
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Root standing crop and chemistry after six years of soil warming in a temperate forest

pmid: 21813516
Examining the responses of root standing crop (biomass and necromass) and chemistry to soil warming is crucial for understanding root dynamics and functioning in the face of global climate change. We assessed the standing crop, total nitrogen (N) and carbon (C) compounds in tree roots and soil net N mineralization over the growing season after 6 years of experimental soil warming in a temperate deciduous forest in 2008. Roots were sorted into four different categories: live and dead fine roots (≤1mm in diameter) and live and dead coarse roots (1-4 mm in diameter). Total root standing crop (live plus dead) in the top 10 cm of soil in the warmed area was 42.5% (378.4 vs. 658.5 g m(-2)) lower than in the control area, while live root standing crop in the warmed area was 62% lower than in the control area. Soil net N mineralization over the growing season increased by 79.4% in the warmed relative to the control area. Soil warming did not significantly change the concentrations of C and C compounds (sugar, starch, hemicellulose, cellulose and lignin) in the four root categories. However, total N concentration in the live fine roots in the warmed area was 10.5% (13.7 vs. 12.4 mg g(-1)) higher and C:N ratio was 8.6% (38.5 vs. 42.1) lower than in the control area. The increase in N concentration in the live fine roots could be attributed to the increase in soil N availability due to soil warming. Net N mineralization was negatively correlated with both live and dead fine roots in the mineral soil that is home to the majority of roots, suggesting that soil warming increases N mineralization, decreases fine root biomass and thus decreases C allocation belowground.
- Chinese Academy of Sciences China (People's Republic of)
- Marine Biological Laboratory United States
- Marine Biological Laboratory United States
- University of Georgia Georgia
- University of Georgia Press United States
Hot Temperature, Climate Change, Plant Roots, Trees, Soil, Biomass, Organic Chemicals, Nitrogen Compounds
Hot Temperature, Climate Change, Plant Roots, Trees, Soil, Biomass, Organic Chemicals, Nitrogen Compounds
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).55 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
