- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 16 Sep 2021 Norway, France, Norway, Italy, SwitzerlandPublisher:American Geophysical Union (AGU) Funded by:EC | EXHAUSTIONEC| EXHAUSTIONErik Kjellström; Fredrik Boberg; Filippo Giorgi; Kirsten Warrach-Sagi; Nikolay Kadygrov; Carley Iles; Lola Corre; Jana Sillmann; Claas Teichmann; Silje Lund Sørland; Guillaume Levavasseur; Klaus Keuler; Erasmo Buonomo; James M. Ciarlo; James M. Ciarlo; Marie-Estelle Demory; Samuel Somot; Erik van Meijgaard; Christian Steger; Richard G. Jones; Emma Aalbers; Clemens Schwingshackl; Marit Sandstad; Grigory Nikulin; Ole Bøssing Christensen; Robert Vautard; Erika Coppola; Cosimo Solidoro; Geert Lenderink; Rita Nogherotto; Katharina Bülow; Volker Wulfmeyer; Daniela Jacob;handle: 11250/2987254 , 20.500.14243/533790
AbstractThe use of regional climate model (RCM)‐based projections for providing regional climate information in a research and climate service contexts is currently expanding very fast. This has been possible thanks to a considerable effort in developing comprehensive ensembles of RCM projections, especially for Europe, in the EURO‐CORDEX community (Jacob et al., 2014, 2020). As of end of 2019, EURO‐CORDEX has developed a set of 55 historical and scenario projections (RCP8.5) using 8 driving global climate models (GCMs) and 11 RCMs. This article presents the ensemble including its design. We target the analysis to better characterize the quality of the RCMs by providing an evaluation of these RCM simulations over a number of classical climate variables and extreme and impact‐oriented indices for the period 1981–2010. For the main variables, the model simulations generally agree with observations and reanalyses. However, several systematic biases are found as well, with shared responsibilities among RCMs and GCMs: Simulations are overall too cold, too wet, and too windy compared to available observations or reanalyses. Some simulations show strong systematic biases on temperature, others on precipitation or dynamical variables, but none of the models/simulations can be defined as the best or the worst on all criteria. The article aims at supporting a proper use of these simulations within a climate services context.
IRIS Cnr arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://insu.hal.science/insu-03660154Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://insu.hal.science/insu-03660154Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://insu.hal.science/insu-03660154Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research AtmospheresArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedJournal of Geophysical Research AtmospheresArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019jd032344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 122 citations 122 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://insu.hal.science/insu-03660154Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://insu.hal.science/insu-03660154Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://insu.hal.science/insu-03660154Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research AtmospheresArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedJournal of Geophysical Research AtmospheresArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019jd032344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Funded by:EC | IMPACT2CEC| IMPACT2CMichel Déqué; Sandro Calmanti; Ole Bøssing Christensen; Alessandro Dell Aquila; Cathrine Fox Maule; Andreas Haensler; Grigory Nikulin; Claas Teichmann;AbstractThe impact of a +2°C global warming on temperature and precipitation over tropical Africa is examined, based on an ensemble of 12 regional climate model scenario simulations. These 12 scenarios are re-phased so that they all correspond to the same global warming of 2°C with respect to pre-industrial conditions. The continental temperature increase is above the global average. If heat waves are defined with the same temperature threshold in the reference climate and in the scenario, their frequency increases by a factor of 10. When the temperature threshold is adapted to future conditions, there is still a slight increase in frequency. The average precipitation does not show a significant response, due to model-to-model spread. However two compensating phenomena occur, which are robust among the models: (a) the number of rain days decreases whereas the precipitation intensity increases, and (b) the rain season occurs later during the year with less precipitation in early summer and more precipitation in late summer. Simulated daily temperature and precipitation data are combined in two impact models, one for the hydrology of the Nile and Niger basins, one for the food security of the different countries. They show that the main feature of the climate change is not a continuous trend signal, but an alternation of dry and wet decadal to multidecadal episodes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cliser.2016.06.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 66 citations 66 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 2visibility views 2 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cliser.2016.06.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Argentina, Argentina, Brazil, Turkey, Denmark, Germany, Turkey, France, AustraliaPublisher:American Meteorological Society Katja Winger; Silvina Alicia Solman; Silvina Alicia Solman; Claas Teichmann; Jonathan Spinoni; Fredolin Tangang; Gustavo Naumann; Ole Bøssing Christensen; Erika Coppola; Torben Koenigk; Delei Li; Filippo Giorgi; Jürgen Vogt; George Zittis; Daniela Jacob; Edoardo Bucchignani; Marta Llopart; Alessandro Dosio; Paulo Barbosa; Burkhardt Rockel; Panos Hadjinicolaou; Jack Katzfey; Jozef Syktus; Niall McCormick; Tereza Cavazos; Tugba Ozturk; Jason P. Evans; Jens Hesselbjerg Christensen; Jens Hesselbjerg Christensen; Beate Geyer; John J. Cassano; Rosmeri Porfírio da Rocha; Robert Vautard; Grigory Nikulin; René Laprise; M. Levent Kurnaz; Christopher Lennard; Hans-Juergen Panitz;AbstractTwo questions motivated this study: 1) Will meteorological droughts become more frequent and severe during the twenty-first century? 2) Given the projected global temperature rise, to what extent does the inclusion of temperature (in addition to precipitation) in drought indicators play a role in future meteorological droughts? To answer, we analyzed the changes in drought frequency, severity, and historically undocumented extreme droughts over 1981–2100, using the standardized precipitation index (SPI; including precipitation only) and standardized precipitation-evapotranspiration index (SPEI; indirectly including temperature), and under two representative concentration pathways (RCP4.5 and RCP8.5). As input data, we employed 103 high-resolution (0.44°) simulations from the Coordinated Regional Climate Downscaling Experiment (CORDEX), based on a combination of 16 global circulation models (GCMs) and 20 regional circulation models (RCMs). This is the first study on global drought projections including RCMs based on such a large ensemble of RCMs. Based on precipitation only, ~15% of the global land is likely to experience more frequent and severe droughts during 2071–2100 versus 1981–2010 for both scenarios. This increase is larger (~47% under RCP4.5, ~49% under RCP8.5) when precipitation and temperature are used. Both SPI and SPEI project more frequent and severe droughts, especially under RCP8.5, over southern South America, the Mediterranean region, southern Africa, southeastern China, Japan, and southern Australia. A decrease in drought is projected for high latitudes in Northern Hemisphere and Southeast Asia. If temperature is included, drought characteristics are projected to increase over North America, Amazonia, central Europe and Asia, the Horn of Africa, India, and central Australia; if only precipitation is considered, they are found to decrease over those areas.
Işık Üniversitesi: D... arrow_drop_down Işık Üniversitesi: DSpace RepositoryArticle . 2020License: CC BY NC NDFull-Text: https://hdl.handle.net/11729/2362Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-04234306Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-04234306Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemIşık University Institutional RepositoryArticle . 2020Data sources: Işık University Institutional RepositoryDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jcli-d-19-0084.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 264 citations 264 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Işık Üniversitesi: D... arrow_drop_down Işık Üniversitesi: DSpace RepositoryArticle . 2020License: CC BY NC NDFull-Text: https://hdl.handle.net/11729/2362Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-04234306Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-04234306Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemIşık University Institutional RepositoryArticle . 2020Data sources: Işık University Institutional RepositoryDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jcli-d-19-0084.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Embargo end date: 01 Jan 2016 France, SwitzerlandPublisher:IOP Publishing Grigory Nikulin; Andreas F. Prein; Andreas F. Prein; Isabelle Tobin; Erik van Meijgaard; Cathrine Fox Maule; Sven Kotlarski; Thomas Noël; Claas Teichmann; Sonia Jerez; Robert Vautard; Françoise Thais; Michel Déqué;Wind energy resource is subject to changes in climate. To investigate the impacts of climate change on future European wind power generation potential, we analyze a multi-model ensemble of the most recent EURO-CORDEX regional climate simulations at the 12 km grid resolution. We developed a mid-century wind power plant scenario to focus the impact assessment on relevant locations for future wind power industry. We found that, under two greenhouse gas concentration scenarios, changes in the annual energy yield of the future European wind farms fleet as a whole will remain within ±5% across the 21st century. At country to local scales, wind farm yields will undergo changes up to 15% in magnitude, according to the large majority of models, but smaller than 5% in magnitude for most regions and models. The southern fleets such as the Iberian and Italian fleets are likely to be the most affected. With regard to variability, changes are essentially small or poorly significant from subdaily to interannual time scales. Environmental Research Letters, 11 (3) ISSN:1748-9326 ISSN:1748-9318
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Full-Text: https://hal.science/hal-03215445Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-03215445Data sources: Bielefeld Academic Search Engine (BASE)Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2016 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/11/3/034013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 136 citations 136 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Full-Text: https://hal.science/hal-03215445Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-03215445Data sources: Bielefeld Academic Search Engine (BASE)Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2016 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/11/3/034013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 09 Oct 2024 France, Belgium, Spain, Switzerland, Spain, Germany, Ireland, Belgium, Spain, Spain, Croatia, Denmark, Spain, Germany, Germany, Italy, Croatia, SpainPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:HRZZ | Climate of the Adriatic R...HRZZ| Climate of the Adriatic REgion in its global contextJacob, Daniela; Teichmann, Claas; Sobolowski, Stefan; Katragkou, Eleni; Anders, Ivonne; Belda, Michal; Benestad, Rasmus; Boberg, Fredrik; Buonomo, Erasmo; Cardoso, Rita M.; Casanueva, Ana; Christensen, Ole B.; Christensen, Jens Hesselbjerg; Coppola, Erika; De Cruz, Lesley; Davin, Edouard L.; Dobler, Andreas; Domínguez, Marta; Fealy, Rowan; Fernandez, Jesus; Gaertner, Miguel Angel; García-Díez, Markel; Giorgi, Filippo; Gobiet, Andreas; Goergen, Klaus; Gómez-Navarro, Juan José; Alemán, Juan Jesús González; Gutiérrez, Claudia; Gutiérrez, José M.; Güttler, Ivan; Haensler, Andreas; Halenka, Tomáš; Jerez, Sonia; Jiménez-Guerrero, Pedro; Jones, Richard G.; Keuler, Klaus; Kjellström, Erik; Knist, Sebastian; Kotlarski, Sven; Maraun, Douglas; van Meijgaard, Erik; Mercogliano, Paola; Montávez, Juan Pedro; Navarra, Antonio; Nikulin, Grigory; de Noblet-Ducoudré, Nathalie; Panitz, Hans-Juergen; Pfeifer, Susanne; Piazza, Marie; Pichelli, Emanuela; Pietikäinen, Joni-Pekka; Prein, Andreas F.; Preuschmann, Swantje; Rechid, Diana; Rockel, Burkhardt; Romera, Raquel; Sánchez, Enrique; Sieck, Kevin; Soares, Pedro M. M.; Somot, Samuel; Srnec, Lidija; Sørland, Silje Lund; Termonia, Piet; Truhetz, Heimo; Vautard, Robert; Warrach-Sagi, Kirsten; Wulfmeyer, Volker; Jacob, Daniela; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Teichmann, Claas; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Sobolowski, Stefan; NORCE Norwegian Research Centre, The Bjerknes Centre for Climate Research, Bergen, Norway; Katragkou, Eleni; Department of Meteorology and Climatology, School of Geology, Aristotle University of Thessaloniki, Thessaloniki, Greece; Anders, Ivonne; Central Institute for Meteorology and Geodynamics (ZAMG), Vienna, Austria; Belda, Michal; Department of Atmospheric Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic; Benestad, Rasmus; The Norwegian Meteorological Institute, Oslo, Norway; Boberg, Fredrik; Danish Meteorological Institute (DMI), Copenhagen, Denmark; Buonomo, Erasmo; School of Geography and the Environment, University of Oxford, Oxford, UK; Cardoso, Rita M.; Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; Casanueva, Ana; Meteorology Group, Department of Applied Mathematics and Computer Science, Universidad de Cantabria, Santander, Spain; Christensen, Ole B.; Danish Meteorological Institute (DMI), Copenhagen, Denmark; Christensen, Jens Hesselbjerg; Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark; Coppola, Erika; International Centre for Theoretical Physics (ICTP), Trieste, Italy; De Cruz, Lesley; Royal Meteorological Institute of Belgium (RMIB), Brussels, Belgium; Davin, Edouard L.; Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland; Dobler, Andreas; The Norwegian Meteorological Institute, Oslo, Norway; Domínguez, Marta; Agencia Estatal de Meteorología, Madrid, Spain; Fealy, Rowan; ICARUS, Department of Geography, Maynooth University, Maynooth, Ireland; Fernandez, Jesus; Meteorology Group, Department of Applied Mathematics and Computer Science, Universidad de Cantabria, Santander, Spain; Gaertner, Miguel Angel; University of Castilla-La Mancha, Toledo, Spain; García-Díez, Markel; Meteorology Group, Department of Applied Mathematics and Computer Science, Universidad de Cantabria, Santander, Spain; Giorgi, Filippo; International Centre for Theoretical Physics (ICTP), Trieste, Italy; Gobiet, Andreas; Central Institute for Meteorology and Geodynamics (ZAMG), Vienna, Austria; Goergen, Klaus; Centre for High-Performance Scientific Computing in Terrestrial Systems, Geoverbund ABC/J, Jülich, Germany; Gómez-Navarro, Juan José; Regional Atmospheric Modeling Group, Department of Physics, University of Murcia, Murcia, Spain; Alemán, Juan Jesús González; University of Castilla-La Mancha, Toledo, Spain; Gutiérrez, Claudia; University of Castilla-La Mancha, Toledo, Spain; Gutiérrez, José M.; Meteorology Group, Instituto de Física de Cantabria (CSIC-Universidad de Cantabria), Santander, Spain; Güttler, Ivan; Croatian Meteorological and Hydrological Service, Zagreb, Croatia; Haensler, Andreas; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Halenka, Tomáš; Department of Atmospheric Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic; Jerez, Sonia; Regional Atmospheric Modeling Group, Department of Physics, University of Murcia, Murcia, Spain; Jiménez-Guerrero, Pedro; Regional Atmospheric Modeling Group, Department of Physics, University of Murcia, Murcia, Spain; Jones, Richard G.; Met Office Hadley Centre, Exeter, UK; Keuler, Klaus; Chair of Atmospheric Processes, Brandenburg University of Technology Cottbus - Senftenberg, Cottbus, Germany; Kjellström, Erik; Swedish Meteorological and Hydrological Institute, Norrköping, Sweden; Knist, Sebastian; Meteorological Institute, University of Bonn, Bonn, Germany; Kotlarski, Sven; Federal Office of Meteorology and Climatology MeteoSwiss, Zurich-Airport, Switzerland; Maraun, Douglas; Wegener Center for Climate and Global Change, University of Graz, Graz, Austria; van Meijgaard, Erik; Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands; Mercogliano, Paola; C.I.R.A., Capua, Italy; Montávez, Juan Pedro; Regional Atmospheric Modeling Group, Department of Physics, University of Murcia, Murcia, Spain; Navarra, Antonio; Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Lecce, Italy; Nikulin, Grigory; Swedish Meteorological and Hydrological Institute, Norrköping, Sweden; de Noblet-Ducoudré, Nathalie; Laboratoire des Sciences du Climat et de l’Environnement, IPSL, Unité Mixte CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette cédex, France; Panitz, Hans-Juergen; Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany; Pfeifer, Susanne; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Piazza, Marie; Wegener Center for Climate and Global Change, University of Graz, Graz, Austria; Pichelli, Emanuela; International Centre for Theoretical Physics (ICTP), Trieste, Italy; Pietikäinen, Joni-Pekka; Finnish Meteorological Institute (FMI), Helsinki, Finland; Prein, Andreas F.; National Center for Atmospheric Research, Boulder, USA; Preuschmann, Swantje; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Rechid, Diana; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Rockel, Burkhardt; Helmholtz-Zentrum Geesthacht, Geesthacht, Germany; Romera, Raquel; ICARUS, Department of Geography, Maynooth University, Maynooth, Ireland; Sánchez, Enrique; ICARUS, Department of Geography, Maynooth University, Maynooth, Ireland; Sieck, Kevin; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Soares, Pedro M. M.; Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; Somot, Samuel; CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France; Srnec, Lidija; Croatian Meteorological and Hydrological Service, Zagreb, Croatia; Sørland, Silje Lund; Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland; Termonia, Piet; Department of Physics and Astronomy, Ghent University, Ghent, Belgium; Truhetz, Heimo; Wegener Center for Climate and Global Change, University of Graz, Graz, Austria; Vautard, Robert; Laboratoire des Sciences du Climat et de l’Environnement, IPSL, Unité Mixte CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette cédex, France; Warrach-Sagi, Kirsten; Institute of Physics and Meteorology, University of Hohenheim, Stuttgart, Germany; Wulfmeyer, Volker; Institute of Physics and Meteorology, University of Hohenheim, Stuttgart, Germany;AbstractThe European CORDEX (EURO-CORDEX) initiative is a large voluntary effort that seeks to advance regional climate and Earth system science in Europe. As part of the World Climate Research Programme (WCRP) - Coordinated Regional Downscaling Experiment (CORDEX), it shares the broader goals of providing a model evaluation and climate projection framework and improving communication with both the General Circulation Model (GCM) and climate data user communities. EURO-CORDEX oversees the design and coordination of ongoing ensembles of regional climate projections of unprecedented size and resolution (0.11° EUR-11 and 0.44° EUR-44 domains). Additionally, the inclusion of empirical-statistical downscaling allows investigation of much larger multi-model ensembles. These complementary approaches provide a foundation for scientific studies within the climate research community and others. The value of the EURO-CORDEX ensemble is shown via numerous peer-reviewed studies and its use in the development of climate services. Evaluations of the EUR-44 and EUR-11 ensembles also show the benefits of higher resolution. However, significant challenges remain. To further advance scientific understanding, two flagship pilot studies (FPS) were initiated. The first investigates local-regional phenomena at convection-permitting scales over central Europe and the Mediterranean in collaboration with the Med-CORDEX community. The second investigates the impacts of land cover changes on European climate across spatial and temporal scales. Over the coming years, the EURO-CORDEX community looks forward to closer collaboration with other communities, new advances, supporting international initiatives such as the IPCC reports, and continuing to provide the basis for research on regional climate impacts and adaptation in Europe.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)MURAL - Maynooth University Research Archive LibraryArticle . 2020 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-04233066Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-04233066Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTACopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemVrije Universiteit Brussel Research PortalArticle . 2020Data sources: Vrije Universiteit Brussel Research PortalDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10113-020-01606-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 287 citations 287 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 573visibility views 573 download downloads 627 Powered bymore_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)MURAL - Maynooth University Research Archive LibraryArticle . 2020 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-04233066Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-04233066Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTACopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemVrije Universiteit Brussel Research PortalArticle . 2020Data sources: Vrije Universiteit Brussel Research PortalDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10113-020-01606-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 01 Dec 2022 Hungary, Germany, Belgium, Italy, Spain, Spain, Turkey, Switzerland, France, Spain, Ireland, TurkeyPublisher:American Meteorological Society Publicly fundedFunded by:EC | IS-ENES3EC| IS-ENES3Diez-Sierra, Javier; Iturbide, Maialen; Gutiérrez, José; Fernández, Jesús; Milovac, Josipa; Cofiño, Antonio; Cimadevilla, Ezequiel; Nikulin, Grigory; Levavasseur, Guillaume; Kjellström, Erik; Bülow, Katharina; Horányi, András; Brookshaw, Anca; García-Díez, Markel; Pérez, Antonio; Baño-Medina, Jorge; Ahrens, Bodo; Alias, Antoinette; Ashfaq, Moetasim; Bukovsky, Melissa; Buonomo, Erasmo; Caluwaerts, Steven; Chou, Sin Chan; Christensen, Ole; Ciarlò, James; Coppola, Erika; Corre, Lola; Demory, Marie-Estelle; Djurdjevic, Vladimir; Evans, Jason; Fealy, Rowan; Feldmann, Hendrik; Jacob, Daniela; Jayanarayanan, Sanjay; Katzfey, Jack; Keuler, Klaus; Kittel, Christoph; Kurnaz, Mehmet Levent; Laprise, René; Lionello, Piero; Mcginnis, Seth; Mercogliano, Paola; Nabat, Pierre; Önol, Barış; Ozturk, Tugba; Panitz, Hans-Jürgen; Paquin, Dominique; Pieczka, Ildikó; Raffaele, Francesca; Remedio, Armelle Reca; Scinocca, John; Sevault, Florence; Somot, Samuel; Steger, Christian; Tangang, Fredolin; Teichmann, Claas; Termonia, Piet; Thatcher, Marcus; Torma, Csaba; van Meijgaard, Erik; Vautard, Robert; Warrach-Sagi, Kirsten; Winger, Katja; Zittis, George;handle: 10261/304487 , 10831/114418 , 11729/5366 , 11587/489586 , 1854/LU-8768504
Abstract The collaboration between the Coordinated Regional Climate Downscaling Experiment (CORDEX) and the Earth System Grid Federation (ESGF) provides open access to an unprecedented ensemble of regional climate model (RCM) simulations, across the 14 CORDEX continental-scale domains, with global coverage. These simulations have been used as a new line of evidence to assess regional climate projections in the latest contribution of the Working Group I (WGI) to the IPCC Sixth Assessment Report (AR6), particularly in the regional chapters and the Atlas. Here, we present the work done in the framework of the Copernicus Climate Change Service (C3S) to assemble a consistent worldwide CORDEX grand ensemble, aligned with the deadlines and activities of IPCC AR6. This work addressed the uneven and heterogeneous availability of CORDEX ESGF data by supporting publication in CORDEX domains with few archived simulations and performing quality control. It also addressed the lack of comprehensive documentation by compiling information from all contributing regional models, allowing for an informed use of data. In addition to presenting the worldwide CORDEX dataset, we assess here its consistency for precipitation and temperature by comparing climate change signals in regions with overlapping CORDEX domains, obtaining overall coincident regional climate change signals. The C3S CORDEX dataset has been used for the assessment of regional climate change in the IPCC AR6 (and for the interactive Atlas) and is available through the Copernicus Climate Data Store (CDS).
MURAL - Maynooth Uni... arrow_drop_down MURAL - Maynooth University Research Archive LibraryArticle . 2022 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryKITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2022Full-Text: https://hal.science/hal-03932124Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03932124Data sources: Bielefeld Academic Search Engine (BASE)Işık Üniversitesi: DSpace RepositoryArticle . 2022Full-Text: https://hdl.handle.net/11729/5366Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03932124Data sources: Bielefeld Academic Search Engine (BASE)Bulletin of the American Meteorological SocietyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAELTE Digital Institutional Repository (EDIT)Article . 2022Data sources: ELTE Digital Institutional Repository (EDIT)Işık University Institutional RepositoryArticle . 2022Data sources: Işık University Institutional RepositoryDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/bams-d-22-0111.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 69visibility views 69 download downloads 106 Powered bymore_vert MURAL - Maynooth Uni... arrow_drop_down MURAL - Maynooth University Research Archive LibraryArticle . 2022 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryKITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2022Full-Text: https://hal.science/hal-03932124Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03932124Data sources: Bielefeld Academic Search Engine (BASE)Işık Üniversitesi: DSpace RepositoryArticle . 2022Full-Text: https://hdl.handle.net/11729/5366Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03932124Data sources: Bielefeld Academic Search Engine (BASE)Bulletin of the American Meteorological SocietyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAELTE Digital Institutional Repository (EDIT)Article . 2022Data sources: ELTE Digital Institutional Repository (EDIT)Işık University Institutional RepositoryArticle . 2022Data sources: Işık University Institutional RepositoryDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/bams-d-22-0111.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United Kingdom, United Kingdom, South Africa, Germany, United Kingdom, Austria, ItalyPublisher:Copernicus GmbH Alex C. Ruane; Claas Teichmann; Nigel W. Arnell; Timothy R. Carter; Kristie L. Ebi; Katja Frieler; Clare M. Goodess; Bruce Hewitson; Radley Horton; R. Sari Kovats; Heike K. Lotze; Linda O. Mearns; Antonio Navarra; Dennis S. Ojima; Keywan Riahi; Cynthia Rosenzweig; Matthias Themessl; Katharine Vincent;handle: 11585/783259
Abstract. This paper describes the motivation for the creation of the Vulnerability, Impacts, Adaptation and Climate Services (VIACS) Advisory Board for the Sixth Phase of the Coupled Model Intercomparison Project (CMIP6), its initial activities, and its plans to serve as a bridge between climate change applications experts and climate modelers. The climate change application community comprises researchers and other specialists who use climate information (alongside socioeconomic and other environmental information) to analyze vulnerability, impacts, and adaptation of natural systems and society in relation to past, ongoing, and projected future climate change. Much of this activity is directed toward the co-development of information needed by decision-makers for managing projected risks. CMIP6 provides a unique opportunity to facilitate a two-way dialog between climate modelers and VIACS experts who are looking to apply CMIP6 results for a wide array of research and climate services objectives. The VIACS Advisory Board convenes leaders of major impact sectors, international programs, and climate services to solicit community feedback that increases the applications relevance of the CMIP6-Endorsed Model Intercomparison Projects (MIPs). As an illustration of its potential, the VIACS community provided CMIP6 leadership with a list of prioritized climate model variables and MIP experiments of the greatest interest to the climate model applications community, indicating the applicability and societal relevance of climate model simulation outputs. The VIACS Advisory Board also recommended an impacts version of Obs4MIPs and indicated user needs for the gridding and processing of model output.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2016 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-9-3493-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 18 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2016 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-9-3493-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ArgentinaPublisher:American Geophysical Union (AGU) Olmo, M. E.; Weber, T.; Teichmann, C.; Bettolli, M. L.; Weber, T.; 1 Climate Service Center Germany (GERICS) Helmholtz‐Zentrum Hereon Hamburg Germany; Teichmann, C.; 1 Climate Service Center Germany (GERICS) Helmholtz‐Zentrum Hereon Hamburg Germany; Bettolli, M. L.; 2 Department of Atmospheric and Ocean Sciences Faculty of Exact and Natural Sciences University of Buenos Aires (DCAO‐FCEN‐UBA) Buenos Aires Argentina;doi: 10.1029/2022jd037708
handle: 11336/221610
AbstractClimate hazards associated with compound events (CEs) have lately received increasing attention over South America (SA) due to their potential risks and amplification of impacts. This work addressed the evaluation of different temperature‐ and precipitation‐based CE in SA considering the CORDEX‐CORE ensemble of regional climate models (RCMs) and their driving earth system models (ESMs) in the reference period 1981–2010 and the late 21st century (2070–2099), for the Representative Concentration Pathways (RCPs) 2.6 and 8.5 scenarios. The assessment focused on model performance for the individual events—heatwaves (HWs), Extreme rainfall (ER) days, and dry‐spells (DSs)—and their compound occurrence in terms of climatological frequency and duration. The spatial patterns of individual events were adequately reproduced by the RCMs, evidencing general overestimations in extreme precipitation intensities. In terms of CE, the frequencies of coincident HWs and DSs (sequential DSs and ER) were remarkable over central‐eastern Brazil and southern SA (southeastern SA). The main features of CE were generally well‐simulated by the RCMs, although they presented regional differences such as an underestimation of the maximum frequencies of these two CE in northeastern Brazil and southeastern SA, respectively. The high‐resolution information was generally in line with the larger‐scale driving ESMs. The climate change signal analysis generally showed robust future increases in CE frequency and duration in different areas of SA, as for coincident HWs and DSs (sequential DSs and ER) over northern SA and southern Brazil (southeastern SA). This was mostly consistent among the RCMs ensemble and notably strengthened in the worst‐case scenario (RCP 8.5).
Journal of Geophysic... arrow_drop_down Journal of Geophysical Research AtmospheresArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2022jd037708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Geophysic... arrow_drop_down Journal of Geophysical Research AtmospheresArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2022jd037708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object , Journal 2015Embargo end date: 01 Jan 2015 France, SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:EC | ECLISE, EC | IMPACT2CEC| ECLISE ,EC| IMPACT2CJerez, Sonia; Tobin, Isabelle; Vautard, Robert; Montávez, Juan Pedro; López-Romero, Jose María; Thais, Françoise; Bartok, Blanka; Christensen, Ole Bossing; Colette, Augustin; Déqué, Michel; Nikulin, Grigory; Kotlarski, Sven; van Meijgaard, Erik; Teichmann, Claas; Wild, Martin;AbstractAmbitious climate change mitigation plans call for a significant increase in the use of renewables, which could, however, make the supply system more vulnerable to climate variability and changes. Here we evaluate climate change impacts on solar photovoltaic (PV) power in Europe using the recent EURO-CORDEX ensemble of high-resolution climate projections together with a PV power production model and assuming a well-developed European PV power fleet. Results indicate that the alteration of solar PV supply by the end of this century compared with the estimations made under current climate conditions should be in the range (−14%;+2%), with the largest decreases in Northern countries. Temporal stability of power generation does not appear as strongly affected in future climate scenarios either, even showing a slight positive trend in Southern countries. Therefore, despite small decreases in production expected in some parts of Europe, climate change is unlikely to threaten the European PV sector.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Full-Text: https://hal.science/hal-01805194Data sources: Bielefeld Academic Search Engine (BASE)INERIS: HAL (Institut National de l'Environnement Industriel et des Risques)Article . 2015Full-Text: https://hal.science/hal-01805194Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Full-Text: https://hal.science/hal-01805194Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAMémoires en Sciences de l'Information et de la CommunicationConference object . 2016Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2015 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms10014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 297 citations 297 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Full-Text: https://hal.science/hal-01805194Data sources: Bielefeld Academic Search Engine (BASE)INERIS: HAL (Institut National de l'Environnement Industriel et des Risques)Article . 2015Full-Text: https://hal.science/hal-01805194Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Full-Text: https://hal.science/hal-01805194Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAMémoires en Sciences de l'Information et de la CommunicationConference object . 2016Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2015 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms10014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 France, France, Netherlands, France, FrancePublisher:American Geophysical Union (AGU) Funded by:RCN | Relevant, reliable and ro..., NWO | Quality matters: Includin..., EC | IMPACT2CRCN| Relevant, reliable and robust local-scale climate projections for Norway ,NWO| Quality matters: Including water quality in global water stress projections ,EC| IMPACT2CDaniela Jacob; Lola Kotova; Claas Teichmann; Stefan P. Sobolowski; Robert Vautard; Chantal Donnelly; Aristeidis G. Koutroulis; Manolis G. Grillakis; Ioannis K. Tsanis; Andrea Damm; Abdulla Sakalli; Michelle T. H. van Vliet;doi: 10.1002/2017ef000710
AbstractThe Paris Agreement of the United Nations Framework Convention on Climate Change aims not only at avoiding +2°C warming (and even limit the temperature increase further to +1.5°C), but also sets long‐term goals to guide mitigation. Therefore, the best available science is required to inform policymakers on the importance of and the adaptation needs in a +1.5°C warmer world. Seven research institutes from Europe and Turkey integrated their competencies to provide a cross‐sectoral assessment of the potential impacts at a pan‐European scale. The initial findings of this initiative are presented and key messages communicated. The approach is to select periods based on global warming thresholds rather than the more typical approach of selecting time periods (e.g., end of century). The results indicate that the world is likely to pass the +1.5°C threshold in the coming decades. Cross‐sectoral dimensions are taken into account to show the impacts of global warming that occur in parallel in more than one sector. Also, impacts differ across sectors and regions. Alongside the negative impacts for certain sectors and regions, some positive impacts are projected. Summer tourism in parts of Western Europe may be favored by climate change; electricity demand decreases outweigh increases over most of Europe and catchment yields in hydropower regions will increase. However, such positive findings should be interpreted carefully as we do not take into account exogenous factors that can and will influence Europe such as migration patterns, food production, and economic and political instability.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018License: CC BY NC SAFull-Text: https://hal.science/hal-01806778Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018License: CC BY ND SAFull-Text: https://hal.science/hal-01806778Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2018License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017ef000710&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 137 citations 137 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 21visibility views 21 download downloads 5 Powered bymore_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018License: CC BY NC SAFull-Text: https://hal.science/hal-01806778Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018License: CC BY ND SAFull-Text: https://hal.science/hal-01806778Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2018License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017ef000710&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 16 Sep 2021 Norway, France, Norway, Italy, SwitzerlandPublisher:American Geophysical Union (AGU) Funded by:EC | EXHAUSTIONEC| EXHAUSTIONErik Kjellström; Fredrik Boberg; Filippo Giorgi; Kirsten Warrach-Sagi; Nikolay Kadygrov; Carley Iles; Lola Corre; Jana Sillmann; Claas Teichmann; Silje Lund Sørland; Guillaume Levavasseur; Klaus Keuler; Erasmo Buonomo; James M. Ciarlo; James M. Ciarlo; Marie-Estelle Demory; Samuel Somot; Erik van Meijgaard; Christian Steger; Richard G. Jones; Emma Aalbers; Clemens Schwingshackl; Marit Sandstad; Grigory Nikulin; Ole Bøssing Christensen; Robert Vautard; Erika Coppola; Cosimo Solidoro; Geert Lenderink; Rita Nogherotto; Katharina Bülow; Volker Wulfmeyer; Daniela Jacob;handle: 11250/2987254 , 20.500.14243/533790
AbstractThe use of regional climate model (RCM)‐based projections for providing regional climate information in a research and climate service contexts is currently expanding very fast. This has been possible thanks to a considerable effort in developing comprehensive ensembles of RCM projections, especially for Europe, in the EURO‐CORDEX community (Jacob et al., 2014, 2020). As of end of 2019, EURO‐CORDEX has developed a set of 55 historical and scenario projections (RCP8.5) using 8 driving global climate models (GCMs) and 11 RCMs. This article presents the ensemble including its design. We target the analysis to better characterize the quality of the RCMs by providing an evaluation of these RCM simulations over a number of classical climate variables and extreme and impact‐oriented indices for the period 1981–2010. For the main variables, the model simulations generally agree with observations and reanalyses. However, several systematic biases are found as well, with shared responsibilities among RCMs and GCMs: Simulations are overall too cold, too wet, and too windy compared to available observations or reanalyses. Some simulations show strong systematic biases on temperature, others on precipitation or dynamical variables, but none of the models/simulations can be defined as the best or the worst on all criteria. The article aims at supporting a proper use of these simulations within a climate services context.
IRIS Cnr arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://insu.hal.science/insu-03660154Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://insu.hal.science/insu-03660154Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://insu.hal.science/insu-03660154Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research AtmospheresArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedJournal of Geophysical Research AtmospheresArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019jd032344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 122 citations 122 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://insu.hal.science/insu-03660154Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://insu.hal.science/insu-03660154Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://insu.hal.science/insu-03660154Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research AtmospheresArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2021 . Peer-reviewedJournal of Geophysical Research AtmospheresArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019jd032344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Funded by:EC | IMPACT2CEC| IMPACT2CMichel Déqué; Sandro Calmanti; Ole Bøssing Christensen; Alessandro Dell Aquila; Cathrine Fox Maule; Andreas Haensler; Grigory Nikulin; Claas Teichmann;AbstractThe impact of a +2°C global warming on temperature and precipitation over tropical Africa is examined, based on an ensemble of 12 regional climate model scenario simulations. These 12 scenarios are re-phased so that they all correspond to the same global warming of 2°C with respect to pre-industrial conditions. The continental temperature increase is above the global average. If heat waves are defined with the same temperature threshold in the reference climate and in the scenario, their frequency increases by a factor of 10. When the temperature threshold is adapted to future conditions, there is still a slight increase in frequency. The average precipitation does not show a significant response, due to model-to-model spread. However two compensating phenomena occur, which are robust among the models: (a) the number of rain days decreases whereas the precipitation intensity increases, and (b) the rain season occurs later during the year with less precipitation in early summer and more precipitation in late summer. Simulated daily temperature and precipitation data are combined in two impact models, one for the hydrology of the Nile and Niger basins, one for the food security of the different countries. They show that the main feature of the climate change is not a continuous trend signal, but an alternation of dry and wet decadal to multidecadal episodes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cliser.2016.06.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 66 citations 66 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 2visibility views 2 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cliser.2016.06.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Argentina, Argentina, Brazil, Turkey, Denmark, Germany, Turkey, France, AustraliaPublisher:American Meteorological Society Katja Winger; Silvina Alicia Solman; Silvina Alicia Solman; Claas Teichmann; Jonathan Spinoni; Fredolin Tangang; Gustavo Naumann; Ole Bøssing Christensen; Erika Coppola; Torben Koenigk; Delei Li; Filippo Giorgi; Jürgen Vogt; George Zittis; Daniela Jacob; Edoardo Bucchignani; Marta Llopart; Alessandro Dosio; Paulo Barbosa; Burkhardt Rockel; Panos Hadjinicolaou; Jack Katzfey; Jozef Syktus; Niall McCormick; Tereza Cavazos; Tugba Ozturk; Jason P. Evans; Jens Hesselbjerg Christensen; Jens Hesselbjerg Christensen; Beate Geyer; John J. Cassano; Rosmeri Porfírio da Rocha; Robert Vautard; Grigory Nikulin; René Laprise; M. Levent Kurnaz; Christopher Lennard; Hans-Juergen Panitz;AbstractTwo questions motivated this study: 1) Will meteorological droughts become more frequent and severe during the twenty-first century? 2) Given the projected global temperature rise, to what extent does the inclusion of temperature (in addition to precipitation) in drought indicators play a role in future meteorological droughts? To answer, we analyzed the changes in drought frequency, severity, and historically undocumented extreme droughts over 1981–2100, using the standardized precipitation index (SPI; including precipitation only) and standardized precipitation-evapotranspiration index (SPEI; indirectly including temperature), and under two representative concentration pathways (RCP4.5 and RCP8.5). As input data, we employed 103 high-resolution (0.44°) simulations from the Coordinated Regional Climate Downscaling Experiment (CORDEX), based on a combination of 16 global circulation models (GCMs) and 20 regional circulation models (RCMs). This is the first study on global drought projections including RCMs based on such a large ensemble of RCMs. Based on precipitation only, ~15% of the global land is likely to experience more frequent and severe droughts during 2071–2100 versus 1981–2010 for both scenarios. This increase is larger (~47% under RCP4.5, ~49% under RCP8.5) when precipitation and temperature are used. Both SPI and SPEI project more frequent and severe droughts, especially under RCP8.5, over southern South America, the Mediterranean region, southern Africa, southeastern China, Japan, and southern Australia. A decrease in drought is projected for high latitudes in Northern Hemisphere and Southeast Asia. If temperature is included, drought characteristics are projected to increase over North America, Amazonia, central Europe and Asia, the Horn of Africa, India, and central Australia; if only precipitation is considered, they are found to decrease over those areas.
Işık Üniversitesi: D... arrow_drop_down Işık Üniversitesi: DSpace RepositoryArticle . 2020License: CC BY NC NDFull-Text: https://hdl.handle.net/11729/2362Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-04234306Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-04234306Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemIşık University Institutional RepositoryArticle . 2020Data sources: Işık University Institutional RepositoryDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jcli-d-19-0084.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 264 citations 264 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Işık Üniversitesi: D... arrow_drop_down Işık Üniversitesi: DSpace RepositoryArticle . 2020License: CC BY NC NDFull-Text: https://hdl.handle.net/11729/2362Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-04234306Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-04234306Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemIşık University Institutional RepositoryArticle . 2020Data sources: Işık University Institutional RepositoryDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jcli-d-19-0084.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Embargo end date: 01 Jan 2016 France, SwitzerlandPublisher:IOP Publishing Grigory Nikulin; Andreas F. Prein; Andreas F. Prein; Isabelle Tobin; Erik van Meijgaard; Cathrine Fox Maule; Sven Kotlarski; Thomas Noël; Claas Teichmann; Sonia Jerez; Robert Vautard; Françoise Thais; Michel Déqué;Wind energy resource is subject to changes in climate. To investigate the impacts of climate change on future European wind power generation potential, we analyze a multi-model ensemble of the most recent EURO-CORDEX regional climate simulations at the 12 km grid resolution. We developed a mid-century wind power plant scenario to focus the impact assessment on relevant locations for future wind power industry. We found that, under two greenhouse gas concentration scenarios, changes in the annual energy yield of the future European wind farms fleet as a whole will remain within ±5% across the 21st century. At country to local scales, wind farm yields will undergo changes up to 15% in magnitude, according to the large majority of models, but smaller than 5% in magnitude for most regions and models. The southern fleets such as the Iberian and Italian fleets are likely to be the most affected. With regard to variability, changes are essentially small or poorly significant from subdaily to interannual time scales. Environmental Research Letters, 11 (3) ISSN:1748-9326 ISSN:1748-9318
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Full-Text: https://hal.science/hal-03215445Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-03215445Data sources: Bielefeld Academic Search Engine (BASE)Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2016 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/11/3/034013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 136 citations 136 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Full-Text: https://hal.science/hal-03215445Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-03215445Data sources: Bielefeld Academic Search Engine (BASE)Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2016 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/11/3/034013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 09 Oct 2024 France, Belgium, Spain, Switzerland, Spain, Germany, Ireland, Belgium, Spain, Spain, Croatia, Denmark, Spain, Germany, Germany, Italy, Croatia, SpainPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:HRZZ | Climate of the Adriatic R...HRZZ| Climate of the Adriatic REgion in its global contextJacob, Daniela; Teichmann, Claas; Sobolowski, Stefan; Katragkou, Eleni; Anders, Ivonne; Belda, Michal; Benestad, Rasmus; Boberg, Fredrik; Buonomo, Erasmo; Cardoso, Rita M.; Casanueva, Ana; Christensen, Ole B.; Christensen, Jens Hesselbjerg; Coppola, Erika; De Cruz, Lesley; Davin, Edouard L.; Dobler, Andreas; Domínguez, Marta; Fealy, Rowan; Fernandez, Jesus; Gaertner, Miguel Angel; García-Díez, Markel; Giorgi, Filippo; Gobiet, Andreas; Goergen, Klaus; Gómez-Navarro, Juan José; Alemán, Juan Jesús González; Gutiérrez, Claudia; Gutiérrez, José M.; Güttler, Ivan; Haensler, Andreas; Halenka, Tomáš; Jerez, Sonia; Jiménez-Guerrero, Pedro; Jones, Richard G.; Keuler, Klaus; Kjellström, Erik; Knist, Sebastian; Kotlarski, Sven; Maraun, Douglas; van Meijgaard, Erik; Mercogliano, Paola; Montávez, Juan Pedro; Navarra, Antonio; Nikulin, Grigory; de Noblet-Ducoudré, Nathalie; Panitz, Hans-Juergen; Pfeifer, Susanne; Piazza, Marie; Pichelli, Emanuela; Pietikäinen, Joni-Pekka; Prein, Andreas F.; Preuschmann, Swantje; Rechid, Diana; Rockel, Burkhardt; Romera, Raquel; Sánchez, Enrique; Sieck, Kevin; Soares, Pedro M. M.; Somot, Samuel; Srnec, Lidija; Sørland, Silje Lund; Termonia, Piet; Truhetz, Heimo; Vautard, Robert; Warrach-Sagi, Kirsten; Wulfmeyer, Volker; Jacob, Daniela; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Teichmann, Claas; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Sobolowski, Stefan; NORCE Norwegian Research Centre, The Bjerknes Centre for Climate Research, Bergen, Norway; Katragkou, Eleni; Department of Meteorology and Climatology, School of Geology, Aristotle University of Thessaloniki, Thessaloniki, Greece; Anders, Ivonne; Central Institute for Meteorology and Geodynamics (ZAMG), Vienna, Austria; Belda, Michal; Department of Atmospheric Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic; Benestad, Rasmus; The Norwegian Meteorological Institute, Oslo, Norway; Boberg, Fredrik; Danish Meteorological Institute (DMI), Copenhagen, Denmark; Buonomo, Erasmo; School of Geography and the Environment, University of Oxford, Oxford, UK; Cardoso, Rita M.; Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; Casanueva, Ana; Meteorology Group, Department of Applied Mathematics and Computer Science, Universidad de Cantabria, Santander, Spain; Christensen, Ole B.; Danish Meteorological Institute (DMI), Copenhagen, Denmark; Christensen, Jens Hesselbjerg; Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark; Coppola, Erika; International Centre for Theoretical Physics (ICTP), Trieste, Italy; De Cruz, Lesley; Royal Meteorological Institute of Belgium (RMIB), Brussels, Belgium; Davin, Edouard L.; Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland; Dobler, Andreas; The Norwegian Meteorological Institute, Oslo, Norway; Domínguez, Marta; Agencia Estatal de Meteorología, Madrid, Spain; Fealy, Rowan; ICARUS, Department of Geography, Maynooth University, Maynooth, Ireland; Fernandez, Jesus; Meteorology Group, Department of Applied Mathematics and Computer Science, Universidad de Cantabria, Santander, Spain; Gaertner, Miguel Angel; University of Castilla-La Mancha, Toledo, Spain; García-Díez, Markel; Meteorology Group, Department of Applied Mathematics and Computer Science, Universidad de Cantabria, Santander, Spain; Giorgi, Filippo; International Centre for Theoretical Physics (ICTP), Trieste, Italy; Gobiet, Andreas; Central Institute for Meteorology and Geodynamics (ZAMG), Vienna, Austria; Goergen, Klaus; Centre for High-Performance Scientific Computing in Terrestrial Systems, Geoverbund ABC/J, Jülich, Germany; Gómez-Navarro, Juan José; Regional Atmospheric Modeling Group, Department of Physics, University of Murcia, Murcia, Spain; Alemán, Juan Jesús González; University of Castilla-La Mancha, Toledo, Spain; Gutiérrez, Claudia; University of Castilla-La Mancha, Toledo, Spain; Gutiérrez, José M.; Meteorology Group, Instituto de Física de Cantabria (CSIC-Universidad de Cantabria), Santander, Spain; Güttler, Ivan; Croatian Meteorological and Hydrological Service, Zagreb, Croatia; Haensler, Andreas; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Halenka, Tomáš; Department of Atmospheric Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic; Jerez, Sonia; Regional Atmospheric Modeling Group, Department of Physics, University of Murcia, Murcia, Spain; Jiménez-Guerrero, Pedro; Regional Atmospheric Modeling Group, Department of Physics, University of Murcia, Murcia, Spain; Jones, Richard G.; Met Office Hadley Centre, Exeter, UK; Keuler, Klaus; Chair of Atmospheric Processes, Brandenburg University of Technology Cottbus - Senftenberg, Cottbus, Germany; Kjellström, Erik; Swedish Meteorological and Hydrological Institute, Norrköping, Sweden; Knist, Sebastian; Meteorological Institute, University of Bonn, Bonn, Germany; Kotlarski, Sven; Federal Office of Meteorology and Climatology MeteoSwiss, Zurich-Airport, Switzerland; Maraun, Douglas; Wegener Center for Climate and Global Change, University of Graz, Graz, Austria; van Meijgaard, Erik; Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands; Mercogliano, Paola; C.I.R.A., Capua, Italy; Montávez, Juan Pedro; Regional Atmospheric Modeling Group, Department of Physics, University of Murcia, Murcia, Spain; Navarra, Antonio; Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Lecce, Italy; Nikulin, Grigory; Swedish Meteorological and Hydrological Institute, Norrköping, Sweden; de Noblet-Ducoudré, Nathalie; Laboratoire des Sciences du Climat et de l’Environnement, IPSL, Unité Mixte CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette cédex, France; Panitz, Hans-Juergen; Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany; Pfeifer, Susanne; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Piazza, Marie; Wegener Center for Climate and Global Change, University of Graz, Graz, Austria; Pichelli, Emanuela; International Centre for Theoretical Physics (ICTP), Trieste, Italy; Pietikäinen, Joni-Pekka; Finnish Meteorological Institute (FMI), Helsinki, Finland; Prein, Andreas F.; National Center for Atmospheric Research, Boulder, USA; Preuschmann, Swantje; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Rechid, Diana; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Rockel, Burkhardt; Helmholtz-Zentrum Geesthacht, Geesthacht, Germany; Romera, Raquel; ICARUS, Department of Geography, Maynooth University, Maynooth, Ireland; Sánchez, Enrique; ICARUS, Department of Geography, Maynooth University, Maynooth, Ireland; Sieck, Kevin; Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; Soares, Pedro M. M.; Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; Somot, Samuel; CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France; Srnec, Lidija; Croatian Meteorological and Hydrological Service, Zagreb, Croatia; Sørland, Silje Lund; Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland; Termonia, Piet; Department of Physics and Astronomy, Ghent University, Ghent, Belgium; Truhetz, Heimo; Wegener Center for Climate and Global Change, University of Graz, Graz, Austria; Vautard, Robert; Laboratoire des Sciences du Climat et de l’Environnement, IPSL, Unité Mixte CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette cédex, France; Warrach-Sagi, Kirsten; Institute of Physics and Meteorology, University of Hohenheim, Stuttgart, Germany; Wulfmeyer, Volker; Institute of Physics and Meteorology, University of Hohenheim, Stuttgart, Germany;AbstractThe European CORDEX (EURO-CORDEX) initiative is a large voluntary effort that seeks to advance regional climate and Earth system science in Europe. As part of the World Climate Research Programme (WCRP) - Coordinated Regional Downscaling Experiment (CORDEX), it shares the broader goals of providing a model evaluation and climate projection framework and improving communication with both the General Circulation Model (GCM) and climate data user communities. EURO-CORDEX oversees the design and coordination of ongoing ensembles of regional climate projections of unprecedented size and resolution (0.11° EUR-11 and 0.44° EUR-44 domains). Additionally, the inclusion of empirical-statistical downscaling allows investigation of much larger multi-model ensembles. These complementary approaches provide a foundation for scientific studies within the climate research community and others. The value of the EURO-CORDEX ensemble is shown via numerous peer-reviewed studies and its use in the development of climate services. Evaluations of the EUR-44 and EUR-11 ensembles also show the benefits of higher resolution. However, significant challenges remain. To further advance scientific understanding, two flagship pilot studies (FPS) were initiated. The first investigates local-regional phenomena at convection-permitting scales over central Europe and the Mediterranean in collaboration with the Med-CORDEX community. The second investigates the impacts of land cover changes on European climate across spatial and temporal scales. Over the coming years, the EURO-CORDEX community looks forward to closer collaboration with other communities, new advances, supporting international initiatives such as the IPCC reports, and continuing to provide the basis for research on regional climate impacts and adaptation in Europe.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)MURAL - Maynooth University Research Archive LibraryArticle . 2020 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-04233066Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-04233066Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTACopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemVrije Universiteit Brussel Research PortalArticle . 2020Data sources: Vrije Universiteit Brussel Research PortalDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10113-020-01606-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 287 citations 287 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 573visibility views 573 download downloads 627 Powered bymore_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)MURAL - Maynooth University Research Archive LibraryArticle . 2020 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-04233066Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-04233066Data sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTACopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemVrije Universiteit Brussel Research PortalArticle . 2020Data sources: Vrije Universiteit Brussel Research PortalDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedUniversity of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10113-020-01606-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 01 Dec 2022 Hungary, Germany, Belgium, Italy, Spain, Spain, Turkey, Switzerland, France, Spain, Ireland, TurkeyPublisher:American Meteorological Society Publicly fundedFunded by:EC | IS-ENES3EC| IS-ENES3Diez-Sierra, Javier; Iturbide, Maialen; Gutiérrez, José; Fernández, Jesús; Milovac, Josipa; Cofiño, Antonio; Cimadevilla, Ezequiel; Nikulin, Grigory; Levavasseur, Guillaume; Kjellström, Erik; Bülow, Katharina; Horányi, András; Brookshaw, Anca; García-Díez, Markel; Pérez, Antonio; Baño-Medina, Jorge; Ahrens, Bodo; Alias, Antoinette; Ashfaq, Moetasim; Bukovsky, Melissa; Buonomo, Erasmo; Caluwaerts, Steven; Chou, Sin Chan; Christensen, Ole; Ciarlò, James; Coppola, Erika; Corre, Lola; Demory, Marie-Estelle; Djurdjevic, Vladimir; Evans, Jason; Fealy, Rowan; Feldmann, Hendrik; Jacob, Daniela; Jayanarayanan, Sanjay; Katzfey, Jack; Keuler, Klaus; Kittel, Christoph; Kurnaz, Mehmet Levent; Laprise, René; Lionello, Piero; Mcginnis, Seth; Mercogliano, Paola; Nabat, Pierre; Önol, Barış; Ozturk, Tugba; Panitz, Hans-Jürgen; Paquin, Dominique; Pieczka, Ildikó; Raffaele, Francesca; Remedio, Armelle Reca; Scinocca, John; Sevault, Florence; Somot, Samuel; Steger, Christian; Tangang, Fredolin; Teichmann, Claas; Termonia, Piet; Thatcher, Marcus; Torma, Csaba; van Meijgaard, Erik; Vautard, Robert; Warrach-Sagi, Kirsten; Winger, Katja; Zittis, George;handle: 10261/304487 , 10831/114418 , 11729/5366 , 11587/489586 , 1854/LU-8768504
Abstract The collaboration between the Coordinated Regional Climate Downscaling Experiment (CORDEX) and the Earth System Grid Federation (ESGF) provides open access to an unprecedented ensemble of regional climate model (RCM) simulations, across the 14 CORDEX continental-scale domains, with global coverage. These simulations have been used as a new line of evidence to assess regional climate projections in the latest contribution of the Working Group I (WGI) to the IPCC Sixth Assessment Report (AR6), particularly in the regional chapters and the Atlas. Here, we present the work done in the framework of the Copernicus Climate Change Service (C3S) to assemble a consistent worldwide CORDEX grand ensemble, aligned with the deadlines and activities of IPCC AR6. This work addressed the uneven and heterogeneous availability of CORDEX ESGF data by supporting publication in CORDEX domains with few archived simulations and performing quality control. It also addressed the lack of comprehensive documentation by compiling information from all contributing regional models, allowing for an informed use of data. In addition to presenting the worldwide CORDEX dataset, we assess here its consistency for precipitation and temperature by comparing climate change signals in regions with overlapping CORDEX domains, obtaining overall coincident regional climate change signals. The C3S CORDEX dataset has been used for the assessment of regional climate change in the IPCC AR6 (and for the interactive Atlas) and is available through the Copernicus Climate Data Store (CDS).
MURAL - Maynooth Uni... arrow_drop_down MURAL - Maynooth University Research Archive LibraryArticle . 2022 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryKITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2022Full-Text: https://hal.science/hal-03932124Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03932124Data sources: Bielefeld Academic Search Engine (BASE)Işık Üniversitesi: DSpace RepositoryArticle . 2022Full-Text: https://hdl.handle.net/11729/5366Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03932124Data sources: Bielefeld Academic Search Engine (BASE)Bulletin of the American Meteorological SocietyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAELTE Digital Institutional Repository (EDIT)Article . 2022Data sources: ELTE Digital Institutional Repository (EDIT)Işık University Institutional RepositoryArticle . 2022Data sources: Işık University Institutional RepositoryDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/bams-d-22-0111.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 69visibility views 69 download downloads 106 Powered bymore_vert MURAL - Maynooth Uni... arrow_drop_down MURAL - Maynooth University Research Archive LibraryArticle . 2022 . Peer-reviewedLicense: CC BY NC SAData sources: MURAL - Maynooth University Research Archive LibraryKITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2022Full-Text: https://hal.science/hal-03932124Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03932124Data sources: Bielefeld Academic Search Engine (BASE)Işık Üniversitesi: DSpace RepositoryArticle . 2022Full-Text: https://hdl.handle.net/11729/5366Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03932124Data sources: Bielefeld Academic Search Engine (BASE)Bulletin of the American Meteorological SocietyArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAELTE Digital Institutional Repository (EDIT)Article . 2022Data sources: ELTE Digital Institutional Repository (EDIT)Işık University Institutional RepositoryArticle . 2022Data sources: Işık University Institutional RepositoryDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/bams-d-22-0111.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United Kingdom, United Kingdom, South Africa, Germany, United Kingdom, Austria, ItalyPublisher:Copernicus GmbH Alex C. Ruane; Claas Teichmann; Nigel W. Arnell; Timothy R. Carter; Kristie L. Ebi; Katja Frieler; Clare M. Goodess; Bruce Hewitson; Radley Horton; R. Sari Kovats; Heike K. Lotze; Linda O. Mearns; Antonio Navarra; Dennis S. Ojima; Keywan Riahi; Cynthia Rosenzweig; Matthias Themessl; Katharine Vincent;handle: 11585/783259
Abstract. This paper describes the motivation for the creation of the Vulnerability, Impacts, Adaptation and Climate Services (VIACS) Advisory Board for the Sixth Phase of the Coupled Model Intercomparison Project (CMIP6), its initial activities, and its plans to serve as a bridge between climate change applications experts and climate modelers. The climate change application community comprises researchers and other specialists who use climate information (alongside socioeconomic and other environmental information) to analyze vulnerability, impacts, and adaptation of natural systems and society in relation to past, ongoing, and projected future climate change. Much of this activity is directed toward the co-development of information needed by decision-makers for managing projected risks. CMIP6 provides a unique opportunity to facilitate a two-way dialog between climate modelers and VIACS experts who are looking to apply CMIP6 results for a wide array of research and climate services objectives. The VIACS Advisory Board convenes leaders of major impact sectors, international programs, and climate services to solicit community feedback that increases the applications relevance of the CMIP6-Endorsed Model Intercomparison Projects (MIPs). As an illustration of its potential, the VIACS community provided CMIP6 leadership with a list of prioritized climate model variables and MIP experiments of the greatest interest to the climate model applications community, indicating the applicability and societal relevance of climate model simulation outputs. The VIACS Advisory Board also recommended an impacts version of Obs4MIPs and indicated user needs for the gridding and processing of model output.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2016 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-9-3493-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 18 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2016 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-9-3493-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ArgentinaPublisher:American Geophysical Union (AGU) Olmo, M. E.; Weber, T.; Teichmann, C.; Bettolli, M. L.; Weber, T.; 1 Climate Service Center Germany (GERICS) Helmholtz‐Zentrum Hereon Hamburg Germany; Teichmann, C.; 1 Climate Service Center Germany (GERICS) Helmholtz‐Zentrum Hereon Hamburg Germany; Bettolli, M. L.; 2 Department of Atmospheric and Ocean Sciences Faculty of Exact and Natural Sciences University of Buenos Aires (DCAO‐FCEN‐UBA) Buenos Aires Argentina;doi: 10.1029/2022jd037708
handle: 11336/221610
AbstractClimate hazards associated with compound events (CEs) have lately received increasing attention over South America (SA) due to their potential risks and amplification of impacts. This work addressed the evaluation of different temperature‐ and precipitation‐based CE in SA considering the CORDEX‐CORE ensemble of regional climate models (RCMs) and their driving earth system models (ESMs) in the reference period 1981–2010 and the late 21st century (2070–2099), for the Representative Concentration Pathways (RCPs) 2.6 and 8.5 scenarios. The assessment focused on model performance for the individual events—heatwaves (HWs), Extreme rainfall (ER) days, and dry‐spells (DSs)—and their compound occurrence in terms of climatological frequency and duration. The spatial patterns of individual events were adequately reproduced by the RCMs, evidencing general overestimations in extreme precipitation intensities. In terms of CE, the frequencies of coincident HWs and DSs (sequential DSs and ER) were remarkable over central‐eastern Brazil and southern SA (southeastern SA). The main features of CE were generally well‐simulated by the RCMs, although they presented regional differences such as an underestimation of the maximum frequencies of these two CE in northeastern Brazil and southeastern SA, respectively. The high‐resolution information was generally in line with the larger‐scale driving ESMs. The climate change signal analysis generally showed robust future increases in CE frequency and duration in different areas of SA, as for coincident HWs and DSs (sequential DSs and ER) over northern SA and southern Brazil (southeastern SA). This was mostly consistent among the RCMs ensemble and notably strengthened in the worst‐case scenario (RCP 8.5).
Journal of Geophysic... arrow_drop_down Journal of Geophysical Research AtmospheresArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2022jd037708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Geophysic... arrow_drop_down Journal of Geophysical Research AtmospheresArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2022jd037708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object , Journal 2015Embargo end date: 01 Jan 2015 France, SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:EC | ECLISE, EC | IMPACT2CEC| ECLISE ,EC| IMPACT2CJerez, Sonia; Tobin, Isabelle; Vautard, Robert; Montávez, Juan Pedro; López-Romero, Jose María; Thais, Françoise; Bartok, Blanka; Christensen, Ole Bossing; Colette, Augustin; Déqué, Michel; Nikulin, Grigory; Kotlarski, Sven; van Meijgaard, Erik; Teichmann, Claas; Wild, Martin;AbstractAmbitious climate change mitigation plans call for a significant increase in the use of renewables, which could, however, make the supply system more vulnerable to climate variability and changes. Here we evaluate climate change impacts on solar photovoltaic (PV) power in Europe using the recent EURO-CORDEX ensemble of high-resolution climate projections together with a PV power production model and assuming a well-developed European PV power fleet. Results indicate that the alteration of solar PV supply by the end of this century compared with the estimations made under current climate conditions should be in the range (−14%;+2%), with the largest decreases in Northern countries. Temporal stability of power generation does not appear as strongly affected in future climate scenarios either, even showing a slight positive trend in Southern countries. Therefore, despite small decreases in production expected in some parts of Europe, climate change is unlikely to threaten the European PV sector.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Full-Text: https://hal.science/hal-01805194Data sources: Bielefeld Academic Search Engine (BASE)INERIS: HAL (Institut National de l'Environnement Industriel et des Risques)Article . 2015Full-Text: https://hal.science/hal-01805194Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Full-Text: https://hal.science/hal-01805194Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAMémoires en Sciences de l'Information et de la CommunicationConference object . 2016Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2015 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms10014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 297 citations 297 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Full-Text: https://hal.science/hal-01805194Data sources: Bielefeld Academic Search Engine (BASE)INERIS: HAL (Institut National de l'Environnement Industriel et des Risques)Article . 2015Full-Text: https://hal.science/hal-01805194Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Full-Text: https://hal.science/hal-01805194Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAMémoires en Sciences de l'Information et de la CommunicationConference object . 2016Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2015 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms10014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 France, France, Netherlands, France, FrancePublisher:American Geophysical Union (AGU) Funded by:RCN | Relevant, reliable and ro..., NWO | Quality matters: Includin..., EC | IMPACT2CRCN| Relevant, reliable and robust local-scale climate projections for Norway ,NWO| Quality matters: Including water quality in global water stress projections ,EC| IMPACT2CDaniela Jacob; Lola Kotova; Claas Teichmann; Stefan P. Sobolowski; Robert Vautard; Chantal Donnelly; Aristeidis G. Koutroulis; Manolis G. Grillakis; Ioannis K. Tsanis; Andrea Damm; Abdulla Sakalli; Michelle T. H. van Vliet;doi: 10.1002/2017ef000710
AbstractThe Paris Agreement of the United Nations Framework Convention on Climate Change aims not only at avoiding +2°C warming (and even limit the temperature increase further to +1.5°C), but also sets long‐term goals to guide mitigation. Therefore, the best available science is required to inform policymakers on the importance of and the adaptation needs in a +1.5°C warmer world. Seven research institutes from Europe and Turkey integrated their competencies to provide a cross‐sectoral assessment of the potential impacts at a pan‐European scale. The initial findings of this initiative are presented and key messages communicated. The approach is to select periods based on global warming thresholds rather than the more typical approach of selecting time periods (e.g., end of century). The results indicate that the world is likely to pass the +1.5°C threshold in the coming decades. Cross‐sectoral dimensions are taken into account to show the impacts of global warming that occur in parallel in more than one sector. Also, impacts differ across sectors and regions. Alongside the negative impacts for certain sectors and regions, some positive impacts are projected. Summer tourism in parts of Western Europe may be favored by climate change; electricity demand decreases outweigh increases over most of Europe and catchment yields in hydropower regions will increase. However, such positive findings should be interpreted carefully as we do not take into account exogenous factors that can and will influence Europe such as migration patterns, food production, and economic and political instability.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018License: CC BY NC SAFull-Text: https://hal.science/hal-01806778Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018License: CC BY ND SAFull-Text: https://hal.science/hal-01806778Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2018License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017ef000710&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 137 citations 137 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 21visibility views 21 download downloads 5 Powered bymore_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018License: CC BY NC SAFull-Text: https://hal.science/hal-01806778Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018License: CC BY ND SAFull-Text: https://hal.science/hal-01806778Data sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2018License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017ef000710&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu