Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://www.witpress....arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://www.witpress.com/Secure...
Conference object
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.2495/esus17...
Conference object . 2017 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

SOLID WASTES CONVERSION INTO ELECTRIC AND THERMAL ENERGY USING A GASIFIER AND AN ELECTROCHEMICAL GENERATOR

Authors: Shcheklein, S. E.; Dubinin, A. M.;

SOLID WASTES CONVERSION INTO ELECTRIC AND THERMAL ENERGY USING A GASIFIER AND AN ELECTROCHEMICAL GENERATOR

Abstract

In Russia, 3.4 billion tons of municipal solid wastes (SW) are accumulated annually. Over 40 thousand hectares of fertile lands have been used for solid waste disposal; and the areas to be disposed each year for the SW landfills amount to as much as three thousand hectares. This work presents calculation results are reported from the study of a power plant based on the solid oxide fuel cells (SOFCs), which utilizes as fuel the synthesis gas generated through the SW steam gasification in an autothermal gasifier. Solid oxide fuel cells (SOFCs) are the most convenient for such a combined system, as due to high operating temperatures they do not require high fuel quality. The calculations have demonstrated the following: the temperature in the reaction vessel of the gasifier is at 1,000°С, the synthesis gas output is 55 m3/h, the chemical efficiency is 35.4%, and the synthesis gas combustion heat is 1.6352 kJ/kg of synthesis gas. The electric power electrochemical generator is 97.86 kW, the (total) electric efficiency of electrochemical generator is 39.1%, the temperature of gases effluent from the boiler-utilizer is at 630°С. Theorized the possibility of solid waste into electrical and thermal energy with full efficiency more than 79%. © 2017 WIT Press. ACKNOWLEDGEMENT This article should be prepared with the financial support of the Government of the Russian Federation (contract No. 02. And 03.21.0006).

Country
Russian Federation
Keywords

HYDROGEN FRACTION, SOLID OXIDE FUEL CELLS (SOFC), POWER, HEAT, ELECTROCHEMICAL GENERATOR, STOICHIOMETRY, EMF, AUTOTHERMAL STEAM GASIFICATION, DOMESTIC SOLID WASTES, TEMPERATURE, (TOTAL) EFFICIENCY

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Green
bronze