- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023 Russian FederationPublisher:MM Publishing, s.r.o. Abdali, L. M.; Al–maliki, M. N.; Hejeejo, R. H.; Issa, H. A.; Yakimovich, B. A.; Shcheklein, S. E.; Velkin, V. I.; Kuvshinov, V. V.;Ensuring the quality of energy supply to remote regions is relevant for grid companies and the state. One of the solutions to this problem is the use of renewable energy sources to generate electrical energy. Given this, the article considers an integrated approach to designing combined autonomous energy systems of an individual residential building based on renewable energy sources with the complete replacement of traditional energy carriers. In addition to the combined power system, the proposed solution implies using an insulated facade of the building, which will reduce heat loss by 1.5 times, compared with an un-insulated building. to increase the reliability of the energy supply, the project provides for a wind power plant, a backup diesel generator station and a battery pack with an inverter. Estimated calculations have shown that the probability of failure of the power system of this configuration is 3%. The conducted ecological and economic justification of the use of an autonomous combined power system allows us to conclude that 2.1 tons of conventional fuel per year is saved and the payback of the energy supply system for a period of up to 8 years.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17973/mmsj.2023_12_2023131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17973/mmsj.2023_12_2023131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Allerton Press Authors: S. E. Shcheklein; Naseer T. Alwan; Obed M. Ali;The limited productivity of conventional solar still is considered as the main obstacle that restricts their implementation. Hence the objective of the current study is to enhance the productivity of conventional solar still (CSS) by increasing the evaporation area using a rotating hollow drum. Many factors have been considered in the investigation of the enhanced solar still (ESS) productivity; including environmental factors and operation factors such as drum rotational speed. Three rotational speeds have been used in the experimental tests (0.5, 1, and 3 rpm) during three typical days 12, 13, and 14 June 2019. All tests done for 12 h from 8:00 am to 20:00 pm. Study results showed that the productivity enhanced by about 161% with 0.5 rpm, 111% with 1 rpm, and 75% with 3 rpm rotational speed compared to conventional solar still. Accordingly, the productivity increased with decreasing rotational speed and the maximum value obtained at the lower speed (0.5 rpm).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3103/s0003701x20040040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3103/s0003701x20040040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2017 Russian FederationPublisher:EDP Sciences Velkin, V. I.; Shcheklein, S. E.; Ismail, H.; Nikitin, A.; Chikansev, G.;This paper describes the experimental test bench used in coolant flow research with application of adjusted optical laser system. It is based on the technology of pulsed particle visualization of micro tracers, i.e. Particle Image Velocimetry (PIV system) that allows for the analysis of the microstructure of the hydrodynamic liquid flow passed through the vortex inserts. Optical measurement (PIV-method) of hydro- and aerodynamic characteristics of the coolant flow allowed obtaining the velocity distribution in straight and various curved sections of the pipeline in order to reliably define the vortex formation condition and the occurrence of the pressure gradient on the outer and inner walls of the curved sections. This gives us the opportunity to verify the calculation models describing the problem of passive control (decrease) of the displacement of pipelines of power equipment, and thus to improve the reliability and safe operation of the system in general.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/matecconf/201711505012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/matecconf/201711505012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type , Article 2014 Russian FederationPublisher:WIT Press Authors: Shcheklein, S. E.; Shastin, A. G.; Domanskaya, I. K.;doi: 10.2495/eq140872
The technology of power generation from nuclear power is accompanied by the formation of radioactive waste, which has significant potential environmental hazards. This paper proposes new methods of decontamination of NPP equipment with fluids that immediately after use can be converted into an environmentally safe condition – curing methods of decontamination solutions. A characteristic feature of curable solutions decontamination methods is that the composition of the decontamination solution, and also processes in the solution during deactivation, affect the subsequent transfer of this solution to a solid state, as well as on the properties of the matrix, which will be “sealed” removed radionuclides. The main factor determining the course of the process of decontamination methods can be divided into contact, acid-abrasive, ultrasound and combined. Concerning the main component of the decontamination solution (slurry) methods can be subdivided into solutions with hydraulic binders, clay slurry (with conventional clay and a clay with a high alumina content) suspension of diatomite and combined. The means of transfer of the solutions used in the solid state methods are divided into “self-curing” heat treatable and cemented. Application of methods of the curing solution allows us to reduce the number of operations to deactivate air conditioning that provides economic benefits and allows us to create a whole class of portable equipment and to reduce the amount ongoing to dump 4–6 times in comparison with cemented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2495/eq140872&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2495/eq140872&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: A.M. Dubinin; S. E. Shcheklein;Abstract The physico - chemical analysis of the energy efficiency of the installation with high-temperature fuel cells (SOFC) operating on the hydrogen-containing gas mixture (synthesis gas) obtained in the catalytic process directly in the car from liquid fuel - methanol. The resulting energy is used for an electric vehicle engine. The electrical efficiency of the installation is 42.1%, which for energy efficiency corresponds to the level of the best modern internal combustion engines.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2021.05.126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2021.05.126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2020 Russian FederationPublisher:AIP Publishing Authors: Alwan, N. T.; Shcheklein, S. E.; Ali, O. M.;doi: 10.1063/5.0027426
The limited productivity of conventional solar distillation system is one of the most prominent obstacles that engage researchers to seek for solving using various technologies. Though many technologies suggested to enhance the rate of freshwater production, most of them are expensive and require special equipment for implementation. Therefore, the current work aims to increase solar distillery production and reduce the production cost using new technology. The current study is a hybrid system consisting of the conventional solar still CSS and photoelectric diffusion-absorption refrigerator (DAR), which consumes relatively low power energy 79 W. This is to increase the basin water temperature and the surface area of condensation which improving daytime production and continuity during the night. From the analysis of experimental results, it is observed that the daytime production of conventional solar still integrated with a diffusion-absorption refrigerator (CSSIDAR) model improved by 251% compared to a conventional solar still CSS model and improved by 470% during the nighttime. The estimated cost to produce 1 liter of freshwater from CSS and CSSIDAR found to be 0.051 $ and 0.046 $, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0027426&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0027426&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2017 Russian FederationPublisher:EDP Sciences Authors: Shcheklein, S.;Are the results of the pilot study intensive cooling pools extracts of spent nuclear fuel at nuclear power plants using vapor-dynamic technology. The possibility of passive heat dissipation energy axially heat flow density above 106 W/m2.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/matecconf/201711506008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/matecconf/201711506008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Russian FederationPublisher:MDPI AG Authors: Mohammed A. Qasim; Vladimir I. Velkin; Sergey E. Shcheklein;doi: 10.3390/app12157948
At the present time, the entire world is suffering from global climate change due to emissions caused by the combustion of fossil fuels. Thus, it is necessary to look for alternative power sources to generate clean electrical energy. Thermoelectric generators (TEG) are one of these alternatives. They convert thermal energy into useful electricity. There are many thermal energy sources such as hot water pipes. The current paper aims to convert waste heat from solar water-fed hot water pipes into electricity using a TEG panel made from 15 × 10 TEG modules. A pipe through which hot water flows serves as the hot side of the panel. The cold side of the panel is cooled using normal tap water. The maximum recorded temperature difference is 42.35 °C which yields an open-circuit voltage of 15.3 V. The maximum efficiency of the panel is 2.1% with an average energy production of 1.435 kWh. This proposed novel TEG panel system can be used continuously day and night. This is in contrast to a solar system, which operates only during the day, as it relies solely on solar radiation.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3417/12/15/7948/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app12157948&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3417/12/15/7948/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app12157948&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Russian FederationPublisher:International Journal of Renewable Energy Research Aljashaami, B. A.; Salih, S. A.; Alwan, N. T.; Qasim, M. A.; Majeed, M. H.; Mola, A. H.; Velkin, V. I.; Shcheklein, S. E.; Lobocki, L.;This study aims to provide a clear vision of the potential of solar heating installations currently available in the market as a successful alternative to traditional methods, economic feasibility, and contribution to reducing greenhouse gas emissions. The study involves using solar energy to provide the energy needed to heat a house in Warsaw. The solar installations were tested, and their performance was simulated and compared based on production quantity with cost and suitability for the climatic conditions of the study area. In addition to determining the best way to install solar panels by calculating optimal tilt and azimuth angles. The work methodology for designing a suitable solar system went in two directions; the first is using a solar thermal collector in direct heat generation, while the second is using photovoltaic panels to generate electricity to heat water by a water heater. All results were obtained through simulation work in RETScreen and PVGIS software. The results showed that solar thermal collectors and photovoltaic panels contributed to the annual energy demand by 40% and 43%, and the financial returns in case the conventional energy is electricity or natural gas are 715 and 252 EUR (for STC) and 765 and 269 EUR (for PV), respectively. It also reduced annual emissions by 2.36 and 2.53 tCO2. © 2023, International Journal of Renewable Energy Research. All Rights Reserved. Funding from the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program) is gratefully acknowledged: Grant Number FEUZ-2022-0031. Ministry of Education and Science of the Russian Federation, Minobrnauka: FEUZ-2022-0031
International Journa... arrow_drop_down International Journal of Renewable Energy ResearchArticle . 2023 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20508/ijrer.v13i2.13768.g8722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Renewable Energy ResearchArticle . 2023 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20508/ijrer.v13i2.13768.g8722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type , Article 2017 Russian FederationPublisher:WIT Press Authors: Shcheklein, S. E.; Dubinin, A. M.;doi: 10.2495/esus170421
In Russia, 3.4 billion tons of municipal solid wastes (SW) are accumulated annually. Over 40 thousand hectares of fertile lands have been used for solid waste disposal; and the areas to be disposed each year for the SW landfills amount to as much as three thousand hectares. This work presents calculation results are reported from the study of a power plant based on the solid oxide fuel cells (SOFCs), which utilizes as fuel the synthesis gas generated through the SW steam gasification in an autothermal gasifier. Solid oxide fuel cells (SOFCs) are the most convenient for such a combined system, as due to high operating temperatures they do not require high fuel quality. The calculations have demonstrated the following: the temperature in the reaction vessel of the gasifier is at 1,000°С, the synthesis gas output is 55 m3/h, the chemical efficiency is 35.4%, and the synthesis gas combustion heat is 1.6352 kJ/kg of synthesis gas. The electric power electrochemical generator is 97.86 kW, the (total) electric efficiency of electrochemical generator is 39.1%, the temperature of gases effluent from the boiler-utilizer is at 630°С. Theorized the possibility of solid waste into electrical and thermal energy with full efficiency more than 79%. © 2017 WIT Press. ACKNOWLEDGEMENT This article should be prepared with the financial support of the Government of the Russian Federation (contract No. 02. And 03.21.0006).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2495/esus170421&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2495/esus170421&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 Russian FederationPublisher:MM Publishing, s.r.o. Abdali, L. M.; Al–maliki, M. N.; Hejeejo, R. H.; Issa, H. A.; Yakimovich, B. A.; Shcheklein, S. E.; Velkin, V. I.; Kuvshinov, V. V.;Ensuring the quality of energy supply to remote regions is relevant for grid companies and the state. One of the solutions to this problem is the use of renewable energy sources to generate electrical energy. Given this, the article considers an integrated approach to designing combined autonomous energy systems of an individual residential building based on renewable energy sources with the complete replacement of traditional energy carriers. In addition to the combined power system, the proposed solution implies using an insulated facade of the building, which will reduce heat loss by 1.5 times, compared with an un-insulated building. to increase the reliability of the energy supply, the project provides for a wind power plant, a backup diesel generator station and a battery pack with an inverter. Estimated calculations have shown that the probability of failure of the power system of this configuration is 3%. The conducted ecological and economic justification of the use of an autonomous combined power system allows us to conclude that 2.1 tons of conventional fuel per year is saved and the payback of the energy supply system for a period of up to 8 years.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17973/mmsj.2023_12_2023131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17973/mmsj.2023_12_2023131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Allerton Press Authors: S. E. Shcheklein; Naseer T. Alwan; Obed M. Ali;The limited productivity of conventional solar still is considered as the main obstacle that restricts their implementation. Hence the objective of the current study is to enhance the productivity of conventional solar still (CSS) by increasing the evaporation area using a rotating hollow drum. Many factors have been considered in the investigation of the enhanced solar still (ESS) productivity; including environmental factors and operation factors such as drum rotational speed. Three rotational speeds have been used in the experimental tests (0.5, 1, and 3 rpm) during three typical days 12, 13, and 14 June 2019. All tests done for 12 h from 8:00 am to 20:00 pm. Study results showed that the productivity enhanced by about 161% with 0.5 rpm, 111% with 1 rpm, and 75% with 3 rpm rotational speed compared to conventional solar still. Accordingly, the productivity increased with decreasing rotational speed and the maximum value obtained at the lower speed (0.5 rpm).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3103/s0003701x20040040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3103/s0003701x20040040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2017 Russian FederationPublisher:EDP Sciences Velkin, V. I.; Shcheklein, S. E.; Ismail, H.; Nikitin, A.; Chikansev, G.;This paper describes the experimental test bench used in coolant flow research with application of adjusted optical laser system. It is based on the technology of pulsed particle visualization of micro tracers, i.e. Particle Image Velocimetry (PIV system) that allows for the analysis of the microstructure of the hydrodynamic liquid flow passed through the vortex inserts. Optical measurement (PIV-method) of hydro- and aerodynamic characteristics of the coolant flow allowed obtaining the velocity distribution in straight and various curved sections of the pipeline in order to reliably define the vortex formation condition and the occurrence of the pressure gradient on the outer and inner walls of the curved sections. This gives us the opportunity to verify the calculation models describing the problem of passive control (decrease) of the displacement of pipelines of power equipment, and thus to improve the reliability and safe operation of the system in general.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/matecconf/201711505012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/matecconf/201711505012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type , Article 2014 Russian FederationPublisher:WIT Press Authors: Shcheklein, S. E.; Shastin, A. G.; Domanskaya, I. K.;doi: 10.2495/eq140872
The technology of power generation from nuclear power is accompanied by the formation of radioactive waste, which has significant potential environmental hazards. This paper proposes new methods of decontamination of NPP equipment with fluids that immediately after use can be converted into an environmentally safe condition – curing methods of decontamination solutions. A characteristic feature of curable solutions decontamination methods is that the composition of the decontamination solution, and also processes in the solution during deactivation, affect the subsequent transfer of this solution to a solid state, as well as on the properties of the matrix, which will be “sealed” removed radionuclides. The main factor determining the course of the process of decontamination methods can be divided into contact, acid-abrasive, ultrasound and combined. Concerning the main component of the decontamination solution (slurry) methods can be subdivided into solutions with hydraulic binders, clay slurry (with conventional clay and a clay with a high alumina content) suspension of diatomite and combined. The means of transfer of the solutions used in the solid state methods are divided into “self-curing” heat treatable and cemented. Application of methods of the curing solution allows us to reduce the number of operations to deactivate air conditioning that provides economic benefits and allows us to create a whole class of portable equipment and to reduce the amount ongoing to dump 4–6 times in comparison with cemented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2495/eq140872&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2495/eq140872&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: A.M. Dubinin; S. E. Shcheklein;Abstract The physico - chemical analysis of the energy efficiency of the installation with high-temperature fuel cells (SOFC) operating on the hydrogen-containing gas mixture (synthesis gas) obtained in the catalytic process directly in the car from liquid fuel - methanol. The resulting energy is used for an electric vehicle engine. The electrical efficiency of the installation is 42.1%, which for energy efficiency corresponds to the level of the best modern internal combustion engines.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2021.05.126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2021.05.126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2020 Russian FederationPublisher:AIP Publishing Authors: Alwan, N. T.; Shcheklein, S. E.; Ali, O. M.;doi: 10.1063/5.0027426
The limited productivity of conventional solar distillation system is one of the most prominent obstacles that engage researchers to seek for solving using various technologies. Though many technologies suggested to enhance the rate of freshwater production, most of them are expensive and require special equipment for implementation. Therefore, the current work aims to increase solar distillery production and reduce the production cost using new technology. The current study is a hybrid system consisting of the conventional solar still CSS and photoelectric diffusion-absorption refrigerator (DAR), which consumes relatively low power energy 79 W. This is to increase the basin water temperature and the surface area of condensation which improving daytime production and continuity during the night. From the analysis of experimental results, it is observed that the daytime production of conventional solar still integrated with a diffusion-absorption refrigerator (CSSIDAR) model improved by 251% compared to a conventional solar still CSS model and improved by 470% during the nighttime. The estimated cost to produce 1 liter of freshwater from CSS and CSSIDAR found to be 0.051 $ and 0.046 $, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0027426&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/5.0027426&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2017 Russian FederationPublisher:EDP Sciences Authors: Shcheklein, S.;Are the results of the pilot study intensive cooling pools extracts of spent nuclear fuel at nuclear power plants using vapor-dynamic technology. The possibility of passive heat dissipation energy axially heat flow density above 106 W/m2.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/matecconf/201711506008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/matecconf/201711506008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Russian FederationPublisher:MDPI AG Authors: Mohammed A. Qasim; Vladimir I. Velkin; Sergey E. Shcheklein;doi: 10.3390/app12157948
At the present time, the entire world is suffering from global climate change due to emissions caused by the combustion of fossil fuels. Thus, it is necessary to look for alternative power sources to generate clean electrical energy. Thermoelectric generators (TEG) are one of these alternatives. They convert thermal energy into useful electricity. There are many thermal energy sources such as hot water pipes. The current paper aims to convert waste heat from solar water-fed hot water pipes into electricity using a TEG panel made from 15 × 10 TEG modules. A pipe through which hot water flows serves as the hot side of the panel. The cold side of the panel is cooled using normal tap water. The maximum recorded temperature difference is 42.35 °C which yields an open-circuit voltage of 15.3 V. The maximum efficiency of the panel is 2.1% with an average energy production of 1.435 kWh. This proposed novel TEG panel system can be used continuously day and night. This is in contrast to a solar system, which operates only during the day, as it relies solely on solar radiation.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3417/12/15/7948/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app12157948&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3417/12/15/7948/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app12157948&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Russian FederationPublisher:International Journal of Renewable Energy Research Aljashaami, B. A.; Salih, S. A.; Alwan, N. T.; Qasim, M. A.; Majeed, M. H.; Mola, A. H.; Velkin, V. I.; Shcheklein, S. E.; Lobocki, L.;This study aims to provide a clear vision of the potential of solar heating installations currently available in the market as a successful alternative to traditional methods, economic feasibility, and contribution to reducing greenhouse gas emissions. The study involves using solar energy to provide the energy needed to heat a house in Warsaw. The solar installations were tested, and their performance was simulated and compared based on production quantity with cost and suitability for the climatic conditions of the study area. In addition to determining the best way to install solar panels by calculating optimal tilt and azimuth angles. The work methodology for designing a suitable solar system went in two directions; the first is using a solar thermal collector in direct heat generation, while the second is using photovoltaic panels to generate electricity to heat water by a water heater. All results were obtained through simulation work in RETScreen and PVGIS software. The results showed that solar thermal collectors and photovoltaic panels contributed to the annual energy demand by 40% and 43%, and the financial returns in case the conventional energy is electricity or natural gas are 715 and 252 EUR (for STC) and 765 and 269 EUR (for PV), respectively. It also reduced annual emissions by 2.36 and 2.53 tCO2. © 2023, International Journal of Renewable Energy Research. All Rights Reserved. Funding from the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program) is gratefully acknowledged: Grant Number FEUZ-2022-0031. Ministry of Education and Science of the Russian Federation, Minobrnauka: FEUZ-2022-0031
International Journa... arrow_drop_down International Journal of Renewable Energy ResearchArticle . 2023 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20508/ijrer.v13i2.13768.g8722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Renewable Energy ResearchArticle . 2023 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20508/ijrer.v13i2.13768.g8722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type , Article 2017 Russian FederationPublisher:WIT Press Authors: Shcheklein, S. E.; Dubinin, A. M.;doi: 10.2495/esus170421
In Russia, 3.4 billion tons of municipal solid wastes (SW) are accumulated annually. Over 40 thousand hectares of fertile lands have been used for solid waste disposal; and the areas to be disposed each year for the SW landfills amount to as much as three thousand hectares. This work presents calculation results are reported from the study of a power plant based on the solid oxide fuel cells (SOFCs), which utilizes as fuel the synthesis gas generated through the SW steam gasification in an autothermal gasifier. Solid oxide fuel cells (SOFCs) are the most convenient for such a combined system, as due to high operating temperatures they do not require high fuel quality. The calculations have demonstrated the following: the temperature in the reaction vessel of the gasifier is at 1,000°С, the synthesis gas output is 55 m3/h, the chemical efficiency is 35.4%, and the synthesis gas combustion heat is 1.6352 kJ/kg of synthesis gas. The electric power electrochemical generator is 97.86 kW, the (total) electric efficiency of electrochemical generator is 39.1%, the temperature of gases effluent from the boiler-utilizer is at 630°С. Theorized the possibility of solid waste into electrical and thermal energy with full efficiency more than 79%. © 2017 WIT Press. ACKNOWLEDGEMENT This article should be prepared with the financial support of the Government of the Russian Federation (contract No. 02. And 03.21.0006).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2495/esus170421&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2495/esus170421&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu