- home
- Advanced Search
Filters
Year range
-chevron_right GOCountry
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014 CanadaPublisher:The Royal Society Funded by:SNSF | Anthropogenic carbon and ...SNSF| Anthropogenic carbon and heat uptake by the Southern OceanMajkut, Joseph; Carter, Brendan; Frölicher, Thomas; Dufour, Carolina; Rodgers, Keith; Sarmiento, Jorge;pmid: 24891388
The Southern Ocean is critically important to the oceanic uptake of anthropogenic CO 2 . Up to half of the excess CO 2 currently in the ocean entered through the Southern Ocean. That uptake helps to maintain the global carbon balance and buffers transient climate change from fossil fuel emissions. However, the future evolution of the uptake is uncertain, because our understanding of the dynamics that govern the Southern Ocean CO 2 uptake is incomplete. Sparse observations and incomplete model formulations limit our ability to constrain the monthly and annual uptake, interannual variability and long-term trends. Float-based sampling of ocean biogeochemistry provides an opportunity for transforming our understanding of the Southern Ocean CO 2 flux. In this work, we review current estimates of the CO 2 uptake in the Southern Ocean and projections of its response to climate change. We then show, via an observational system simulation experiment, that float-based sampling provides a significant opportunity for measuring the mean fluxes and monitoring the mean uptake over decadal scales.
Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2014 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2013.0046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2014 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2013.0046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 01 Jan 2023 Spain, Switzerland, Germany, Germany, France, United KingdomPublisher:American Geophysical Union (AGU) Funded by:NSF | STC: Center for Chemical ..., EC | 4C, EC | OceanPeak +4 projectsNSF| STC: Center for Chemical Currencies of a Microbial Planet ,EC| 4C ,EC| OceanPeak ,EC| COMFORT ,RCN| Infrastructure for Norwegian Earth System modelling ,NSF| Quantifying mechanisms of variability in ocean CO2 uptake 1980-present ,EC| GOCARTTim DeVries; Kana Yamamoto; Rik Wanninkhof; Nicolas Gruber; Judith Hauck; Jens Daniel Müller; Laurent Bopp; Dustin Carroll; Brendan Carter; Thi‐Tuyet‐Trang Chau; Scott C. Doney; Marion Gehlen; Lucas Gloege; Luke Gregor; Stephanie Henson; Ji Hyun Kim; Yosuke Iida; Tatiana Ilyina; Peter Landschützer; Corinne Le Quéré; David Munro; Cara Nissen; Lavinia Patara; Fiz F. Pérez; Laure Resplandy; Keith B. Rodgers; Jörg Schwinger; Roland Séférian; Valentina Sicardi; Jens Terhaar; Joaquin Triñanes; Hiroyuki Tsujino; Andrew Watson; Sayaka Yasunaka; Jiye Zeng;handle: 10261/338384
AbstractThis contribution to the RECCAP2 (REgional Carbon Cycle Assessment and Processes) assessment analyzes the processes that determine the global ocean carbon sink, and its trends and variability over the period 1985–2018, using a combination of models and observation‐based products. The mean sea‐air CO2 flux from 1985 to 2018 is −1.6 ± 0.2 PgC yr−1 based on an ensemble of reconstructions of the history of sea surface pCO2 (pCO2 products). Models indicate that the dominant component of this flux is the net oceanic uptake of anthropogenic CO2, which is estimated at −2.1 ± 0.3 PgC yr−1 by an ensemble of ocean biogeochemical models, and −2.4 ± 0.1 PgC yr−1 by two ocean circulation inverse models. The ocean also degasses about 0.65 ± 0.3 PgC yr−1 of terrestrially derived CO2, but this process is not fully resolved by any of the models used here. From 2001 to 2018, the pCO2 products reconstruct a trend in the ocean carbon sink of −0.61 ± 0.12 PgC yr−1 decade−1, while biogeochemical models and inverse models diagnose an anthropogenic CO2‐driven trend of −0.34 ± 0.06 and −0.41 ± 0.03 PgC yr−1 decade−1, respectively. This implies a climate‐forced acceleration of the ocean carbon sink in recent decades, but there are still large uncertainties on the magnitude and cause of this trend. The interannual to decadal variability of the global carbon sink is mainly driven by climate variability, with the climate‐driven variability exceeding the CO2‐forced variability by 2–3 times. These results suggest that anthropogenic CO2 dominates the ocean CO2 sink, while climate‐driven variability is potentially large but highly uncertain and not consistently captured across different methods.
OceanRep arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.science/hal-04205098Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Full-Text: https://hal.science/hal-04205098Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAElectronic Publication Information CenterArticle . 2023Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gb007780&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert OceanRep arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.science/hal-04205098Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Full-Text: https://hal.science/hal-04205098Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAElectronic Publication Information CenterArticle . 2023Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gb007780&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014 CanadaPublisher:The Royal Society Funded by:SNSF | Anthropogenic carbon and ...SNSF| Anthropogenic carbon and heat uptake by the Southern OceanMajkut, Joseph; Carter, Brendan; Frölicher, Thomas; Dufour, Carolina; Rodgers, Keith; Sarmiento, Jorge;pmid: 24891388
The Southern Ocean is critically important to the oceanic uptake of anthropogenic CO 2 . Up to half of the excess CO 2 currently in the ocean entered through the Southern Ocean. That uptake helps to maintain the global carbon balance and buffers transient climate change from fossil fuel emissions. However, the future evolution of the uptake is uncertain, because our understanding of the dynamics that govern the Southern Ocean CO 2 uptake is incomplete. Sparse observations and incomplete model formulations limit our ability to constrain the monthly and annual uptake, interannual variability and long-term trends. Float-based sampling of ocean biogeochemistry provides an opportunity for transforming our understanding of the Southern Ocean CO 2 flux. In this work, we review current estimates of the CO 2 uptake in the Southern Ocean and projections of its response to climate change. We then show, via an observational system simulation experiment, that float-based sampling provides a significant opportunity for measuring the mean fluxes and monitoring the mean uptake over decadal scales.
Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2014 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2013.0046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Philosophical Transa... arrow_drop_down Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering SciencesArticle . 2014 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsta.2013.0046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 01 Jan 2023 Spain, Switzerland, Germany, Germany, France, United KingdomPublisher:American Geophysical Union (AGU) Funded by:NSF | STC: Center for Chemical ..., EC | 4C, EC | OceanPeak +4 projectsNSF| STC: Center for Chemical Currencies of a Microbial Planet ,EC| 4C ,EC| OceanPeak ,EC| COMFORT ,RCN| Infrastructure for Norwegian Earth System modelling ,NSF| Quantifying mechanisms of variability in ocean CO2 uptake 1980-present ,EC| GOCARTTim DeVries; Kana Yamamoto; Rik Wanninkhof; Nicolas Gruber; Judith Hauck; Jens Daniel Müller; Laurent Bopp; Dustin Carroll; Brendan Carter; Thi‐Tuyet‐Trang Chau; Scott C. Doney; Marion Gehlen; Lucas Gloege; Luke Gregor; Stephanie Henson; Ji Hyun Kim; Yosuke Iida; Tatiana Ilyina; Peter Landschützer; Corinne Le Quéré; David Munro; Cara Nissen; Lavinia Patara; Fiz F. Pérez; Laure Resplandy; Keith B. Rodgers; Jörg Schwinger; Roland Séférian; Valentina Sicardi; Jens Terhaar; Joaquin Triñanes; Hiroyuki Tsujino; Andrew Watson; Sayaka Yasunaka; Jiye Zeng;handle: 10261/338384
AbstractThis contribution to the RECCAP2 (REgional Carbon Cycle Assessment and Processes) assessment analyzes the processes that determine the global ocean carbon sink, and its trends and variability over the period 1985–2018, using a combination of models and observation‐based products. The mean sea‐air CO2 flux from 1985 to 2018 is −1.6 ± 0.2 PgC yr−1 based on an ensemble of reconstructions of the history of sea surface pCO2 (pCO2 products). Models indicate that the dominant component of this flux is the net oceanic uptake of anthropogenic CO2, which is estimated at −2.1 ± 0.3 PgC yr−1 by an ensemble of ocean biogeochemical models, and −2.4 ± 0.1 PgC yr−1 by two ocean circulation inverse models. The ocean also degasses about 0.65 ± 0.3 PgC yr−1 of terrestrially derived CO2, but this process is not fully resolved by any of the models used here. From 2001 to 2018, the pCO2 products reconstruct a trend in the ocean carbon sink of −0.61 ± 0.12 PgC yr−1 decade−1, while biogeochemical models and inverse models diagnose an anthropogenic CO2‐driven trend of −0.34 ± 0.06 and −0.41 ± 0.03 PgC yr−1 decade−1, respectively. This implies a climate‐forced acceleration of the ocean carbon sink in recent decades, but there are still large uncertainties on the magnitude and cause of this trend. The interannual to decadal variability of the global carbon sink is mainly driven by climate variability, with the climate‐driven variability exceeding the CO2‐forced variability by 2–3 times. These results suggest that anthropogenic CO2 dominates the ocean CO2 sink, while climate‐driven variability is potentially large but highly uncertain and not consistently captured across different methods.
OceanRep arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.science/hal-04205098Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Full-Text: https://hal.science/hal-04205098Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAElectronic Publication Information CenterArticle . 2023Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gb007780&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert OceanRep arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.science/hal-04205098Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2023Full-Text: https://hal.science/hal-04205098Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAElectronic Publication Information CenterArticle . 2023Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gb007780&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu