantial variation in magnitude and direction. The biomass of assemblages remains quite stable as decreases in body size trade off with increases in abundance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adg6006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adg6006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:American Association for the Advancement of Science (AAAS) Funded by:EC | TraChangeEC| TraChangeMartins, Inês S.; Schrodt, Franziska; Blowes, Shane A.; Bates, Amanda E.; Bjorkman, Anne D.; Brambilla, Viviana; Carvajal-Quintero, Juan; Chow, Cher F. Y.; Daskalova, Gergana N.; Edwards, Kyle; Eisenhauer, Nico; Field, Richard; Fontrodona-Eslava, Ada; Henn, Jonathan J.; van Klink, Roel; Madin, Joshua S.; Magurran, Anne E.; McWilliam, Michael; Moyes, Faye; Pugh, Brittany; Sagouis, Alban; Trindade-Santos, Isaac; McGill, Brian J.; Chase, Jonathan M.; Dornelas, Maria;pmid: 37676959
Biotic responses to global change include directional shifts in organismal traits. Body size, an integrative trait that determines demographic rates and ecosystem functions, is thought to be shrinking in the Anthropocene. Here, we assessed the prevalence of body size change in six taxon groups across 5025 assemblage time series spanning 1960 to 2020. Using the Price equation to partition this change into within-species body size versus compositional changes, we detected prevailing decreases in body size through time driven primarily by fish, with more variable patterns in other taxa. We found that change in assemblage composition contributes more to body size changes than within-species trends, but both components show substantial variation in magnitude and direction. The biomass of assemblages remains quite stable as decreases in body size trade off with increases in abundance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adg6006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adg6006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Australia, United Kingdom, United KingdomPublisher:The Royal Society Authors: Maria Dornelas; Joshua S. Madin; Andrew H. Baird; Sean R. Connolly;Predicting demographic rates is a critical part of forecasting the future of ecosystems under global change. Here, we test if growth rates can be predicted from morphological traits for a highly diverse group of colonial symbiotic organisms: scleractinian corals. We ask whether growth is isometric or allometric among corals, and whether most variation in coral growth rates occurs at the level of the species or morphological group. We estimate growth as change in planar area for 11 species, across five morphological groups and over 5 years. We show that coral growth rates are best predicted from colony size and morphology rather than species. Coral size follows a power scaling law with a constant exponent of 0.91. Despite being colonial organisms, corals have consistent allometric scaling in growth. This consistency simplifies the task of projecting community responses to disturbance and climate change.
Proceedings of the R... arrow_drop_down St Andrews Research RepositoryArticle . 2017 . Peer-reviewedData sources: St Andrews Research RepositoryProceedings of the Royal Society B Biological SciencesArticle . 2017 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2018Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphJames Cook University, Australia: ResearchOnline@JCUArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2017.0053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down St Andrews Research RepositoryArticle . 2017 . Peer-reviewedData sources: St Andrews Research RepositoryProceedings of the Royal Society B Biological SciencesArticle . 2017 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2018Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphJames Cook University, Australia: ResearchOnline@JCUArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2017.0053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Australia, United Kingdom, United KingdomPublisher:The Royal Society Authors: Maria Dornelas; Joshua S. Madin; Andrew H. Baird; Sean R. Connolly;Predicting demographic rates is a critical part of forecasting the future of ecosystems under global change. Here, we test if growth rates can be predicted from morphological traits for a highly diverse group of colonial symbiotic organisms: scleractinian corals. We ask whether growth is isometric or allometric among corals, and whether most variation in coral growth rates occurs at the level of the species or morphological group. We estimate growth as change in planar area for 11 species, across five morphological groups and over 5 years. We show that coral growth rates are best predicted from colony size and morphology rather than species. Coral size follows a power scaling law with a constant exponent of 0.91. Despite being colonial organisms, corals have consistent allometric scaling in growth. This consistency simplifies the task of projecting community responses to disturbance and climate change.
Proceedings of the R... arrow_drop_down St Andrews Research RepositoryArticle . 2017 . Peer-reviewedData sources: St Andrews Research RepositoryProceedings of the Royal Society B Biological SciencesArticle . 2017 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2018Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphJames Cook University, Australia: ResearchOnline@JCUArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2017.0053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down St Andrews Research RepositoryArticle . 2017 . Peer-reviewedData sources: St Andrews Research RepositoryProceedings of the Royal Society B Biological SciencesArticle . 2017 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2018Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphJames Cook University, Australia: ResearchOnline@JCUArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2017.0053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type , Preprint 2019 United Kingdom, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:UKRI | SPITFIRE - the Southampto..., WT | Institutional Strategic S..., EC | BioCHANGE +1 projectsUKRI| SPITFIRE - the Southampton Partnership for Innovative Training of Future Investigators Researching the Environment ,WT| Institutional Strategic Support Fund Phase2 FY2014/16 ,EC| BioCHANGE ,DFG| German Centre for Integrative Biodiversity Research - iDivAmanda E. Bates; Maria Dornelas; Shane A. Blowes; Anne E. Magurran; Sarah R. Supp; Aafke M. Schipper; Aafke M. Schipper; Conor Waldock; Conor Waldock; Laura H. Antão; Laura H. Antão;AbstractClimate change is reshaping global biodiversity as species respond to changing temperatures. However, the net effects of climate-driven species redistribution on local assemblage diversity remain unknown. Here, we relate trends in species richness and abundance from 21,500 terrestrial and marine assemblage time series across temperate regions (23.5-60.0°) to changes in air or sea surface temperature. We find a strong coupling between biodiversity and temperature changes in the marine realm, which is conditional on the baseline climate. We detect increases in species richness with increasing temperature that is twice as pronounced in warmer locations, while abundance declines with warming in the warmest marine locations. In contrast, we did not detect systematic temperature-related richness or abundance trends on land, despite a greater magnitude of warming. We also found no evidence for an interaction between biodiversity change and latitude, further emphasizing the importance of baseline climate in structuring assemblages. As the world is committed to further warming, significant challenges remain in maintaining local biodiversity amongst the non-uniform inflow and outflow of “climate migrants” across distinct regions, especially in the ocean.
e-Prints Soton arrow_drop_down Nature Ecology & EvolutionArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-020-1185-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 191 citations 191 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down Nature Ecology & EvolutionArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-020-1185-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type , Preprint 2019 United Kingdom, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:UKRI | SPITFIRE - the Southampto..., WT | Institutional Strategic S..., EC | BioCHANGE +1 projectsUKRI| SPITFIRE - the Southampton Partnership for Innovative Training of Future Investigators Researching the Environment ,WT| Institutional Strategic Support Fund Phase2 FY2014/16 ,EC| BioCHANGE ,DFG| German Centre for Integrative Biodiversity Research - iDivAmanda E. Bates; Maria Dornelas; Shane A. Blowes; Anne E. Magurran; Sarah R. Supp; Aafke M. Schipper; Aafke M. Schipper; Conor Waldock; Conor Waldock; Laura H. Antão; Laura H. Antão;AbstractClimate change is reshaping global biodiversity as species respond to changing temperatures. However, the net effects of climate-driven species redistribution on local assemblage diversity remain unknown. Here, we relate trends in species richness and abundance from 21,500 terrestrial and marine assemblage time series across temperate regions (23.5-60.0°) to changes in air or sea surface temperature. We find a strong coupling between biodiversity and temperature changes in the marine realm, which is conditional on the baseline climate. We detect increases in species richness with increasing temperature that is twice as pronounced in warmer locations, while abundance declines with warming in the warmest marine locations. In contrast, we did not detect systematic temperature-related richness or abundance trends on land, despite a greater magnitude of warming. We also found no evidence for an interaction between biodiversity change and latitude, further emphasizing the importance of baseline climate in structuring assemblages. As the world is committed to further warming, significant challenges remain in maintaining local biodiversity amongst the non-uniform inflow and outflow of “climate migrants” across distinct regions, especially in the ocean.
e-Prints Soton arrow_drop_down Nature Ecology & EvolutionArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-020-1185-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 191 citations 191 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down Nature Ecology & EvolutionArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-020-1185-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 France, Spain, United KingdomPublisher:Wiley Funded by:FCT | CIIMAR, FCT | CIIMAR, EC | MERCESFCT| CIIMAR ,FCT| CIIMAR ,EC| MERCESDaniel Gómez‐Gras; Cristina Linares; Maria Dornelas; Joshua S. Madin; Viviana Brambilla; Jean‐Baptiste Ledoux; Paula López‐Sendino; Nathaniel Bensoussan; Joaquim Garrabou;AbstractQuantifying changes in functional community structure driven by disturbance is critical to anticipate potential shifts in ecosystem functioning. However, how marine heatwaves (MHWs) affect the functional structure of temperate coral‐dominated communities is poorly understood. Here, we used five long‐term (> 10 years) records of Mediterranean coralligenous assemblages in a multi‐taxa, trait‐based analysis to investigate MHW‐driven changes in functional structure. We show that, despite stability in functional richness (i.e. the range of species functional traits), MHW‐impacted assemblages experienced long‐term directional changes in functional identity (i.e. their dominant trait values). Declining traits included large sizes, long lifespans, arborescent morphologies, filter‐feeding strategies or calcified skeletons. These traits, which were mostly supported by few sensitive and irreplaceable species from a single functional group (habitat‐forming octocorals), disproportionally influence certain ecosystem functions (e.g. 3D‐habitat provision). Hence, MHWs are leading to assemblages that are deficient in key functional traits, with likely consequences for the ecosystem functioning.
University of St And... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2021License: CC BY NCFull-Text: https://hdl.handle.net/10023/21643Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 62visibility views 62 download downloads 227 Powered bymore_vert University of St And... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2021License: CC BY NCFull-Text: https://hdl.handle.net/10023/21643Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 France, Spain, United KingdomPublisher:Wiley Funded by:FCT | CIIMAR, FCT | CIIMAR, EC | MERCESFCT| CIIMAR ,FCT| CIIMAR ,EC| MERCESDaniel Gómez‐Gras; Cristina Linares; Maria Dornelas; Joshua S. Madin; Viviana Brambilla; Jean‐Baptiste Ledoux; Paula López‐Sendino; Nathaniel Bensoussan; Joaquim Garrabou;AbstractQuantifying changes in functional community structure driven by disturbance is critical to anticipate potential shifts in ecosystem functioning. However, how marine heatwaves (MHWs) affect the functional structure of temperate coral‐dominated communities is poorly understood. Here, we used five long‐term (> 10 years) records of Mediterranean coralligenous assemblages in a multi‐taxa, trait‐based analysis to investigate MHW‐driven changes in functional structure. We show that, despite stability in functional richness (i.e. the range of species functional traits), MHW‐impacted assemblages experienced long‐term directional changes in functional identity (i.e. their dominant trait values). Declining traits included large sizes, long lifespans, arborescent morphologies, filter‐feeding strategies or calcified skeletons. These traits, which were mostly supported by few sensitive and irreplaceable species from a single functional group (habitat‐forming octocorals), disproportionally influence certain ecosystem functions (e.g. 3D‐habitat provision). Hence, MHWs are leading to assemblages that are deficient in key functional traits, with likely consequences for the ecosystem functioning.
University of St And... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2021License: CC BY NCFull-Text: https://hdl.handle.net/10023/21643Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 62visibility views 62 download downloads 227 Powered bymore_vert University of St And... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2021License: CC BY NCFull-Text: https://hdl.handle.net/10023/21643Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAArchiMer - Institutional Archive of IfremerOther literature type . 2021Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 Portugal, United Kingdom, United States, Australia, United States, United KingdomPublisher:The Royal Society Funded by:EC | BIOTIMEEC| BIOTIMELise Øvreås; Kevin J. Gaston; Anne E. Magurran; Brian J. McGill; Maria Dornelas; A. C. Studeny; A. C. Studeny; Robert K. Colwell; Mark Vellend; Nicolas J. Gotelli; Thomas P. Curtis; Peter J. Mumby; Hélène Morlon; Matthew A. Kosnik; Robin L. Chazdon; Anne Chao; Stephen T. Buckland; Jenny L. McCune;Growing concern about biodiversity loss underscores the need to quantify and understand temporal change. Here, we review the opportunities presented by biodiversity time series, and address three related issues: (i) recognizing the characteristics of temporal data; (ii) selecting appropriate statistical procedures for analysing temporal data; and (iii) inferring and forecasting biodiversity change. With regard to the first issue, we draw attention to defining characteristics of biodiversity time series—lack of physical boundaries, uni-dimensionality, autocorrelation and directionality—that inform the choice of analytic methods. Second, we explore methods of quantifying change in biodiversity at different timescales, noting that autocorrelation can be viewed as a feature that sheds light on the underlying structure of temporal change. Finally, we address the transition from inferring to forecasting biodiversity change, highlighting potential pitfalls associated with phase-shifts and novel conditions.
The University of Ve... arrow_drop_down The University of Vermont: ScholarWorks @ UVMArticle . 2013License: CC BYFull-Text: https://scholarworks.uvm.edu/casfac/102Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2012License: CC BYFull-Text: https://hdl.handle.net/10023/3284Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallSt Andrews Research RepositoryArticle . 2012 . Peer-reviewedData sources: St Andrews Research RepositoryUSC Research Bank research dataArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticle . 2013 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2013Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphRepositório Institucional da Universidade de AveiroArticle . 2018Data sources: Repositório Institucional da Universidade de Aveirohttp://dx.doi.org/10.1098/rspb...Article . Peer-reviewedData sources: European Union Open Data PortalThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2012.1931&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 203 citations 203 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The University of Ve... arrow_drop_down The University of Vermont: ScholarWorks @ UVMArticle . 2013License: CC BYFull-Text: https://scholarworks.uvm.edu/casfac/102Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2012License: CC BYFull-Text: https://hdl.handle.net/10023/3284Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallSt Andrews Research RepositoryArticle . 2012 . Peer-reviewedData sources: St Andrews Research RepositoryUSC Research Bank research dataArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticle . 2013 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2013Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphRepositório Institucional da Universidade de AveiroArticle . 2018Data sources: Repositório Institucional da Universidade de Aveirohttp://dx.doi.org/10.1098/rspb...Article . Peer-reviewedData sources: European Union Open Data PortalThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2012.1931&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 Portugal, United Kingdom, United States, Australia, United States, United KingdomPublisher:The Royal Society Funded by:EC | BIOTIMEEC| BIOTIMELise Øvreås; Kevin J. Gaston; Anne E. Magurran; Brian J. McGill; Maria Dornelas; A. C. Studeny; A. C. Studeny; Robert K. Colwell; Mark Vellend; Nicolas J. Gotelli; Thomas P. Curtis; Peter J. Mumby; Hélène Morlon; Matthew A. Kosnik; Robin L. Chazdon; Anne Chao; Stephen T. Buckland; Jenny L. McCune;Growing concern about biodiversity loss underscores the need to quantify and understand temporal change. Here, we review the opportunities presented by biodiversity time series, and address three related issues: (i) recognizing the characteristics of temporal data; (ii) selecting appropriate statistical procedures for analysing temporal data; and (iii) inferring and forecasting biodiversity change. With regard to the first issue, we draw attention to defining characteristics of biodiversity time series—lack of physical boundaries, uni-dimensionality, autocorrelation and directionality—that inform the choice of analytic methods. Second, we explore methods of quantifying change in biodiversity at different timescales, noting that autocorrelation can be viewed as a feature that sheds light on the underlying structure of temporal change. Finally, we address the transition from inferring to forecasting biodiversity change, highlighting potential pitfalls associated with phase-shifts and novel conditions.
The University of Ve... arrow_drop_down The University of Vermont: ScholarWorks @ UVMArticle . 2013License: CC BYFull-Text: https://scholarworks.uvm.edu/casfac/102Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2012License: CC BYFull-Text: https://hdl.handle.net/10023/3284Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallSt Andrews Research RepositoryArticle . 2012 . Peer-reviewedData sources: St Andrews Research RepositoryUSC Research Bank research dataArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticle . 2013 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2013Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphRepositório Institucional da Universidade de AveiroArticle . 2018Data sources: Repositório Institucional da Universidade de Aveirohttp://dx.doi.org/10.1098/rspb...Article . Peer-reviewedData sources: European Union Open Data PortalThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2012.1931&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 203 citations 203 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The University of Ve... arrow_drop_down The University of Vermont: ScholarWorks @ UVMArticle . 2013License: CC BYFull-Text: https://scholarworks.uvm.edu/casfac/102Data sources: Bielefeld Academic Search Engine (BASE)University of St Andrews: Digital Research RepositoryArticle . 2012License: CC BYFull-Text: https://hdl.handle.net/10023/3284Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallSt Andrews Research RepositoryArticle . 2012 . Peer-reviewedData sources: St Andrews Research RepositoryUSC Research Bank research dataArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the Royal Society B Biological SciencesArticle . 2013 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2013Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic GraphRepositório Institucional da Universidade de AveiroArticle . 2018Data sources: Repositório Institucional da Universidade de Aveirohttp://dx.doi.org/10.1098/rspb...Article . Peer-reviewedData sources: European Union Open Data PortalThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2012.1931&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Portugal, AustraliaPublisher:Wiley Funded by:EC | BIOTIMEEC| BIOTIMEAuthors: Dornelas, Maria; Phillip, Dawn A.T.; Magurran, Anne E.;handle: 10773/24738
Aim: To test the hypothesis that communities with higher diversity have more predictable properties by examining patterns of community structure along a species richness gradient. Location: Trinidad and Tobago (11°00 N, 61°00 W), on the South American continental shelf, opposite the Orinoco River delta, north-east Venezuela. Methods: We used quantile regressions to investigate how three total abundance, absolute and relative dominance measures – numerical abundance, biomass and energy use, respectively – change across a species richness gradient. We investigated which allocation rule best mimics community assembly in this species richness gradient by examining the abundance of the dominant species and comparing it with predictions of niche apportionment models. Results: All measures of total abundance increase on average across the gradient, but the upper limit remains constant. On average, absolute dominance is constant, but the distance between the upper and lower limits decreases along the gradient. Relative dominance decreases with species richness. Observed dominance patterns are best described by Tokeshi's random fraction model. Main conclusions: Our results show that both total abundance and absolute dominance become increasingly variable as biodiversity decreases. Consequently, our study suggests that ecosystem properties are less predictable when biodiversity is lower.
Global Ecology and B... arrow_drop_down Global Ecology and BiogeographyArticle . 2011 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefRepositório Institucional da Universidade de AveiroArticle . 2018Data sources: Repositório Institucional da Universidade de Aveirohttp://dx.doi.org/10.1111/j.14...Article . Peer-reviewedData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1466-8238.2010.00640.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Global Ecology and B... arrow_drop_down Global Ecology and BiogeographyArticle . 2011 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefRepositório Institucional da Universidade de AveiroArticle . 2018Data sources: Repositório Institucional da Universidade de Aveirohttp://dx.doi.org/10.1111/j.14...Article . Peer-reviewedData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1466-8238.2010.00640.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Portugal, AustraliaPublisher:Wiley Funded by:EC | BIOTIMEEC| BIOTIMEAuthors: Dornelas, Maria; Phillip, Dawn A.T.; Magurran, Anne E.;handle: 10773/24738
Aim: To test the hypothesis that communities with higher diversity have more predictable properties by examining patterns of community structure along a species richness gradient. Location: Trinidad and Tobago (11°00 N, 61°00 W), on the South American continental shelf, opposite the Orinoco River delta, north-east Venezuela. Methods: We used quantile regressions to investigate how three total abundance, absolute and relative dominance measures – numerical abundance, biomass and energy use, respectively – change across a species richness gradient. We investigated which allocation rule best mimics community assembly in this species richness gradient by examining the abundance of the dominant species and comparing it with predictions of niche apportionment models. Results: All measures of total abundance increase on average across the gradient, but the upper limit remains constant. On average, absolute dominance is constant, but the distance between the upper and lower limits decreases along the gradient. Relative dominance decreases with species richness. Observed dominance patterns are best described by Tokeshi's random fraction model. Main conclusions: Our results show that both total abundance and absolute dominance become increasingly variable as biodiversity decreases. Consequently, our study suggests that ecosystem properties are less predictable when biodiversity is lower.
Global Ecology and B... arrow_drop_down Global Ecology and BiogeographyArticle . 2011 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefRepositório Institucional da Universidade de AveiroArticle . 2018Data sources: Repositório Institucional da Universidade de Aveirohttp://dx.doi.org/10.1111/j.14...Article . Peer-reviewedData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1466-8238.2010.00640.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Global Ecology and B... arrow_drop_down Global Ecology and BiogeographyArticle . 2011 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefRepositório Institucional da Universidade de AveiroArticle . 2018Data sources: Repositório Institucional da Universidade de Aveirohttp://dx.doi.org/10.1111/j.14...Article . Peer-reviewedData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1466-8238.2010.00640.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Funded by:EC | BIOTIMEEC| BIOTIMEAuthors: Brian J. McGill; Maria Dornelas; Nicholas J. Gotelli; Anne E. Magurran;pmid: 25542312
Humans are transforming the biosphere in unprecedented ways, raising the important question of how these impacts are changing biodiversity. Here we argue that our understanding of biodiversity trends in the Anthropocene, and our ability to protect the natural world, is impeded by a failure to consider different types of biodiversity measured at different spatial scales. We propose that ecologists should recognize and assess 15 distinct categories of biodiversity trend. We summarize what is known about each of these 15 categories, identify major gaps in our current knowledge, and recommend the next steps required for better understanding of trends in biodiversity.
Trends in Ecology & ... arrow_drop_down Trends in Ecology & EvolutionArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.tr...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2014.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu539 citations 539 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Trends in Ecology & ... arrow_drop_down Trends in Ecology & EvolutionArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.tr...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2014.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Funded by:EC | BIOTIMEEC| BIOTIMEAuthors: Brian J. McGill; Maria Dornelas; Nicholas J. Gotelli; Anne E. Magurran;pmid: 25542312
Humans are transforming the biosphere in unprecedented ways, raising the important question of how these impacts are changing biodiversity. Here we argue that our understanding of biodiversity trends in the Anthropocene, and our ability to protect the natural world, is impeded by a failure to consider different types of biodiversity measured at different spatial scales. We propose that ecologists should recognize and assess 15 distinct categories of biodiversity trend. We summarize what is known about each of these 15 categories, identify major gaps in our current knowledge, and recommend the next steps required for better understanding of trends in biodiversity.
Trends in Ecology & ... arrow_drop_down Trends in Ecology & EvolutionArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.tr...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2014.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu539 citations 539 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Trends in Ecology & ... arrow_drop_down Trends in Ecology & EvolutionArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttp://dx.doi.org/10.1016/j.tr...Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tree.2014.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:Wiley Vicki R. Dale; Mark Bolton; Maria Dornelas; Anne E. Magurran; Roy Dennis; Roger Broad; Nick J. Riddiford; Paul V. Harvey; Roger Riddington; Deryk N. Shaw; David Parnaby; Jane M. Reid;AbstractSpecies exploiting seasonal environments must alter timings of key life‐history events in response to large‐scale climatic changes in order to maintain trophic synchrony with required resources. Yet, substantial among‐species variation in long‐term phenological changes has been observed. Advancing from simply describing such variation towards predicting future phenological responses requires studies that rigorously quantify and explain variation in the direction and magnitude of changing timings across diverse species in relation to key ecological and life‐history variables. Accordingly, we fitted multi‐quantile regressions to 59 years of multi‐species data on spring and autumn bird migration timings through northern Scotland. We demonstrate substantial variation in changes in timings among 72 species, and tested whether such variation can be explained by species ecology, life‐history and changes in local abundance. Consistent with predictions, species that advanced their migration timing in one or both seasons had more seasonally restricted diet types, fewer suitable breeding habitat types, shorter generation lengths and capability to produce multiple offspring broods per year. In contrast, species with less seasonally restricted diet types and that produce single annual offspring broods, showed no change. Meanwhile, contrary to prediction, long‐distance and short‐distance migrants advanced migration timings similarly. Changes in migration timing also varied with changes in local migratory abundance, such that species with increasing seasonal abundance apparently altered their migration timing, whilst species with decreasing abundance did not. Such patterns broadly concur with expectation given adaptive changes in migration timing. However, we demonstrate that similar patterns can be generated by numerical sampling given changing local abundances. Any apparent phenology‐abundance relationships should, therefore, be carefully validated and interpreted. Overall, our results show that migrant bird species with differing ecologies and life‐histories showed systematically differing phenological changes over six decades contextualised by large‐scale environmental changes, potentially facilitating future predictions and altering temporal dynamics of seasonal species co‐occurrences.
University of St And... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2024License: CC BYFull-Text: https://hdl.handle.net/10023/30277Data sources: Bielefeld Academic Search Engine (BASE)St Andrews Research RepositoryArticle . 2024 . Peer-reviewedData sources: St Andrews Research RepositoryAberdeen University Research Archive (AURA)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17400&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of St And... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2024License: CC BYFull-Text: https://hdl.handle.net/10023/30277Data sources: Bielefeld Academic Search Engine (BASE)St Andrews Research RepositoryArticle . 2024 . Peer-reviewedData sources: St Andrews Research RepositoryAberdeen University Research Archive (AURA)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17400&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:Wiley Vicki R. Dale; Mark Bolton; Maria Dornelas; Anne E. Magurran; Roy Dennis; Roger Broad; Nick J. Riddiford; Paul V. Harvey; Roger Riddington; Deryk N. Shaw; David Parnaby; Jane M. Reid;AbstractSpecies exploiting seasonal environments must alter timings of key life‐history events in response to large‐scale climatic changes in order to maintain trophic synchrony with required resources. Yet, substantial among‐species variation in long‐term phenological changes has been observed. Advancing from simply describing such variation towards predicting future phenological responses requires studies that rigorously quantify and explain variation in the direction and magnitude of changing timings across diverse species in relation to key ecological and life‐history variables. Accordingly, we fitted multi‐quantile regressions to 59 years of multi‐species data on spring and autumn bird migration timings through northern Scotland. We demonstrate substantial variation in changes in timings among 72 species, and tested whether such variation can be explained by species ecology, life‐history and changes in local abundance. Consistent with predictions, species that advanced their migration timing in one or both seasons had more seasonally restricted diet types, fewer suitable breeding habitat types, shorter generation lengths and capability to produce multiple offspring broods per year. In contrast, species with less seasonally restricted diet types and that produce single annual offspring broods, showed no change. Meanwhile, contrary to prediction, long‐distance and short‐distance migrants advanced migration timings similarly. Changes in migration timing also varied with changes in local migratory abundance, such that species with increasing seasonal abundance apparently altered their migration timing, whilst species with decreasing abundance did not. Such patterns broadly concur with expectation given adaptive changes in migration timing. However, we demonstrate that similar patterns can be generated by numerical sampling given changing local abundances. Any apparent phenology‐abundance relationships should, therefore, be carefully validated and interpreted. Overall, our results show that migrant bird species with differing ecologies and life‐histories showed systematically differing phenological changes over six decades contextualised by large‐scale environmental changes, potentially facilitating future predictions and altering temporal dynamics of seasonal species co‐occurrences.
University of St And... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2024License: CC BYFull-Text: https://hdl.handle.net/10023/30277Data sources: Bielefeld Academic Search Engine (BASE)St Andrews Research RepositoryArticle . 2024 . Peer-reviewedData sources: St Andrews Research RepositoryAberdeen University Research Archive (AURA)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17400&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of St And... arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2024License: CC BYFull-Text: https://hdl.handle.net/10023/30277Data sources: Bielefeld Academic Search Engine (BASE)St Andrews Research RepositoryArticle . 2024 . Peer-reviewedData sources: St Andrews Research RepositoryAberdeen University Research Archive (AURA)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17400&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu