- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Meagan Eagle; Fanning Wang; Jianwu Tang; Jianwu Tang; Kevin D. Kroeger; Amanda C. Spivak;pmid: 32882493
Salt marshes, due to their capability to bury soil carbon (C), are potentially important regional C sinks. Efforts to restore tidal flow to former salt marshes have increased in recent decades in New England (USA), as well as in some other parts of the world. In this study, we investigated plant biomass and carbon dioxide (CO2) fluxes at four sites where restoration of tidal flow occurred five to ten years prior to the study. Site elevation, aboveground biomass, CO2 flux, and porewater chemistry were measured in 2015 and 2016 in both restored marshes and adjacent marshes where tidal flow had never been restricted. We found that the elevation in restored marsh sites was 2-16 cm lower than their natural references. Restored marshes where porewater chemistry was similar to the natural reference had greater plant aboveground biomass, gross ecosystem production, ecosystem respiration, as well as net ecosystem CO2 exchange (NEE) than the natural reference, even though they had the same plant species. We also compared respiration rates in aboveground biomass (AR) and soil (BR) during July 2016, and found that restored marshes had higher AR and BR fluxes than natural references. Our findings indicated that well-restored salt marshes can result in greater plant biomass and NEP, which has the potential to enhance rates of C sequestration at 10-yrs post restoration. Those differences were likely due to lower elevation and greater flooding frequency in the recently restored marshes than the natural marsh. The inverse relationship between elevation and productivity further suggests that, where sea-level rise rate does not surpass the threshold of plant survival, the restoration of these salt marshes may lead to enhanced organic and mineral sedimentation, extending marsh survival under increased sea level, and recouping carbon stocks that were lost during decades of tidal restriction.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.141566&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.141566&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Proceedings of the National Academy of Sciences Jerry M. Melillo; Andrew J. Burton; Yu-Mei Zhou; Jim Tang; Rose M. Smith; Troy D. Hill; J. E. Johnson; Chelsea Vario; Heidi Lux; Francis P. Bowles; Jacqueline E. Mohan; Paul A. Steudler; Elizabeth H. Burrows; Sarah Butler; Lindsay Scott;Soil warming has the potential to alter both soil and plant processes that affect carbon storage in forest ecosystems. We have quantified these effects in a large, long-term (7-y) soil-warming study in a deciduous forest in New England. Soil warming has resulted in carbon losses from the soil and stimulated carbon gains in the woody tissue of trees. The warming-enhanced decay of soil organic matter also released enough additional inorganic nitrogen into the soil solution to support the observed increases in plant carbon storage. Although soil warming has resulted in a cumulative net loss of carbon from a New England forest relative to a control area over the 7-y study, the annual net losses generally decreased over time as plant carbon storage increased. In the seventh year, warming-induced soil carbon losses were almost totally compensated for by plant carbon gains in response to warming. We attribute the plant gains primarily to warming-induced increases in nitrogen availability. This study underscores the importance of incorporating carbon–nitrogen interactions in atmosphere–ocean–land earth system models to accurately simulate land feedbacks to the climate system.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2011 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1018189108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 476 citations 476 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2011 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1018189108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Canada, Netherlands, Italy, Canada, Netherlands, Denmark, Norway, Norway, Sweden, Finland, NorwayPublisher:Springer Science and Business Media LLC Funded by:RCN | Indirect climate change i..., NSF | Collaborative Research: C..., RCN | Centre for Biodiversity D... +15 projectsRCN| Indirect climate change impacts on alpine plant communities ,NSF| Collaborative Research: Climate-induced sea-level rise, warming and herbivory effects on vegetation and greenhouse gas emission in coastal western Alaska ,RCN| Centre for Biodiversity Dynamics (CBD) ,RCN| Terrestrial ecosystem-climate interactions of our EMERALD planet ,AKA| Atmosphere and Climate Competence Center (ACCC) ,EC| PERMTHAW ,AKA| A combined experiment and modelling approach to quantify the nitrous oxide budget of permafrost regions (N-PERM) ,RCN| Effects of herbivory and warming on tundra plant communities ,SNSF| Can forest expansion in mountain ecosystems generate a positive feedback to climate change: the unseen role of symbiotic mycorrhizae ,AKA| Fate of nitrogen released from thawing permafrost: from microbial transformations to gaseous losses (Thaw-N) ,SNSF| Grundlagenarbeiten zur rätoromanischen Schriftsprache Rumantsch grischun. ,NSF| Collaborative Research: Local Adaptation in a Dominant Arctic Tundra Sedge (Eriophorum Vaginatum) and its Effects on Ecosystem Response in a Changing Climate ,EC| TUVOLU ,AKA| Methane uptake by permafrost-affected soils – an underestimated carbon sink in Arctic ecosystems? (MUFFIN) ,ARC| Discovery Projects - Grant ID: DP220100915 ,RCN| Advancing permafrost carbon climate feedback-improvements and evaluations of the Norwegian Earth System Model with observations ,EC| SOS.aquaterra ,NSF| Collaborative Research: Local Adaptation in a Dominant Arctic Tundra Sedge (Eriophorum Vaginatum) and its Effects on Ecosystem Response in a Changing ClimateS. L. Maes; J. Dietrich; G. Midolo; S. Schwieger; M. Kummu; V. Vandvik; R. Aerts; I. H. J. Althuizen; C. Biasi; R. G. Björk; H. Böhner; M. Carbognani; G. Chiari; C. T. Christiansen; K. E. Clemmensen; E. J. Cooper; J. H. C. Cornelissen; B. Elberling; P. Faubert; N. Fetcher; T. G. W. Forte; J. Gaudard; K. Gavazov; Z. Guan; J. Guðmundsson; R. Gya; S. Hallin; B. B. Hansen; S. V. Haugum; J.-S. He; C. Hicks Pries; M. J. Hovenden; M. Jalava; I. S. Jónsdóttir; J. Juhanson; J. Y. Jung; E. Kaarlejärvi; M. J. Kwon; R. E. Lamprecht; M. Le Moullec; H. Lee; M. E. Marushchak; A. Michelsen; T. M. Munir; E. M. Myrsky; C. S. Nielsen; M. Nyberg; J. Olofsson; H. Óskarsson; T. C. Parker; E. P. Pedersen; M. Petit Bon; A. Petraglia; K. Raundrup; N. M. R. Ravn; R. Rinnan; H. Rodenhizer; I. Ryde; N. M. Schmidt; E. A. G. Schuur; S. Sjögersten; S. Stark; M. Strack; J. Tang; A. Tolvanen; J. P. Töpper; M. K. Väisänen; R. S. P. van Logtestijn; C. Voigt; J. Walz; J. T. Weedon; Y. Yang; H. Ylänne; M. P. Björkman; J. M. Sarneel; E. Dorrepaal;pmid: 38632407
pmc: PMC11062900
AbstractArctic and alpine tundra ecosystems are large reservoirs of organic carbon1,2. Climate warming may stimulate ecosystem respiration and release carbon into the atmosphere3,4. The magnitude and persistency of this stimulation and the environmental mechanisms that drive its variation remain uncertain5–7. This hampers the accuracy of global land carbon–climate feedback projections7,8. Here we synthesize 136 datasets from 56 open-top chamber in situ warming experiments located at 28 arctic and alpine tundra sites which have been running for less than 1 year up to 25 years. We show that a mean rise of 1.4 °C [confidence interval (CI) 0.9–2.0 °C] in air and 0.4 °C [CI 0.2–0.7 °C] in soil temperature results in an increase in growing season ecosystem respiration by 30% [CI 22–38%] (n = 136). Our findings indicate that the stimulation of ecosystem respiration was due to increases in both plant-related and microbial respiration (n = 9) and continued for at least 25 years (n = 136). The magnitude of the warming effects on respiration was driven by variation in warming-induced changes in local soil conditions, that is, changes in total nitrogen concentration and pH and by context-dependent spatial variation in these conditions, in particular total nitrogen concentration and the carbon:nitrogen ratio. Tundra sites with stronger nitrogen limitations and sites in which warming had stimulated plant and microbial nutrient turnover seemed particularly sensitive in their respiration response to warming. The results highlight the importance of local soil conditions and warming-induced changes therein for future climatic impacts on respiration.
Nature arrow_drop_down Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555368Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2024Full-Text: https://hdl.handle.net/11381/2983453Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Chicoutimi (UQAC): ConstellationArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2024License: CC BYFull-Text: https://hdl.handle.net/11250/3154031Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2024 . Peer-reviewedData sources: Publikationer från Umeå universitetAaltodoc Publication ArchiveArticle . 2024 . Peer-reviewedData sources: Aaltodoc Publication ArchiveDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedMunin - Open Research ArchiveArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveBergen Open Research Archive - UiBArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-07274-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Nature arrow_drop_down Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555368Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2024Full-Text: https://hdl.handle.net/11381/2983453Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Chicoutimi (UQAC): ConstellationArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2024License: CC BYFull-Text: https://hdl.handle.net/11250/3154031Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2024 . Peer-reviewedData sources: Publikationer från Umeå universitetAaltodoc Publication ArchiveArticle . 2024 . Peer-reviewedData sources: Aaltodoc Publication ArchiveDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedMunin - Open Research ArchiveArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveBergen Open Research Archive - UiBArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-07274-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United States, Netherlands, BelgiumPublisher:Proceedings of the National Academy of Sciences Funded by:EC | DOFOCOEC| DOFOCOTang, J.; Luyssaert, S.; Richardson, Andrew; Kutsch, W.; Janssens, I. A.;pmid: 24889643
pmc: PMC4066488
SignificanceAdvancing our understanding of how and why forests dynamically change in their productivity is important to predict the future change. The traditional view of forest dynamics originated by Kira, Shidei, and Odum suggests a decline in net primary productivity [or gross primary productivity (GPP) − autotrophic respiration (Ra)] in aging forests due to stabilized GPP and continuously increased Ra. We found that, in contrast to the traditional view, both GPP and Radecline in aging forests while GPP decreases more rapidly than Radoes, and thus generalize the alternative hypothesis initiated by Ryan and colleagues with a large dataset. We presented a new quantitative model to describe forest dynamics that can be incorporated into ecosystem models.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2014Data sources: European Research Council (ERC)Proceedings of the National Academy of SciencesArticle . 2014Data sources: Institutional Repository Universiteit AntwerpenProceedings of the National Academy of SciencesArticle . 2014 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2014http://dx.doi.org/10.1073/pnas...Article . Peer-reviewedData sources: European Union Open Data PortalHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1320761111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 129 citations 129 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2014Data sources: European Research Council (ERC)Proceedings of the National Academy of SciencesArticle . 2014Data sources: Institutional Repository Universiteit AntwerpenProceedings of the National Academy of SciencesArticle . 2014 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2014http://dx.doi.org/10.1073/pnas...Article . Peer-reviewedData sources: European Union Open Data PortalHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1320761111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Publisher:Wiley Faming Wang; Faming Wang; Faming Wang; John W. Pohlman; Meagan Eagle Gonneea; Kevin D. Kroeger; Jianwu Tang;AbstractCoastal wetlands are a significant carbon (C) sink since they store carbon in anoxic soils. This ecosystem service is impacted by hydrologic alteration and management of these coastal habitats. Efforts to restore tidal flow to former salt marshes have increased in recent decades and are generally associated with alteration of water inundation levels and salinity. This study examined the effect of water level and salinity changes on soil organic matter decomposition during a 60‐day incubation period. Intact soil cores from impounded fresh water marsh and salt marsh were incubated after addition of either sea water or fresh water under flooded and drained water levels. Elevating fresh water marsh salinity to 6 to 9 ppt enhanced CO2 emission by 50%−80% and most typically decreased CH4 emissions, whereas, decreasing the salinity from 26 ppt to 19 ppt in salt marsh soils had no effect on CO2 or CH4 fluxes. The effect from altering water levels was more pronounced with drained soil cores emitting ~10‐fold more CO2 than the flooded treatment in both marsh sediments. Draining soil cores also increased dissolved organic carbon (DOC) concentrations. Stable carbon isotope analysis of CO2 generated during the incubations of fresh water marsh cores in drained soils demonstrates that relict peat OC that accumulated when the marsh was saline was preferentially oxidized when sea water was introduced. This study suggests that restoration of tidal flow that raises the water level from drained conditions would decrease aerobic decomposition and enhance C sequestration. It is also possible that the restoration would increase soil C decomposition of deeper deposits by anaerobic oxidation, however this impact would be minimal compared to lower emissions expected due to the return of flooding conditions.
Woods Hole Open Acce... arrow_drop_down Woods Hole Open Access ServerArticle . 2019License: CC BYFull-Text: https://doi.org/10.1002/ece3.4884Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.4884&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 43 citations 43 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Woods Hole Open Acce... arrow_drop_down Woods Hole Open Access ServerArticle . 2019License: CC BYFull-Text: https://doi.org/10.1002/ece3.4884Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.4884&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Oxford University Press (OUP) Yu-Mei Zhou; Jerry M. Melillo; Jianwu Tang; Sarah Butler; Jacqueline E. Mohan;pmid: 21813516
Examining the responses of root standing crop (biomass and necromass) and chemistry to soil warming is crucial for understanding root dynamics and functioning in the face of global climate change. We assessed the standing crop, total nitrogen (N) and carbon (C) compounds in tree roots and soil net N mineralization over the growing season after 6 years of experimental soil warming in a temperate deciduous forest in 2008. Roots were sorted into four different categories: live and dead fine roots (≤1mm in diameter) and live and dead coarse roots (1-4 mm in diameter). Total root standing crop (live plus dead) in the top 10 cm of soil in the warmed area was 42.5% (378.4 vs. 658.5 g m(-2)) lower than in the control area, while live root standing crop in the warmed area was 62% lower than in the control area. Soil net N mineralization over the growing season increased by 79.4% in the warmed relative to the control area. Soil warming did not significantly change the concentrations of C and C compounds (sugar, starch, hemicellulose, cellulose and lignin) in the four root categories. However, total N concentration in the live fine roots in the warmed area was 10.5% (13.7 vs. 12.4 mg g(-1)) higher and C:N ratio was 8.6% (38.5 vs. 42.1) lower than in the control area. The increase in N concentration in the live fine roots could be attributed to the increase in soil N availability due to soil warming. Net N mineralization was negatively correlated with both live and dead fine roots in the mineral soil that is home to the majority of roots, suggesting that soil warming increases N mineralization, decreases fine root biomass and thus decreases C allocation belowground.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpr066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpr066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United States, United Kingdom, FinlandPublisher:Springer Science and Business Media LLC Funded by:FCT | LA 1FCT| LA 1Authors: Shibata, Hideaki; Branquinho, Cristina; McDowell, William H.; Mitchell, Myron J.; +12 AuthorsShibata, Hideaki; Branquinho, Cristina; McDowell, William H.; Mitchell, Myron J.; Monteith, Don T.; Tang, Jianwu; Arvola, Lauri; Cruz, Cristina; Cusack, Daniela F.; Halada, Lubos; Kopáček, Jiří; Máguas, Cristina; Sajidu, Samson; Schubert, Hendrik; Tokuchi, Naoko; Záhora, Jaroslav;Anthropogenically derived nitrogen (N) has a central role in global environmental changes, including climate change, biodiversity loss, air pollution, greenhouse gas emission, water pollution, as well as food production and human health. Current understanding of the biogeochemical processes that govern the N cycle in coupled human-ecological systems around the globe is drawn largely from the long-term ecological monitoring and experimental studies. Here, we review spatial and temporal patterns and trends in reactive N emissions, and the interactions between N and other important elements that dictate their delivery from terrestrial to aquatic ecosystems, and the impacts of N on biodiversity and human society. Integrated international and long-term collaborative studies covering research gaps will reduce uncertainties and promote further understanding of the nitrogen cycle in various ecosystems.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/0j002819Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2014Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-014-0545-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 67 citations 67 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/0j002819Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2014Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-014-0545-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 BelgiumPublisher:Wiley Wang, Xin; Liu, Lingli; Piao, Shilong; Janssens, Ivan A.; Tang, Jianwu; Liu, Weixing; Chi, Yonggang; Wang, Jing; Xu, Shan;AbstractDespite decades of research, how climate warming alters the global flux of soil respiration is still poorly characterized. Here, we use meta‐analysis to synthesize 202 soil respiration datasets from 50 ecosystem warming experiments across multiple terrestrial ecosystems. We found that, on average, warming by 2 °C increased soil respiration by 12% during the early warming years, but warming‐induced drought partially offset this effect. More significantly, the two components of soil respiration, heterotrophic respiration and autotrophic respiration showed distinct responses. The warming effect on autotrophic respiration was not statistically detectable during the early warming years, but nonetheless decreased with treatment duration. In contrast, warming by 2 °C increased heterotrophic respiration by an average of 21%, and this stimulation remained stable over the warming duration. This result challenged the assumption that microbial activity would acclimate to the rising temperature. Together, our findings demonstrate that distinguishing heterotrophic respiration and autotrophic respiration would allow us better understand and predict the long‐term response of soil respiration to warming. The dependence of soil respiration on soil moisture condition also underscores the importance of incorporating warming‐induced soil hydrological changes when modeling soil respiration under climate change.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12620&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu284 citations 284 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12620&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Meagan Eagle; Fanning Wang; Jianwu Tang; Jianwu Tang; Kevin D. Kroeger; Amanda C. Spivak;pmid: 32882493
Salt marshes, due to their capability to bury soil carbon (C), are potentially important regional C sinks. Efforts to restore tidal flow to former salt marshes have increased in recent decades in New England (USA), as well as in some other parts of the world. In this study, we investigated plant biomass and carbon dioxide (CO2) fluxes at four sites where restoration of tidal flow occurred five to ten years prior to the study. Site elevation, aboveground biomass, CO2 flux, and porewater chemistry were measured in 2015 and 2016 in both restored marshes and adjacent marshes where tidal flow had never been restricted. We found that the elevation in restored marsh sites was 2-16 cm lower than their natural references. Restored marshes where porewater chemistry was similar to the natural reference had greater plant aboveground biomass, gross ecosystem production, ecosystem respiration, as well as net ecosystem CO2 exchange (NEE) than the natural reference, even though they had the same plant species. We also compared respiration rates in aboveground biomass (AR) and soil (BR) during July 2016, and found that restored marshes had higher AR and BR fluxes than natural references. Our findings indicated that well-restored salt marshes can result in greater plant biomass and NEP, which has the potential to enhance rates of C sequestration at 10-yrs post restoration. Those differences were likely due to lower elevation and greater flooding frequency in the recently restored marshes than the natural marsh. The inverse relationship between elevation and productivity further suggests that, where sea-level rise rate does not surpass the threshold of plant survival, the restoration of these salt marshes may lead to enhanced organic and mineral sedimentation, extending marsh survival under increased sea level, and recouping carbon stocks that were lost during decades of tidal restriction.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.141566&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.141566&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Proceedings of the National Academy of Sciences Jerry M. Melillo; Andrew J. Burton; Yu-Mei Zhou; Jim Tang; Rose M. Smith; Troy D. Hill; J. E. Johnson; Chelsea Vario; Heidi Lux; Francis P. Bowles; Jacqueline E. Mohan; Paul A. Steudler; Elizabeth H. Burrows; Sarah Butler; Lindsay Scott;Soil warming has the potential to alter both soil and plant processes that affect carbon storage in forest ecosystems. We have quantified these effects in a large, long-term (7-y) soil-warming study in a deciduous forest in New England. Soil warming has resulted in carbon losses from the soil and stimulated carbon gains in the woody tissue of trees. The warming-enhanced decay of soil organic matter also released enough additional inorganic nitrogen into the soil solution to support the observed increases in plant carbon storage. Although soil warming has resulted in a cumulative net loss of carbon from a New England forest relative to a control area over the 7-y study, the annual net losses generally decreased over time as plant carbon storage increased. In the seventh year, warming-induced soil carbon losses were almost totally compensated for by plant carbon gains in response to warming. We attribute the plant gains primarily to warming-induced increases in nitrogen availability. This study underscores the importance of incorporating carbon–nitrogen interactions in atmosphere–ocean–land earth system models to accurately simulate land feedbacks to the climate system.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2011 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1018189108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 476 citations 476 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2011 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1018189108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Canada, Netherlands, Italy, Canada, Netherlands, Denmark, Norway, Norway, Sweden, Finland, NorwayPublisher:Springer Science and Business Media LLC Funded by:RCN | Indirect climate change i..., NSF | Collaborative Research: C..., RCN | Centre for Biodiversity D... +15 projectsRCN| Indirect climate change impacts on alpine plant communities ,NSF| Collaborative Research: Climate-induced sea-level rise, warming and herbivory effects on vegetation and greenhouse gas emission in coastal western Alaska ,RCN| Centre for Biodiversity Dynamics (CBD) ,RCN| Terrestrial ecosystem-climate interactions of our EMERALD planet ,AKA| Atmosphere and Climate Competence Center (ACCC) ,EC| PERMTHAW ,AKA| A combined experiment and modelling approach to quantify the nitrous oxide budget of permafrost regions (N-PERM) ,RCN| Effects of herbivory and warming on tundra plant communities ,SNSF| Can forest expansion in mountain ecosystems generate a positive feedback to climate change: the unseen role of symbiotic mycorrhizae ,AKA| Fate of nitrogen released from thawing permafrost: from microbial transformations to gaseous losses (Thaw-N) ,SNSF| Grundlagenarbeiten zur rätoromanischen Schriftsprache Rumantsch grischun. ,NSF| Collaborative Research: Local Adaptation in a Dominant Arctic Tundra Sedge (Eriophorum Vaginatum) and its Effects on Ecosystem Response in a Changing Climate ,EC| TUVOLU ,AKA| Methane uptake by permafrost-affected soils – an underestimated carbon sink in Arctic ecosystems? (MUFFIN) ,ARC| Discovery Projects - Grant ID: DP220100915 ,RCN| Advancing permafrost carbon climate feedback-improvements and evaluations of the Norwegian Earth System Model with observations ,EC| SOS.aquaterra ,NSF| Collaborative Research: Local Adaptation in a Dominant Arctic Tundra Sedge (Eriophorum Vaginatum) and its Effects on Ecosystem Response in a Changing ClimateS. L. Maes; J. Dietrich; G. Midolo; S. Schwieger; M. Kummu; V. Vandvik; R. Aerts; I. H. J. Althuizen; C. Biasi; R. G. Björk; H. Böhner; M. Carbognani; G. Chiari; C. T. Christiansen; K. E. Clemmensen; E. J. Cooper; J. H. C. Cornelissen; B. Elberling; P. Faubert; N. Fetcher; T. G. W. Forte; J. Gaudard; K. Gavazov; Z. Guan; J. Guðmundsson; R. Gya; S. Hallin; B. B. Hansen; S. V. Haugum; J.-S. He; C. Hicks Pries; M. J. Hovenden; M. Jalava; I. S. Jónsdóttir; J. Juhanson; J. Y. Jung; E. Kaarlejärvi; M. J. Kwon; R. E. Lamprecht; M. Le Moullec; H. Lee; M. E. Marushchak; A. Michelsen; T. M. Munir; E. M. Myrsky; C. S. Nielsen; M. Nyberg; J. Olofsson; H. Óskarsson; T. C. Parker; E. P. Pedersen; M. Petit Bon; A. Petraglia; K. Raundrup; N. M. R. Ravn; R. Rinnan; H. Rodenhizer; I. Ryde; N. M. Schmidt; E. A. G. Schuur; S. Sjögersten; S. Stark; M. Strack; J. Tang; A. Tolvanen; J. P. Töpper; M. K. Väisänen; R. S. P. van Logtestijn; C. Voigt; J. Walz; J. T. Weedon; Y. Yang; H. Ylänne; M. P. Björkman; J. M. Sarneel; E. Dorrepaal;pmid: 38632407
pmc: PMC11062900
AbstractArctic and alpine tundra ecosystems are large reservoirs of organic carbon1,2. Climate warming may stimulate ecosystem respiration and release carbon into the atmosphere3,4. The magnitude and persistency of this stimulation and the environmental mechanisms that drive its variation remain uncertain5–7. This hampers the accuracy of global land carbon–climate feedback projections7,8. Here we synthesize 136 datasets from 56 open-top chamber in situ warming experiments located at 28 arctic and alpine tundra sites which have been running for less than 1 year up to 25 years. We show that a mean rise of 1.4 °C [confidence interval (CI) 0.9–2.0 °C] in air and 0.4 °C [CI 0.2–0.7 °C] in soil temperature results in an increase in growing season ecosystem respiration by 30% [CI 22–38%] (n = 136). Our findings indicate that the stimulation of ecosystem respiration was due to increases in both plant-related and microbial respiration (n = 9) and continued for at least 25 years (n = 136). The magnitude of the warming effects on respiration was driven by variation in warming-induced changes in local soil conditions, that is, changes in total nitrogen concentration and pH and by context-dependent spatial variation in these conditions, in particular total nitrogen concentration and the carbon:nitrogen ratio. Tundra sites with stronger nitrogen limitations and sites in which warming had stimulated plant and microbial nutrient turnover seemed particularly sensitive in their respiration response to warming. The results highlight the importance of local soil conditions and warming-induced changes therein for future climatic impacts on respiration.
Nature arrow_drop_down Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555368Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2024Full-Text: https://hdl.handle.net/11381/2983453Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Chicoutimi (UQAC): ConstellationArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2024License: CC BYFull-Text: https://hdl.handle.net/11250/3154031Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2024 . Peer-reviewedData sources: Publikationer från Umeå universitetAaltodoc Publication ArchiveArticle . 2024 . Peer-reviewedData sources: Aaltodoc Publication ArchiveDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedMunin - Open Research ArchiveArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveBergen Open Research Archive - UiBArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-07274-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Nature arrow_drop_down Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555368Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2024Full-Text: https://hdl.handle.net/11381/2983453Data sources: Bielefeld Academic Search Engine (BASE)Université du Québec à Chicoutimi (UQAC): ConstellationArticle . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2024License: CC BYFull-Text: https://hdl.handle.net/11250/3154031Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemPublikationer från Umeå universitetArticle . 2024 . Peer-reviewedData sources: Publikationer från Umeå universitetAaltodoc Publication ArchiveArticle . 2024 . Peer-reviewedData sources: Aaltodoc Publication ArchiveDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedMunin - Open Research ArchiveArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveBergen Open Research Archive - UiBArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-07274-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United States, Netherlands, BelgiumPublisher:Proceedings of the National Academy of Sciences Funded by:EC | DOFOCOEC| DOFOCOTang, J.; Luyssaert, S.; Richardson, Andrew; Kutsch, W.; Janssens, I. A.;pmid: 24889643
pmc: PMC4066488
SignificanceAdvancing our understanding of how and why forests dynamically change in their productivity is important to predict the future change. The traditional view of forest dynamics originated by Kira, Shidei, and Odum suggests a decline in net primary productivity [or gross primary productivity (GPP) − autotrophic respiration (Ra)] in aging forests due to stabilized GPP and continuously increased Ra. We found that, in contrast to the traditional view, both GPP and Radecline in aging forests while GPP decreases more rapidly than Radoes, and thus generalize the alternative hypothesis initiated by Ryan and colleagues with a large dataset. We presented a new quantitative model to describe forest dynamics that can be incorporated into ecosystem models.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2014Data sources: European Research Council (ERC)Proceedings of the National Academy of SciencesArticle . 2014Data sources: Institutional Repository Universiteit AntwerpenProceedings of the National Academy of SciencesArticle . 2014 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2014http://dx.doi.org/10.1073/pnas...Article . Peer-reviewedData sources: European Union Open Data PortalHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1320761111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 129 citations 129 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2014Data sources: European Research Council (ERC)Proceedings of the National Academy of SciencesArticle . 2014Data sources: Institutional Repository Universiteit AntwerpenProceedings of the National Academy of SciencesArticle . 2014 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2014http://dx.doi.org/10.1073/pnas...Article . Peer-reviewedData sources: European Union Open Data PortalHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1320761111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Publisher:Wiley Faming Wang; Faming Wang; Faming Wang; John W. Pohlman; Meagan Eagle Gonneea; Kevin D. Kroeger; Jianwu Tang;AbstractCoastal wetlands are a significant carbon (C) sink since they store carbon in anoxic soils. This ecosystem service is impacted by hydrologic alteration and management of these coastal habitats. Efforts to restore tidal flow to former salt marshes have increased in recent decades and are generally associated with alteration of water inundation levels and salinity. This study examined the effect of water level and salinity changes on soil organic matter decomposition during a 60‐day incubation period. Intact soil cores from impounded fresh water marsh and salt marsh were incubated after addition of either sea water or fresh water under flooded and drained water levels. Elevating fresh water marsh salinity to 6 to 9 ppt enhanced CO2 emission by 50%−80% and most typically decreased CH4 emissions, whereas, decreasing the salinity from 26 ppt to 19 ppt in salt marsh soils had no effect on CO2 or CH4 fluxes. The effect from altering water levels was more pronounced with drained soil cores emitting ~10‐fold more CO2 than the flooded treatment in both marsh sediments. Draining soil cores also increased dissolved organic carbon (DOC) concentrations. Stable carbon isotope analysis of CO2 generated during the incubations of fresh water marsh cores in drained soils demonstrates that relict peat OC that accumulated when the marsh was saline was preferentially oxidized when sea water was introduced. This study suggests that restoration of tidal flow that raises the water level from drained conditions would decrease aerobic decomposition and enhance C sequestration. It is also possible that the restoration would increase soil C decomposition of deeper deposits by anaerobic oxidation, however this impact would be minimal compared to lower emissions expected due to the return of flooding conditions.
Woods Hole Open Acce... arrow_drop_down Woods Hole Open Access ServerArticle . 2019License: CC BYFull-Text: https://doi.org/10.1002/ece3.4884Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.4884&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 43 citations 43 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Woods Hole Open Acce... arrow_drop_down Woods Hole Open Access ServerArticle . 2019License: CC BYFull-Text: https://doi.org/10.1002/ece3.4884Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.4884&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Oxford University Press (OUP) Yu-Mei Zhou; Jerry M. Melillo; Jianwu Tang; Sarah Butler; Jacqueline E. Mohan;pmid: 21813516
Examining the responses of root standing crop (biomass and necromass) and chemistry to soil warming is crucial for understanding root dynamics and functioning in the face of global climate change. We assessed the standing crop, total nitrogen (N) and carbon (C) compounds in tree roots and soil net N mineralization over the growing season after 6 years of experimental soil warming in a temperate deciduous forest in 2008. Roots were sorted into four different categories: live and dead fine roots (≤1mm in diameter) and live and dead coarse roots (1-4 mm in diameter). Total root standing crop (live plus dead) in the top 10 cm of soil in the warmed area was 42.5% (378.4 vs. 658.5 g m(-2)) lower than in the control area, while live root standing crop in the warmed area was 62% lower than in the control area. Soil net N mineralization over the growing season increased by 79.4% in the warmed relative to the control area. Soil warming did not significantly change the concentrations of C and C compounds (sugar, starch, hemicellulose, cellulose and lignin) in the four root categories. However, total N concentration in the live fine roots in the warmed area was 10.5% (13.7 vs. 12.4 mg g(-1)) higher and C:N ratio was 8.6% (38.5 vs. 42.1) lower than in the control area. The increase in N concentration in the live fine roots could be attributed to the increase in soil N availability due to soil warming. Net N mineralization was negatively correlated with both live and dead fine roots in the mineral soil that is home to the majority of roots, suggesting that soil warming increases N mineralization, decreases fine root biomass and thus decreases C allocation belowground.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpr066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpr066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United States, United Kingdom, FinlandPublisher:Springer Science and Business Media LLC Funded by:FCT | LA 1FCT| LA 1Authors: Shibata, Hideaki; Branquinho, Cristina; McDowell, William H.; Mitchell, Myron J.; +12 AuthorsShibata, Hideaki; Branquinho, Cristina; McDowell, William H.; Mitchell, Myron J.; Monteith, Don T.; Tang, Jianwu; Arvola, Lauri; Cruz, Cristina; Cusack, Daniela F.; Halada, Lubos; Kopáček, Jiří; Máguas, Cristina; Sajidu, Samson; Schubert, Hendrik; Tokuchi, Naoko; Záhora, Jaroslav;Anthropogenically derived nitrogen (N) has a central role in global environmental changes, including climate change, biodiversity loss, air pollution, greenhouse gas emission, water pollution, as well as food production and human health. Current understanding of the biogeochemical processes that govern the N cycle in coupled human-ecological systems around the globe is drawn largely from the long-term ecological monitoring and experimental studies. Here, we review spatial and temporal patterns and trends in reactive N emissions, and the interactions between N and other important elements that dictate their delivery from terrestrial to aquatic ecosystems, and the impacts of N on biodiversity and human society. Integrated international and long-term collaborative studies covering research gaps will reduce uncertainties and promote further understanding of the nitrogen cycle in various ecosystems.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/0j002819Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2014Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-014-0545-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 67 citations 67 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2015Full-Text: https://escholarship.org/uc/item/0j002819Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2014Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-014-0545-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 BelgiumPublisher:Wiley Wang, Xin; Liu, Lingli; Piao, Shilong; Janssens, Ivan A.; Tang, Jianwu; Liu, Weixing; Chi, Yonggang; Wang, Jing; Xu, Shan;AbstractDespite decades of research, how climate warming alters the global flux of soil respiration is still poorly characterized. Here, we use meta‐analysis to synthesize 202 soil respiration datasets from 50 ecosystem warming experiments across multiple terrestrial ecosystems. We found that, on average, warming by 2 °C increased soil respiration by 12% during the early warming years, but warming‐induced drought partially offset this effect. More significantly, the two components of soil respiration, heterotrophic respiration and autotrophic respiration showed distinct responses. The warming effect on autotrophic respiration was not statistically detectable during the early warming years, but nonetheless decreased with treatment duration. In contrast, warming by 2 °C increased heterotrophic respiration by an average of 21%, and this stimulation remained stable over the warming duration. This result challenged the assumption that microbial activity would acclimate to the rising temperature. Together, our findings demonstrate that distinguishing heterotrophic respiration and autotrophic respiration would allow us better understand and predict the long‐term response of soil respiration to warming. The dependence of soil respiration on soil moisture condition also underscores the importance of incorporating warming‐induced soil hydrological changes when modeling soil respiration under climate change.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12620&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu284 citations 284 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12620&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu