- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2021 United StatesPublisher:Elsevier BV Authors:Ana E. Comesana;
Ana E. Comesana
Ana E. Comesana in OpenAIRETyler T. Huntington;
Tyler T. Huntington
Tyler T. Huntington in OpenAIRECorinne D. Scown;
Corinne D. Scown
Corinne D. Scown in OpenAIREKyle E. Niemeyer;
+1 AuthorsKyle E. Niemeyer
Kyle E. Niemeyer in OpenAIREAna E. Comesana;
Ana E. Comesana
Ana E. Comesana in OpenAIRETyler T. Huntington;
Tyler T. Huntington
Tyler T. Huntington in OpenAIRECorinne D. Scown;
Corinne D. Scown
Corinne D. Scown in OpenAIREKyle E. Niemeyer;
Kyle E. Niemeyer
Kyle E. Niemeyer in OpenAIREVi H. Rapp;
Vi H. Rapp
Vi H. Rapp in OpenAIREMachine learning has proven to be a powerful tool for accelerating biofuel development. Although numerous models are available to predict a range of properties using chemical descriptors, there is a trade-off between interpretability and performance. Neural networks provide predictive models with high accuracy at the expense of some interpretability, while simpler models such as linear regression often lack in accuracy. In addition to model architecture, feature selection is also critical for developing interpretable and accurate predictive models. We present a method for systematically selecting molecular descriptor features and developing interpretable machine learning models without sacrificing accuracy. Our method simplifies the process of selecting features by reducing feature multicollinearity and enables discoveries of new relationships between global properties and molecular descriptors. To demonstrate our approach, we developed models for predicting melting point, boiling point, flash point, yield sooting index, and net heat of combustion with the help of the Tree-based Pipeline Optimization Tool (TPOT). For training, we used publicly available experimental data for up to 8351 molecules. Our models accurately predict various molecular properties for organic molecules (mean absolute percent error (MAPE) ranges from 3.3% to 10.5%) and provide a set of features that are well-correlated to the property. This method enables researchers to explore sets of features that significantly contribute to the prediction of the property, offering new scientific insights. To help accelerate early stage biofuel research and development, we also integrated the data and models into a open-source, interactive web tool.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/26z332r4Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.3990072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022Full-Text: https://escholarship.org/uc/item/26z332r4Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.3990072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United StatesPublisher:Proceedings of the National Academy of Sciences Authors:Sagar Gautam;
Sagar Gautam
Sagar Gautam in OpenAIRENawa Raj Baral;
Nawa Raj Baral
Nawa Raj Baral in OpenAIREUmakant Mishra;
Umakant Mishra
Umakant Mishra in OpenAIRECorinne D. Scown;
Corinne D. Scown
Corinne D. Scown in OpenAIREBiomass-derived sustainable aviation fuel holds significant potential for decarbonizing the aviation sector. Its long-term viability depends on crop choice, longevity of soil organic carbon (SOC) sequestration, and the biomass-to-biojet fuel conversion efficiency. We explored the impact of fuel price and SOC value on viable biojet fuel production scale by integrating an agroecosystem model with a field-to-biojet fuel production process model for 1,4-dimethylcyclooctane (DMCO), a representative high-performance biojet fuel molecule, from Miscanthus, sorghum, and switchgrass. Assigning monetary value to SOC sequestration results in substantially different outcomes than an increased fuel selling price. If SOC accumulation is valued at $185/ton CO 2 , planting Miscanthus for conversion to DMCO would be economically cost-competitive across 66% of croplands across the continental United States (US) by 2050 if conventional jet fuel remains at $0.74/L (in 2020 US dollars). Cutting the SOC sequestration value in half reduces the viable area to 54% of cropland, and eliminating any payment for SOC shrinks the viable area to 16%. If future biojet fuel prices increase to $1.24/L-Jet A-equivalent, 48 to 58% of the total cultivated land in the United States could support a more diverse set of feedstocks including Miscanthus, sorghum, or switchgrass. Among these options, only 8–14% of the area would be suitable exclusively for Miscanthus cultivation. These findings highlight the intersection of natural solutions for carbon removal and the use of deep-rooted feedstocks for biofuels and biomanufacturing. The results underscore the need to establish clear and consistent values for SOC sequestration to enable the future bioeconomy.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023Full-Text: https://escholarship.org/uc/item/5n58r36wData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2312667120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023Full-Text: https://escholarship.org/uc/item/5n58r36wData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2312667120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United StatesPublisher:American Chemical Society (ACS) Jie Dong; Carolina Barcelos; Ezinne C. Achinivu; Ezinne C. Achinivu;Eric R. Sundstrom;
Harsha D. Magurudeniya; Harsha D. Magurudeniya;Eric R. Sundstrom
Eric R. Sundstrom in OpenAIREDeepti Tanjore;
Deepti Tanjore
Deepti Tanjore in OpenAIRENawa Raj Baral;
Nawa Raj Baral; Chunsheng Yan;Nawa Raj Baral
Nawa Raj Baral in OpenAIREJohn M. Gladden;
John M. Gladden; Asun Oka;John M. Gladden
John M. Gladden in OpenAIREBlake A. Simmons;
Blake A. Simmons;Blake A. Simmons
Blake A. Simmons in OpenAIRECorinne D. Scown;
Corinne D. Scown; Simay Akdemir; Jipeng Yan;Corinne D. Scown
Corinne D. Scown in OpenAIRENing Sun;
Lalitendu Das; Lalitendu Das;Ning Sun
Ning Sun in OpenAIREWith a diverse and widely distributed global resource base, woody biomass is a compelling organic feedstock for conversion to renewable liquid fuels. In California, woody biomass comprises the largest fraction of underutilized biomass available for biofuel production, but conversion to fuels is challenged both by recalcitrance to deconstruction and by toxicity toward downstream saccharification and fermentation due to organic acids and phenolic compounds generated during pretreatment. In this study, we optimize pretreatment and scale-up of an integrated one-pot process for deconstruction of California woody biomass using the ionic liquid (IL) cholinium lysinate [Ch][Lys] as a pretreatment solvent. By evaluating the impact of solid loading, solid removal, yeast acclimatization, fermentation temperature, fermentation pH, and nutrient supplementation on final ethanol yields and titers, we achieve nearly full conversion of both glucose and xylose to ethanol with commercial C5-utilizing Saccharomyces cerevisiae. We then demonstrate process scalability in 680 L pilot-scale fermentation, achieving >80% deconstruction efficiency, >90% fermentation efficiency, 27.7 g/L ethanol titer, and >80% ethanol distillation efficiency from the IL-containing hydrolysate post fermentation. This fully integrated process requires no intermediate separations and no intermediate detoxification of the hydrolysate. Using an integrated biorefinery model, current performance results in a minimum ethanol selling price of $8.8/gge. Reducing enzyme loading along with other minor process improvements can reduce the ethanol selling price to $3/gge. This study is the largest scale demonstration of IL pretreatment and biofuel conversion known to date, and the overall biomass-to-ethanol efficiencies are the highest reported to date for any IL-based biomass-to-biofuel conversion.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/58n2c5ntData sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c07920&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 50 citations 50 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021Full-Text: https://escholarship.org/uc/item/58n2c5ntData sources: Bielefeld Academic Search Engine (BASE)Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c07920&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other ORP type 2024 PortugalPublisher:IOP Publishing Authors:Eleanor M Hennessy;
Eleanor M Hennessy
Eleanor M Hennessy in OpenAIRECorinne D Scown;
Corinne D Scown
Corinne D Scown in OpenAIREInês M L Azevedo;
Inês M L Azevedo
Inês M L Azevedo in OpenAIREhandle: 10362/174653
Abstract Long-haul freight shipment in the United States relies on diesel trucks and constitutes ∼3% of U.S. greenhouse gas emissions and a significant share of local air pollution. Here, we compare the climate and air pollution-related health damages from electric versus diesel long-haul truck fleets. We use truck commodity flows to estimate tailpipe emissions from diesel trucks and regional grid emissions intensities to estimate charging emissions from electric trucks under various grid scenarios. We use a reduced complexity air quality model combined with valuation of air pollution-related premature deaths (using two hazard ratios (HRs)) and quantify the distributional health impacts in different scenarios. We find that annual health and climate costs of the current diesel fleet are $195–$249/capita compared to $174–$205/capita for a new diesel fleet, and $156–$177/capita for an electric fleet, depending on the HR. We find that freight electrification could avoid $6.2–8.5 billion in health and climate damages annually when compared to a fleet of new diesel vehicles (with even higher benefits when compared to the current diesel fleet). However, the Midwest and parts of the Gulf Coast would experience an increase in health damages due to vehicles charging using electricity from coal power plants. If old coal power plants (operating in 1980 or earlier) are replaced with zero-emission generation, electrification of all U.S. freight would result in $32.3–39.2 billion in avoided damages annually and health benefits throughout the U.S. Electrifying transport of consumer manufacturing goods (including electronics, transport equipment, and precision instruments) and food, beverage, and tobacco products would provide the largest absolute health and climate benefits, whereas mixed freight and manufacturing goods would result in the largest benefits per tonne-km. We find small variations in health damages across race and income. These results will help policymakers prioritize electrification and charging investment strategies for the freight transportation sub-sector.
Environmental Resear... arrow_drop_down Repositório da Universidade Nova de LisboaArticle . 2024Data sources: Repositório da Universidade Nova de LisboaRepositório da Universidade Nova de LisboaOther ORP type . 2024Data sources: Repositório da Universidade Nova de Lisboaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ad75a9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Environmental Resear... arrow_drop_down Repositório da Universidade Nova de LisboaArticle . 2024Data sources: Repositório da Universidade Nova de LisboaRepositório da Universidade Nova de LisboaOther ORP type . 2024Data sources: Repositório da Universidade Nova de Lisboaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ad75a9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Royal Society of Chemistry (RSC) Authors:Corinne D. Scown;
Corinne D. Scown; Corinne D. Scown; Jian Sun; +15 AuthorsCorinne D. Scown
Corinne D. Scown in OpenAIRECorinne D. Scown;
Corinne D. Scown; Corinne D. Scown; Jian Sun; Jian Sun;Corinne D. Scown
Corinne D. Scown in OpenAIRERamakrishnan Parthasarathi;
Ramakrishnan Parthasarathi;Ramakrishnan Parthasarathi
Ramakrishnan Parthasarathi in OpenAIREJian Shi;
Jian Shi; N. V. S. N. Murthy Konda; N. V. S. N. Murthy Konda;Jian Shi
Jian Shi in OpenAIRETanmoy Dutta;
Tanmoy Dutta;Tanmoy Dutta
Tanmoy Dutta in OpenAIREBlake A. Simmons;
Blake A. Simmons; Feng Xu; Feng Xu; Seema Singh; Seema Singh;Blake A. Simmons
Blake A. Simmons in OpenAIREdoi: 10.1039/c6ee00913a
An integrated one-pot ionic liquid based biomass processing technology is developed that overcomes pH mismatch of the unit operations and enables ionic liquid reuse resulting in a 50% cost reduction compared with previously studied methods.
Energy & Environment... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ee00913a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ee00913a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United StatesPublisher:IOP Publishing Authors: Xinguang Cui; Olga Kavvada; Tyler Huntington;Corinne D Scown;
Corinne D Scown
Corinne D Scown in OpenAIREThe Renewable Fuel Standard (RFS) initially set ambitious goals for US cellulosic biofuel production and, although the total renewable fuel volume reached 80% of the established target for 2017, the cellulosic fuel volume reached just 5% of the original goal. This shortfall has, in part, been ascribed to the hesitance of farmers to plant the high-yielding, low-input perennial biomass crops identified as otherwise ideal feedstocks. Policy and market uncertainty also hinder investment in capital-intensive new cellulosic biorefineries. This study combines remote sensing land use data, yield predictions, a fine-resolution geospatial modeling framework, and a novel facility siting algorithm to evaluate the potential for near-term scale-up of cellulosic fuel production using a combination of lower-risk annual feedstocks more familiar to US farmers: corn stover and biomass sorghum. Potential strategies include expansion or retrofitting of existing corn ethanol facilities and targeted construction of new facilities in resource-rich areas. The results indicate that, with a maximum 10% conversion of pastureland and cropland to sorghum in suitable regions, more than 80 of the 214 existing corn ethanol biorefineries could be retrofitted or expanded to accept cellulosic feedstocks and an additional 71 new biorefineries could be built. The resulting land conversion for bioenergy sorghum totals to 4.5% of US cropland and 3.7% of pastureland. If this biomass is converted to ethanol, the total increase in annual production could be 17 billion gallons, just over the original RFS 2022 cellulosic biofuel production target and equivalent to 12% of US gasoline consumption.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/4187671kData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aae6e3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/4187671kData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aae6e3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United StatesPublisher:Elsevier BV Authors:Nawa Raj Baral;
Nawa Raj Baral
Nawa Raj Baral in OpenAIREShruti K. Mishra;
Shruti K. Mishra
Shruti K. Mishra in OpenAIREAnthe George;
Sagar Gautam; +2 AuthorsAnthe George
Anthe George in OpenAIRENawa Raj Baral;
Nawa Raj Baral
Nawa Raj Baral in OpenAIREShruti K. Mishra;
Shruti K. Mishra
Shruti K. Mishra in OpenAIREAnthe George;
Sagar Gautam; Umakant Mishra;Anthe George
Anthe George in OpenAIRECorinne D. Scown;
Corinne D. Scown
Corinne D. Scown in OpenAIRESwitchgrass is a promising feedstock for cellulosic biorefineries, due to its ability to maintain comparatively high biomass yields across a wide range of soil and climatic conditions. However, there is an incomplete understanding of the economic and environmental tradeoffs associated with cultivating switchgrass on low-productivity land for conversion to biofuels. This study surveys prior literature and demonstrates a new integrated assessment framework, including agroecosystem, ecosystem services valuation, technoeconomic, and life-cycle assessment models, to quantify and contextualize the economic and environmental impacts of switchgrass cultivation on marginal land with downstream conversion to biofuels. Monetizing and incorporating the value of ecosystem services, such as improved water quality benefits from nitrate and sediment reductions, climate change mitigation benefits from CO2 emission reduction, and recreational and pollination benefits from increased biodiversity, the modeled multifunctional landscape reduces the ethanol production cost by 33.3–58.9 cents/L-gasoline-equivalent ($1.3–2.2/gge). Planting switchgrass in low productivity land improves soil health, resulting in the carbon footprint reduction credit of 12.8–20.2 gCO2e/MJ. For an improved switchgrass-to-ethanol conversion pathway with the maximum benefits from ecosystem services, the minimum ethanol selling price and carbon footprint of ethanol, respectively, could reach to 31 cents/L-gasoline-equivalent (47% reduction relative to average gasoline price) and 3 gCO2e/MJ (97% reduction relative to gasoline). This low carbon renewable ethanol leads to substantial State and/or Federal policy incentives (∼$1/L-gasoline-equivalent) providing a large benefit to biorefinery operators, farmers, and the public as a whole.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022License: CC BYFull-Text: https://escholarship.org/uc/item/05s7225nData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaRenewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4107139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022License: CC BYFull-Text: https://escholarship.org/uc/item/05s7225nData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaRenewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4107139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United StatesPublisher:Wiley Authors: Yao Zhang;Corinne D. Scown;
Umakant Mishra; Umakant Mishra; +2 AuthorsCorinne D. Scown
Corinne D. Scown in OpenAIREYao Zhang;Corinne D. Scown;
Umakant Mishra; Umakant Mishra;Corinne D. Scown
Corinne D. Scown in OpenAIRESagar Gautam;
Sagar Gautam;Sagar Gautam
Sagar Gautam in OpenAIREdoi: 10.1111/gcbb.12736
AbstractNational scale projections of bioenergy crop yields and their environmental impacts are essential to identify appropriate locations to place bioenergy crops and ensure sustainable land use strategies. In this study, we used the process‐based Daily Century (DAYCENT) model with site‐specific environmental data to simulate sorghum (Sorghum bicolor L. Moench) biomass yield, soil organic carbon (SOC) change, and nitrous oxide emissions across cultivated lands in the continental United States. The simulated rainfed dry biomass productivity ranged from 0.8 to 19.2 Mg ha−1 year−1, with a spatiotemporal average of Mg ha−1 year−1, and a coefficient of variation of 35%. The average SOC sequestration and direct nitrous oxide emission rates were simulated as Mg CO2e ha−1 year−1 and Mg CO2e ha−1 year−1, respectively. Compared to field‐observed biomass yield data at multiple locations, model predictions of biomass productivity showed a root mean square error (RMSE) of 5.6 Mg ha−1 year−1. In comparison to the multi State (n = 21) NASS database, our results showed RMSE of 5.5 Mg ha−1 year−1. Model projections of baseline SOC showed RMSE of 1.9 kg/m2 in comparison to a recently available continental SOC stock dataset. The model‐predicted N2O emissions are close to 1.25% of N input. Our results suggest 10.2 million ha of cultivated lands in the Southern and Lower Midwestern United States will produce >10 Mg ha−1 year−1 with net carbon sequestration under rainfed conditions. Cultivated lands in Upper Midwestern states including Iowa, Minnesota, Montana, Michigan, and North Dakota showed lower sorghum biomass productivity (average: 6.9 Mg ha−1 year−1) with net sequestration (average: 0.13 Mg CO2e ha−1 year−1). Our national‐scale spatially explicit results are critical inputs for robust life cycle assessment of bioenergy production systems and land use‐based climate change mitigation strategies.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/0pm229f4Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12736&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/0pm229f4Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12736&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United StatesPublisher:American Chemical Society (ACS) Authors:Jenny C. Mortimer;
Jenny C. Mortimer;Jenny C. Mortimer
Jenny C. Mortimer in OpenAIRECorinne D. Scown;
Corinne D. Scown; +5 AuthorsCorinne D. Scown
Corinne D. Scown in OpenAIREJenny C. Mortimer;
Jenny C. Mortimer;Jenny C. Mortimer
Jenny C. Mortimer in OpenAIRECorinne D. Scown;
Corinne D. Scown;Corinne D. Scown
Corinne D. Scown in OpenAIRENawa Raj Baral;
Nawa Raj Baral; Daniel H. Putnam; Daniel H. Putnam; Jeff Dahlberg;Nawa Raj Baral
Nawa Raj Baral in OpenAIREBiomass sorghum is a promising feedstock for cellulosic biorefineries because of its high yield and drought tolerance. However, the difficulty of effectively drying sorghum in some regions means th...
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/0gq8h8snData sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c03784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/0gq8h8snData sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c03784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:American Chemical Society (ACS) Authors:Corinne D. Scown;
Corinne D. Scown
Corinne D. Scown in OpenAIREAmit A. Gokhale;
Arpad Horvath; Thomas E. McKone; +1 AuthorsAmit A. Gokhale
Amit A. Gokhale in OpenAIRECorinne D. Scown;
Corinne D. Scown
Corinne D. Scown in OpenAIREAmit A. Gokhale;
Arpad Horvath; Thomas E. McKone; Paul A. Willems;Amit A. Gokhale
Amit A. Gokhale in OpenAIREdoi: 10.1021/es5012753
pmid: 24988448
Cellulosic ethanol can achieve estimated greenhouse gas (GHG) emission reductions greater than 80% relative to gasoline, largely as a result of the combustion of lignin for process heat and electricity in biorefineries. Most studies assume lignin is combusted onsite, but exporting lignin to be cofired at coal power plants has the potential to substantially reduce biorefinery capital costs. We assess the life-cycle GHG emissions, water use, and capital costs associated with four representative biorefinery test cases. Each case is evaluated in the context of a U.S. national scenario in which corn stover, wheat straw, and Miscanthus are converted to 1.4 EJ (60 billion liters) of ethanol annually. Life-cycle GHG emissions range from 4.7 to 61 g CO2e/MJ of ethanol (compared with ∼ 95 g CO2e/MJ of gasoline), depending on biorefinery configurations and marginal electricity sources. Exporting lignin can achieve GHG emission reductions comparable to onsite combustion in some cases, reduce life-cycle water consumption by up to 40%, and reduce combined heat and power-related capital costs by up to 63%. However, nearly 50% of current U.S. coal-fired power generating capacity is expected to be retired by 2050, which will limit the capacity for lignin cofiring and may double transportation distances between biorefineries and coal power plants.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es5012753&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/es5012753&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu