Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
23 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • Authors: Takuya Goto; Yasuhiko Ito; Hironori Nakajima; Katsutoshi Kobayashi;

    Nitrogen electrode reaction has been investigated in a LiCl-KCl-CsCl melt containing Li 3 N. The following reaction, N 3 - → ½N 2 + 3e - , is confirmed by quantitative analysis of anodically evolved gas. The Nernst relation holds for the rest potential of Ni electrodes at nitrogen gas pressure, p N 2 , of 0.1-1.0 atm and the anion fraction of N 3 - ion, x N 3-, of 0.003-0.020 (anion fraction). Then the standard formal potential of N 2 /N 3 - , E 0 ' N 2 / N 3-, is evaluated to be 0.193 ′ 0.003 V vs. Li + /Li (p N 2 = 1 atm,x N 3- = 1) at 673 K. The dependence of E 0 ' N 2 / N 3- upon the temperature (605-721 K) gives a linear relation, whose slope is (-0.790 ′ 0.096) X 10 - 3 V K - 1 . Thermodynamic quantities for formation of Li 3 N in the melt are also estimated.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Toshiaki Konomi; Hironori Nakajima; Tatsumi Kitahara;

    The influence of microporous layer (MPL) design parameters for gas diffusion layers (GDLs) on the performance of polymer electrolyte fuel cells (PEFCs) was clarified. Appropriate MPL design parameters vary depending on the humidification of the supplied gas. Under low humidification, decreasing both the MPL pore diameter and the content of polytetrafluoroethylene (PTFE) in the MPL is effective to prevent drying-up of the membrane electrode assembly (MEA) and enhance PEFC performance. Increasing the MPL thickness is also effective for maintaining the humidity of the MEA. However, when the MPL thickness becomes too large, oxygen transport to the electrode through the MPL is reduced, which lowers PEFC performance. Under high humidification, decreasing the MPL mean flow pore diameter to 3 μm is effective for the prevention of flooding and enhancement of PEFC performance. However, when the pore diameter becomes too small, the PEFC performance tends to decrease. Both reduction of the MPL thickness penetrated into the substrate and increase in the PTFE content to 20 mass% enhance the ability of the MPL to prevent flooding.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Power Sou...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Power Sources
    Article . 2010 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    137
    citations137
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Power Sou...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Power Sources
      Article . 2010 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Yasuhiko Ito; Toshiyuki Nohira; Hironori Nakajima;

    Infrared spectroscopy of molten LiCl-KCl-LiH at 673 K provided absorption band in the wavenumber region of for several ion concentrations. This absorption band is ascribed to the vibration of ion pair in the melt. The absorption band ascribed to the vibration of ion pair was not observed in the melt. The existence of the Li-H interaction shows a strong attractive force between ion and ion in the melt. © 2004 The Electrochemical Society. All rights reserved.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Tatsumi Kitahara; Hironori Nakajima;

    Current distribution of a practical solid oxide fuel cell (SOFC) has been analyzed from a thermal analysis combined with surface temperature measurements. Electrochemical impedance spectroscopy with two-electrode set-up is employed on an anode-supported microtubular SOFC. This cell is an intermediate temperature SOFC composed of an Ni/(ZrO2)0.9(Y2O3)0.1 cermet anode, an La0.8Sr0.2Ga0.8Mg0.2O2.8 electrolyte, and an (La0.6Sr0.4)(Co0.2Fe0.8)O3 cathode. The impedance spectra give the resistances at the anode and cathode, and the cell Ohmic resistance. By numerically integrating these resistances, overpotentials are evaluated. The overpotentials and the single electrode (electrochemical) Peltier heats, at the anode and cathode provide individual heat production rates. Since the energy balance equations incorporating these heat production rates determined by current yield the surface temperatures of the cell, local current densities are obtained so that this calculated and measured temperatures by thermocouples at several positions in the anode and cathode surfaces coincide.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ECS Transactionsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ECS Transactions
    Article . 2011 . Peer-reviewed
    License: IOP Copyright Policies
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ECS Meeting Abstracts
    Article . 2011 . Peer-reviewed
    License: IOP Copyright Policies
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ECS Transactionsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ECS Transactions
      Article . 2011 . Peer-reviewed
      License: IOP Copyright Policies
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ECS Meeting Abstracts
      Article . 2011 . Peer-reviewed
      License: IOP Copyright Policies
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Kosuke Shinto; Hironori Nakajima; Hironori Nakajima; Tatsumi Kitahara; +2 Authors

    Abstract Enhancement of the performance of polymer electrolyte fuel cells (PEFCs) requires an appropriate water balance between the conservation of membrane humidity and the discharge of excess water produced in the cell. In the present study, a novel triple microporous layer (MPL) coated gas diffusion layer (GDL), in which a hydrophilic layer was coated on a hydrophobic double MPL, was developed to enhance the PEFC performance under both low and high humidity. The thin hydrophilic layer in the triple MPL is effective at conserving the humidity of the membrane electrode assembly (MEA) under low humidity, while the hydrophobic double MPL between the hydrophilic layer and the carbon paper substrate prevents removal of water from the hydrophilic layer. This results in a significant enhancement of the ability of the GDL to prevent dehydration of the MEA. The triple MPL coated GDL, where the polytetrafluoroethylene (PTFE) content in the hydrophobic MPL in contact with the hydrophilic layer is set to 30 mass% and that in contact with the substrate is set to 10 mass%, is effective at expelling excess water from the catalyst layer, which results in much higher PEFC performance under high humidity than that for a conventional hydrophobic MPL coated GDL.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Power Sou...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Power Sources
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    83
    citations83
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Power Sou...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Power Sources
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hironori Nakajima; Akiko Inada; Tatsumi Kitahara; Yusaku Nagata;

    Lithium ion batteries have the issue of internal short circuiting by the electrodeposition of metal at the negative electrode. This deposition follows the dissolution of contaminated metal particles incorporated into the positive electrode in manufacturing process. Thus, we have investigated the dissolution­/deposition behavior of metals such as copper, nickel, iron, and stainless steel so far1. We also proposed a diagnosis method for the incorporation of the metal particles by electrochemical impedance spectroscopy, taking advantage of characteristic changes of the impedance spectra (phase angle) between 10-­1 Hz1. In the present study, we investigate the time variation of the impedance spectra associated with the growth of the metal deposits at the negative electrode. Test cells were assembled with positive electrodes of metal plates of iron, nickel and stainless steel, electrolyte solution of ethylene carbonate (EC)/diethylcarbonate (DEC) (1:1 vol.) containing 1 M LiPF6, and negative electrodes of graphite mixed with PVDF binder. Potential between the metal plates and the negative electrode was maintained at 4.2 V by a potentio/galvanostat to electrochemically dissolve the metal plate at the positive electrode and deposit the metals at the negative electrode, while the negative electrode was maintained at 0.3 V against a lithium wire in the test cell by an auxiliary potentio/galvanostat to reproduce the potentials in a lithium ion battery. We observe the metal deposits at the negative electrodes from the iron, nickel and stainless steel plates by FE-SEM and EDX. Time variations of the phase angle in the impedance spectra between 10­-1 Hz for the above metal deposits are correlated with the metal growth, taking into account the impedance of the SEI layer at the metal surface. 1. Hironori Nakajima, and Tatsumi Kitahara, Diagnosis Method to Detect the Incorporation of Metallic Particles in a Lithium Ion Battery, ECS Trans., Vol. 68, 2, 59-74 (2015).

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ECS Meeting Abstract...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ECS Meeting Abstracts
    Article . 2016 . Peer-reviewed
    License: IOP Copyright Policies
    Data sources: Crossref
    ECS Transactions
    Article . 2017 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ECS Meeting Abstract...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ECS Meeting Abstracts
      Article . 2016 . Peer-reviewed
      License: IOP Copyright Policies
      Data sources: Crossref
      ECS Transactions
      Article . 2017 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Tatsumi Kitahara; Hironori Nakajima;

    Lithium ion batteries have the issue of internal short circuiting by the electrodeposition of metal at the negative electrode. This deposition follows the dissolution of metal particles incorporated into the positive electrode in manufacturing process. Thus, we have investigated the dissolution-deposition behavior of metals such as iron and copper using cyclic voltammetry and SEM/EDX. We have also addressed diagnosis method for the incorporation of the metal particles by electrochemical impedance spectroscopy. Test cells were assembled with positive electrodes of LiCoO2 mixed with acetylene black as conductive filler and PVDF binder, electrolyte solution of ethylene carbonate (EC)/diethylcarbonate (DEC) (1:1 vol.) containing 1 M LiPF6, and negative electrodes of graphite mixed with PVDF binder. Lithium metal was used as a reference electrode. Cyclic voltammetry was carried out with positive electrodes of iron plate and copper foil as working electrodes. Current onset potentials originating in the anodic dissolution of iron and copper were around 2.4 V and 3.6 V (vs. Li+/Li), respectively[1]. Hence those metal dissolve during charging of a cell. The anodic current for copper was larger than that for iron. Iron particle with a diameter of 150 μm, and copper particle with a diameter of 100 μm were adhered to the positive electrode surface. The fully charged cell by 1C with the iron particle exhibited no rapid voltage drop for one week whereas the cell with the copper particle showed rapid voltage drop before full charge, resulting in the short circuit much earlier than iron in agreement with the larger anodic dissolution current shown by the cyclic voltammetry. SEM and EDX observations of the surface of the negative electrode after charging showed iron and copper depositions in torus-shape. We also repeatedly maintained the cells with those metal particles under fully charged state (SOC:100%) for 24 hours before a discharging/charging cycle to assess the time variation of impedance spectra. As a result, we find characteristic change of the Bode plot for the negative electrode in the case of iron particles between 10-1 Hz as shown in Fig. 1. Since time variation in the impedance spectra was detected, electrochemical impedance spectroscopy is effective diagnosis method to detect the metal particle incorporation. [1] C. Iwakura, Y. Fukumoto, H. Inoue, S. Ohashi, S. Kobayashi, H. Tada, and M. Abe, J. Power Sources, 68, pp. 301-303 (1997). Fig. 1 Bode plots for the negative electrode (a) with and (b) without the Fe particles. Figure 1

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ECS Meeting Abstract...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ECS Meeting Abstracts
    Article . 2015 . Peer-reviewed
    License: IOP Copyright Policies
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ECS Transactions
    Article . 2015 . Peer-reviewed
    License: IOP Copyright Policies
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ECS Meeting Abstract...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ECS Meeting Abstracts
      Article . 2015 . Peer-reviewed
      License: IOP Copyright Policies
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ECS Transactions
      Article . 2015 . Peer-reviewed
      License: IOP Copyright Policies
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hironori Nakajima; Toshiyuki Nohira; Yasuhiko Ito;

    Abstract The thermoelectric power of the Li + /Li couple was measured in a LiCl–KCl eutectic melt at 633–773 K. The obtained value, 0.089 mV K −1 , gives the single electrode Peltier heat for the reaction Li + + e − ⇌ Li as − 5.8 kJ F −1 at 673 K (endothermic cathodic reaction). The single electrode Peltier heat for the reaction 1 2 H 2 + e − ⇌ H − in a molten LiCl–KCl–LiH system has been calculated using the temperature dependence of the equilibrium potential of the H 2 / H − couple measured with reference to the Li + /Li potential, which gives 5.8 kJ F − 1 (exothermic cathodic reaction) under the condition of hydrogen pressure of 1.0 atm, H − ion concentration of 0.01 (anion fraction) and 673 K. The single electrode Peltier heats for formation of Pd–Li alloys have been also evaluated.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Electrochimica Actaarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Electrochimica Acta
    Article . 2004 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    9
    citations9
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Electrochimica Actaarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Electrochimica Acta
      Article . 2004 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Kosuke Okamura; Tatsumi Kitahara; Hironori Nakajima;

    Gas diffusion layers (GDLs) coated with a hydrophobic microporous layer (MPL) have been commonly used to improve the performance of polymer electrolyte fuel cells (PEFCs). In the present study, a GDL coated with an MPL containing hydrophilic carbon nanotubes (CNTs) was developed to achieve further enhancement of the PEFC performance under both low and high humidity conditions. The less hydrophobic pores formed primarily by the CNTs are effective at conserving the membrane humidity, which enhances the performance under low humidity conditions. The MPL containing the CNTs is also effective at expelling excess water from the catalyst layer. This allows the maximum pore diameter to be decreased to 5 μm without reducing the ability to prevent flooding, resulting in a much higher performance under high humidity conditions compared with that for a hydrophobic MPL coated GDL.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ECS Transactionsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ECS Transactions
    Article . 2014 . Peer-reviewed
    License: IOP Copyright Policies
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ECS Meeting Abstracts
    Article . 2014 . Peer-reviewed
    License: IOP Copyright Policies
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ECS Transactionsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ECS Transactions
      Article . 2014 . Peer-reviewed
      License: IOP Copyright Policies
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ECS Meeting Abstracts
      Article . 2014 . Peer-reviewed
      License: IOP Copyright Policies
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Özgür Aydın; Tatsumi Kitahara; Hironori Nakajima;

    Introduction Major advantages of solid oxide fuel cells (SOFC), such as employing non-precious metals as catalyst, tolerating various fuels, and releasing high quality waste heat, are virtues of high operation temperature (873-1273 K). On the other hand, thermo-mechanical stresses, as the primary problem of the SOFC systems develop due mainly to the heat treatment and operation at high temperatures. For both planar and tubular designs, a number of numerical studies addressing the thermo-mechanical stresses have been published; the thermal expansion coefficient mismatch, residual stresses, and the spatial surface temperature variations during the operation, have been stated to be the primary reasons [1-3]. To estimate the stresses stemming particularly from the spatial temperature variations, researches have been relying on the local temperatures computed numerically with thermo-electrochemical models [1,2,4,5,6]. However, as repeatedly stated, due to the difficulty in conducting experiments at high temperatures, the models were hardly validated in terms of surface temperatures. We thus measured the local current and temperatures along a microtubular SOFC with the electrode-segmentation method. Given the surplus heat generated during the cell operation is commonly removed by excess air flow method, and this method likely affects the temperature distribution along the cells, we conducted experiments for co- and counter-flow configurations under various air flow rates. Experimental Setup The tubular anode substrate of the cell was made of NiO/YSZ (65:35 wt %). Upon coating with the 8YSZ electrolyte colloid by dip-coating, we sintered the tube at 1693 K for two hours. With a special mask designed for the segmentation of the cell, we brush-coated the La0.7Sr0.3MnO3/YSZ cathode slurry (10:3 wt %) on the electrolyte surface by a cotton swab and subsequently sintered at 1323 K for two hours. Eventually, we connected the silver wires and thermocouples to the regarding segments for local current/voltage, and temperature measurements. As depicted in Fig. 1, we fed fuel and air to the anode and cathode, respectively, in the co-flow configuration. For counter-flow configuration, we exchanged the fuel inlet and outlet, retaining inlet and outlet of the air flow. Note that we keep the segment labels as on in Fig. 1 throughout the discussion, despite the switch of the flow configuration. Though the inlet air temperature was 298 K, the fuel flow was pre-heated before entering the cell. Prior to fuel supply, we sustained the cathode surface temperatures of the segments at 1073 K by an electric furnace. Results and Discussion The temperature distribution profile along the cell alters with the gas flow configuration. With the rising air flow rate at 0.6 V in the co-flow configuration, the midstream and downstream segment temperatures arise, while the upstream segment temperature decreases with a relatively steeper slope. This entails a larger maximum temperature difference along the cell. We observe the same trend in the local currents, however, the slope of the current variations in all the segments are rather small and resemble each other. With the increasing air flow rate, at 0.6V in the counter-flow configuration, all the segment temperatures drop down, where the slope of the upstream segment is relatively higher than the other segments. As a result, the maximum temperature along the cell becomes larger. The midstream and downstream segment currents increase with rather small slopes, whereas the upstream segment current remains nearly constant. Conclusions The in-situ identified current/temperature distribution profiles for co- and counter –flow configurations differ from each other considerably. With the increasing air flow rate, the maximum temperature difference along the cell grows in both flow configurations; where the total current output variation is rather small. The counter-flow configuration exhibits larger maximum temperature difference along the cell comparing to the co-flow case. With these findings, we can deduce larger thermo-mechanical stresses at high air flow rates in the counter-flow configuration; which we will explore numerically on the basis of local temperatures in-situ measured here. References [1] K. Fischer et al., J. Fuel Cell Sci. and Technol. 6 (2009) 1-9. [2] A. Selimovic et al., M. Kemm, T. Torisson, and M. Assadi, J. Power Sources 145 (2005) 463-469. [3] O. Razbani et al., Applied Energy 105 (2013) 155-160. [4] C.-K. Lin et al., J. Power Sources 164 (2007) 238-251. [5] Nishino et al., J. Fuel Cell Sci. and Technol., 3 (2006) 33-44. [6] M. Suzuki et al., J. Power Sources, 180 (2008) 29-40. Fig. 1. Schematic of the experimental setup Figure 1

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ECS Meeting Abstract...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ECS Meeting Abstracts
    Article . 2015 . Peer-reviewed
    License: IOP Copyright Policies
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ECS Transactions
    Article . 2015 . Peer-reviewed
    License: IOP Copyright Policies
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ECS Meeting Abstract...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ECS Meeting Abstracts
      Article . 2015 . Peer-reviewed
      License: IOP Copyright Policies
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ECS Transactions
      Article . 2015 . Peer-reviewed
      License: IOP Copyright Policies
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
23 Research products
  • Authors: Takuya Goto; Yasuhiko Ito; Hironori Nakajima; Katsutoshi Kobayashi;

    Nitrogen electrode reaction has been investigated in a LiCl-KCl-CsCl melt containing Li 3 N. The following reaction, N 3 - → ½N 2 + 3e - , is confirmed by quantitative analysis of anodically evolved gas. The Nernst relation holds for the rest potential of Ni electrodes at nitrogen gas pressure, p N 2 , of 0.1-1.0 atm and the anion fraction of N 3 - ion, x N 3-, of 0.003-0.020 (anion fraction). Then the standard formal potential of N 2 /N 3 - , E 0 ' N 2 / N 3-, is evaluated to be 0.193 ′ 0.003 V vs. Li + /Li (p N 2 = 1 atm,x N 3- = 1) at 673 K. The dependence of E 0 ' N 2 / N 3- upon the temperature (605-721 K) gives a linear relation, whose slope is (-0.790 ′ 0.096) X 10 - 3 V K - 1 . Thermodynamic quantities for formation of Li 3 N in the melt are also estimated.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Toshiaki Konomi; Hironori Nakajima; Tatsumi Kitahara;

    The influence of microporous layer (MPL) design parameters for gas diffusion layers (GDLs) on the performance of polymer electrolyte fuel cells (PEFCs) was clarified. Appropriate MPL design parameters vary depending on the humidification of the supplied gas. Under low humidification, decreasing both the MPL pore diameter and the content of polytetrafluoroethylene (PTFE) in the MPL is effective to prevent drying-up of the membrane electrode assembly (MEA) and enhance PEFC performance. Increasing the MPL thickness is also effective for maintaining the humidity of the MEA. However, when the MPL thickness becomes too large, oxygen transport to the electrode through the MPL is reduced, which lowers PEFC performance. Under high humidification, decreasing the MPL mean flow pore diameter to 3 μm is effective for the prevention of flooding and enhancement of PEFC performance. However, when the pore diameter becomes too small, the PEFC performance tends to decrease. Both reduction of the MPL thickness penetrated into the substrate and increase in the PTFE content to 20 mass% enhance the ability of the MPL to prevent flooding.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Power Sou...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Power Sources
    Article . 2010 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    137
    citations137
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Power Sou...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Power Sources
      Article . 2010 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Yasuhiko Ito; Toshiyuki Nohira; Hironori Nakajima;

    Infrared spectroscopy of molten LiCl-KCl-LiH at 673 K provided absorption band in the wavenumber region of for several ion concentrations. This absorption band is ascribed to the vibration of ion pair in the melt. The absorption band ascribed to the vibration of ion pair was not observed in the melt. The existence of the Li-H interaction shows a strong attractive force between ion and ion in the melt. © 2004 The Electrochemical Society. All rights reserved.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Tatsumi Kitahara; Hironori Nakajima;

    Current distribution of a practical solid oxide fuel cell (SOFC) has been analyzed from a thermal analysis combined with surface temperature measurements. Electrochemical impedance spectroscopy with two-electrode set-up is employed on an anode-supported microtubular SOFC. This cell is an intermediate temperature SOFC composed of an Ni/(ZrO2)0.9(Y2O3)0.1 cermet anode, an La0.8Sr0.2Ga0.8Mg0.2O2.8 electrolyte, and an (La0.6Sr0.4)(Co0.2Fe0.8)O3 cathode. The impedance spectra give the resistances at the anode and cathode, and the cell Ohmic resistance. By numerically integrating these resistances, overpotentials are evaluated. The overpotentials and the single electrode (electrochemical) Peltier heats, at the anode and cathode provide individual heat production rates. Since the energy balance equations incorporating these heat production rates determined by current yield the surface temperatures of the cell, local current densities are obtained so that this calculated and measured temperatures by thermocouples at several positions in the anode and cathode surfaces coincide.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ECS Transactionsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ECS Transactions
    Article . 2011 . Peer-reviewed
    License: IOP Copyright Policies
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ECS Meeting Abstracts
    Article . 2011 . Peer-reviewed
    License: IOP Copyright Policies
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ECS Transactionsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ECS Transactions
      Article . 2011 . Peer-reviewed
      License: IOP Copyright Policies
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ECS Meeting Abstracts
      Article . 2011 . Peer-reviewed
      License: IOP Copyright Policies
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Kosuke Shinto; Hironori Nakajima; Hironori Nakajima; Tatsumi Kitahara; +2 Authors

    Abstract Enhancement of the performance of polymer electrolyte fuel cells (PEFCs) requires an appropriate water balance between the conservation of membrane humidity and the discharge of excess water produced in the cell. In the present study, a novel triple microporous layer (MPL) coated gas diffusion layer (GDL), in which a hydrophilic layer was coated on a hydrophobic double MPL, was developed to enhance the PEFC performance under both low and high humidity. The thin hydrophilic layer in the triple MPL is effective at conserving the humidity of the membrane electrode assembly (MEA) under low humidity, while the hydrophobic double MPL between the hydrophilic layer and the carbon paper substrate prevents removal of water from the hydrophilic layer. This results in a significant enhancement of the ability of the GDL to prevent dehydration of the MEA. The triple MPL coated GDL, where the polytetrafluoroethylene (PTFE) content in the hydrophobic MPL in contact with the hydrophilic layer is set to 30 mass% and that in contact with the substrate is set to 10 mass%, is effective at expelling excess water from the catalyst layer, which results in much higher PEFC performance under high humidity than that for a conventional hydrophobic MPL coated GDL.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Power Sou...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Power Sources
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    83
    citations83
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Power Sou...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Power Sources
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hironori Nakajima; Akiko Inada; Tatsumi Kitahara; Yusaku Nagata;

    Lithium ion batteries have the issue of internal short circuiting by the electrodeposition of metal at the negative electrode. This deposition follows the dissolution of contaminated metal particles incorporated into the positive electrode in manufacturing process. Thus, we have investigated the dissolution­/deposition behavior of metals such as copper, nickel, iron, and stainless steel so far1. We also proposed a diagnosis method for the incorporation of the metal particles by electrochemical impedance spectroscopy, taking advantage of characteristic changes of the impedance spectra (phase angle) between 10-­1 Hz1. In the present study, we investigate the time variation of the impedance spectra associated with the growth of the metal deposits at the negative electrode. Test cells were assembled with positive electrodes of metal plates of iron, nickel and stainless steel, electrolyte solution of ethylene carbonate (EC)/diethylcarbonate (DEC) (1:1 vol.) containing 1 M LiPF6, and negative electrodes of graphite mixed with PVDF binder. Potential between the metal plates and the negative electrode was maintained at 4.2 V by a potentio/galvanostat to electrochemically dissolve the metal plate at the positive electrode and deposit the metals at the negative electrode, while the negative electrode was maintained at 0.3 V against a lithium wire in the test cell by an auxiliary potentio/galvanostat to reproduce the potentials in a lithium ion battery. We observe the metal deposits at the negative electrodes from the iron, nickel and stainless steel plates by FE-SEM and EDX. Time variations of the phase angle in the impedance spectra between 10­-1 Hz for the above metal deposits are correlated with the metal growth, taking into account the impedance of the SEI layer at the metal surface. 1. Hironori Nakajima, and Tatsumi Kitahara, Diagnosis Method to Detect the Incorporation of Metallic Particles in a Lithium Ion Battery, ECS Trans., Vol. 68, 2, 59-74 (2015).

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ECS Meeting Abstract...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ECS Meeting Abstracts
    Article . 2016 . Peer-reviewed
    License: IOP Copyright Policies
    Data sources: Crossref
    ECS Transactions
    Article . 2017 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ECS Meeting Abstract...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ECS Meeting Abstracts
      Article . 2016 . Peer-reviewed
      License: IOP Copyright Policies
      Data sources: Crossref
      ECS Transactions
      Article . 2017 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Tatsumi Kitahara; Hironori Nakajima;

    Lithium ion batteries have the issue of internal short circuiting by the electrodeposition of metal at the negative electrode. This deposition follows the dissolution of metal particles incorporated into the positive electrode in manufacturing process. Thus, we have investigated the dissolution-deposition behavior of metals such as iron and copper using cyclic voltammetry and SEM/EDX. We have also addressed diagnosis method for the incorporation of the metal particles by electrochemical impedance spectroscopy. Test cells were assembled with positive electrodes of LiCoO2 mixed with acetylene black as conductive filler and PVDF binder, electrolyte solution of ethylene carbonate (EC)/diethylcarbonate (DEC) (1:1 vol.) containing 1 M LiPF6, and negative electrodes of graphite mixed with PVDF binder. Lithium metal was used as a reference electrode. Cyclic voltammetry was carried out with positive electrodes of iron plate and copper foil as working electrodes. Current onset potentials originating in the anodic dissolution of iron and copper were around 2.4 V and 3.6 V (vs. Li+/Li), respectively[1]. Hence those metal dissolve during charging of a cell. The anodic current for copper was larger than that for iron. Iron particle with a diameter of 150 μm, and copper particle with a diameter of 100 μm were adhered to the positive electrode surface. The fully charged cell by 1C with the iron particle exhibited no rapid voltage drop for one week whereas the cell with the copper particle showed rapid voltage drop before full charge, resulting in the short circuit much earlier than iron in agreement with the larger anodic dissolution current shown by the cyclic voltammetry. SEM and EDX observations of the surface of the negative electrode after charging showed iron and copper depositions in torus-shape. We also repeatedly maintained the cells with those metal particles under fully charged state (SOC:100%) for 24 hours before a discharging/charging cycle to assess the time variation of impedance spectra. As a result, we find characteristic change of the Bode plot for the negative electrode in the case of iron particles between 10-1 Hz as shown in Fig. 1. Since time variation in the impedance spectra was detected, electrochemical impedance spectroscopy is effective diagnosis method to detect the metal particle incorporation. [1] C. Iwakura, Y. Fukumoto, H. Inoue, S. Ohashi, S. Kobayashi, H. Tada, and M. Abe, J. Power Sources, 68, pp. 301-303 (1997). Fig. 1 Bode plots for the negative electrode (a) with and (b) without the Fe particles. Figure 1

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ECS Meeting Abstract...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ECS Meeting Abstracts
    Article . 2015 . Peer-reviewed
    License: IOP Copyright Policies
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ECS Transactions
    Article . 2015 . Peer-reviewed
    License: IOP Copyright Policies
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ECS Meeting Abstract...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ECS Meeting Abstracts
      Article . 2015 . Peer-reviewed
      License: IOP Copyright Policies
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ECS Transactions
      Article . 2015 . Peer-reviewed
      License: IOP Copyright Policies
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hironori Nakajima; Toshiyuki Nohira; Yasuhiko Ito;

    Abstract The thermoelectric power of the Li + /Li couple was measured in a LiCl–KCl eutectic melt at 633–773 K. The obtained value, 0.089 mV K −1 , gives the single electrode Peltier heat for the reaction Li + + e − ⇌ Li as − 5.8 kJ F −1 at 673 K (endothermic cathodic reaction). The single electrode Peltier heat for the reaction 1 2 H 2 + e − ⇌ H − in a molten LiCl–KCl–LiH system has been calculated using the temperature dependence of the equilibrium potential of the H 2 / H − couple measured with reference to the Li + /Li potential, which gives 5.8 kJ F − 1 (exothermic cathodic reaction) under the condition of hydrogen pressure of 1.0 atm, H − ion concentration of 0.01 (anion fraction) and 673 K. The single electrode Peltier heats for formation of Pd–Li alloys have been also evaluated.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Electrochimica Actaarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Electrochimica Acta
    Article . 2004 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    9
    citations9
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Electrochimica Actaarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Electrochimica Acta
      Article . 2004 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Kosuke Okamura; Tatsumi Kitahara; Hironori Nakajima;

    Gas diffusion layers (GDLs) coated with a hydrophobic microporous layer (MPL) have been commonly used to improve the performance of polymer electrolyte fuel cells (PEFCs). In the present study, a GDL coated with an MPL containing hydrophilic carbon nanotubes (CNTs) was developed to achieve further enhancement of the PEFC performance under both low and high humidity conditions. The less hydrophobic pores formed primarily by the CNTs are effective at conserving the membrane humidity, which enhances the performance under low humidity conditions. The MPL containing the CNTs is also effective at expelling excess water from the catalyst layer. This allows the maximum pore diameter to be decreased to 5 μm without reducing the ability to prevent flooding, resulting in a much higher performance under high humidity conditions compared with that for a hydrophobic MPL coated GDL.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ECS Transactionsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ECS Transactions
    Article . 2014 . Peer-reviewed
    License: IOP Copyright Policies
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ECS Meeting Abstracts
    Article . 2014 . Peer-reviewed
    License: IOP Copyright Policies
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ECS Transactionsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ECS Transactions
      Article . 2014 . Peer-reviewed
      License: IOP Copyright Policies
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ECS Meeting Abstracts
      Article . 2014 . Peer-reviewed
      License: IOP Copyright Policies
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Özgür Aydın; Tatsumi Kitahara; Hironori Nakajima;

    Introduction Major advantages of solid oxide fuel cells (SOFC), such as employing non-precious metals as catalyst, tolerating various fuels, and releasing high quality waste heat, are virtues of high operation temperature (873-1273 K). On the other hand, thermo-mechanical stresses, as the primary problem of the SOFC systems develop due mainly to the heat treatment and operation at high temperatures. For both planar and tubular designs, a number of numerical studies addressing the thermo-mechanical stresses have been published; the thermal expansion coefficient mismatch, residual stresses, and the spatial surface temperature variations during the operation, have been stated to be the primary reasons [1-3]. To estimate the stresses stemming particularly from the spatial temperature variations, researches have been relying on the local temperatures computed numerically with thermo-electrochemical models [1,2,4,5,6]. However, as repeatedly stated, due to the difficulty in conducting experiments at high temperatures, the models were hardly validated in terms of surface temperatures. We thus measured the local current and temperatures along a microtubular SOFC with the electrode-segmentation method. Given the surplus heat generated during the cell operation is commonly removed by excess air flow method, and this method likely affects the temperature distribution along the cells, we conducted experiments for co- and counter-flow configurations under various air flow rates. Experimental Setup The tubular anode substrate of the cell was made of NiO/YSZ (65:35 wt %). Upon coating with the 8YSZ electrolyte colloid by dip-coating, we sintered the tube at 1693 K for two hours. With a special mask designed for the segmentation of the cell, we brush-coated the La0.7Sr0.3MnO3/YSZ cathode slurry (10:3 wt %) on the electrolyte surface by a cotton swab and subsequently sintered at 1323 K for two hours. Eventually, we connected the silver wires and thermocouples to the regarding segments for local current/voltage, and temperature measurements. As depicted in Fig. 1, we fed fuel and air to the anode and cathode, respectively, in the co-flow configuration. For counter-flow configuration, we exchanged the fuel inlet and outlet, retaining inlet and outlet of the air flow. Note that we keep the segment labels as on in Fig. 1 throughout the discussion, despite the switch of the flow configuration. Though the inlet air temperature was 298 K, the fuel flow was pre-heated before entering the cell. Prior to fuel supply, we sustained the cathode surface temperatures of the segments at 1073 K by an electric furnace. Results and Discussion The temperature distribution profile along the cell alters with the gas flow configuration. With the rising air flow rate at 0.6 V in the co-flow configuration, the midstream and downstream segment temperatures arise, while the upstream segment temperature decreases with a relatively steeper slope. This entails a larger maximum temperature difference along the cell. We observe the same trend in the local currents, however, the slope of the current variations in all the segments are rather small and resemble each other. With the increasing air flow rate, at 0.6V in the counter-flow configuration, all the segment temperatures drop down, where the slope of the upstream segment is relatively higher than the other segments. As a result, the maximum temperature along the cell becomes larger. The midstream and downstream segment currents increase with rather small slopes, whereas the upstream segment current remains nearly constant. Conclusions The in-situ identified current/temperature distribution profiles for co- and counter –flow configurations differ from each other considerably. With the increasing air flow rate, the maximum temperature difference along the cell grows in both flow configurations; where the total current output variation is rather small. The counter-flow configuration exhibits larger maximum temperature difference along the cell comparing to the co-flow case. With these findings, we can deduce larger thermo-mechanical stresses at high air flow rates in the counter-flow configuration; which we will explore numerically on the basis of local temperatures in-situ measured here. References [1] K. Fischer et al., J. Fuel Cell Sci. and Technol. 6 (2009) 1-9. [2] A. Selimovic et al., M. Kemm, T. Torisson, and M. Assadi, J. Power Sources 145 (2005) 463-469. [3] O. Razbani et al., Applied Energy 105 (2013) 155-160. [4] C.-K. Lin et al., J. Power Sources 164 (2007) 238-251. [5] Nishino et al., J. Fuel Cell Sci. and Technol., 3 (2006) 33-44. [6] M. Suzuki et al., J. Power Sources, 180 (2008) 29-40. Fig. 1. Schematic of the experimental setup Figure 1

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ECS Meeting Abstract...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ECS Meeting Abstracts
    Article . 2015 . Peer-reviewed
    License: IOP Copyright Policies
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ECS Transactions
    Article . 2015 . Peer-reviewed
    License: IOP Copyright Policies
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ECS Meeting Abstract...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ECS Meeting Abstracts
      Article . 2015 . Peer-reviewed
      License: IOP Copyright Policies
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ECS Transactions
      Article . 2015 . Peer-reviewed
      License: IOP Copyright Policies
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right
Powered by OpenAIRE graph