- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Zhaoying Li; Zhaoping Zhong; Bo Zhang; Wei Wang; Hao Zhao; Gabriel V.S. Seufitelli; Fernando L.P. Resende;pmid: 32862000
This paper reports the results obtained for microwave-assisted catalytic fast pyrolysis (MACFP) of rice husk. The MACFP process employed a hierarchical catalyst prepared via a combination of organic alkali treatment (TPAOH) and the generation of an external layer of MCM-41-type mesoporous channels. We propose this catalyst which is used for the first time for pyrolysis of lignocellulosic biomass, as a tool to reduce coke agglomeration and increase hydrocarbon yields. Our results indicate that during catalyst preparation the mass fraction of cetyltrimethylammonium bromide (CTAB) has a direct effect on the content of MCM-41 formed on top of the HZSM-5 core. For MACFP, we hypothesize that the small molecules generated from thermal decomposition of rice husk react further to form aromatic and aliphatic hydrocarbons by decarbonylation, decarboxylation, oligomerization and aromatization. The highest hydrocarbon yield (60.5%) was obtained for a catalyst modified by a 2.0 mol/L TPAOH solution, with 10 wt% of CTAB (template for producing MCM-41), as well as with digestion and crystallization at 110 °C for 24 h. In addition, the highest liquid yield (47.6 wt%) was obtained at 550 °C. The relative content of hydrocarbons goes through a maximum of 60.5% with CTAB mass fraction which was higher than values obtained with MCM-41 (3.2%) and HZSM-5 (36.0%). Characterization and catalytic testing results suggest that the digestion temperature plays a more important role in the catalyst synthesis than the crystallization temperature. High digestion temperature (120 °C) decreases the overall hydrocarbon selectivity from 60.5% (110 °C) to 39.2%. The relative content of oxygenates reached the lowest value of 35.9% at the digestion and crystallization temperature of 110 °C. The synergistic effect of the MCM-41 shell and the HZSM-5 core promotes the catalytic activity, leading to outstanding deoxygenation capabilities and excellent selectivity to BTEX (52.7%).
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.141215&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.141215&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Zhaoying Li; Zhaoping Zhong; Bo Zhang; Wei Wang; Hao Zhao; Gabriel V.S. Seufitelli; Fernando L.P. Resende;pmid: 32862000
This paper reports the results obtained for microwave-assisted catalytic fast pyrolysis (MACFP) of rice husk. The MACFP process employed a hierarchical catalyst prepared via a combination of organic alkali treatment (TPAOH) and the generation of an external layer of MCM-41-type mesoporous channels. We propose this catalyst which is used for the first time for pyrolysis of lignocellulosic biomass, as a tool to reduce coke agglomeration and increase hydrocarbon yields. Our results indicate that during catalyst preparation the mass fraction of cetyltrimethylammonium bromide (CTAB) has a direct effect on the content of MCM-41 formed on top of the HZSM-5 core. For MACFP, we hypothesize that the small molecules generated from thermal decomposition of rice husk react further to form aromatic and aliphatic hydrocarbons by decarbonylation, decarboxylation, oligomerization and aromatization. The highest hydrocarbon yield (60.5%) was obtained for a catalyst modified by a 2.0 mol/L TPAOH solution, with 10 wt% of CTAB (template for producing MCM-41), as well as with digestion and crystallization at 110 °C for 24 h. In addition, the highest liquid yield (47.6 wt%) was obtained at 550 °C. The relative content of hydrocarbons goes through a maximum of 60.5% with CTAB mass fraction which was higher than values obtained with MCM-41 (3.2%) and HZSM-5 (36.0%). Characterization and catalytic testing results suggest that the digestion temperature plays a more important role in the catalyst synthesis than the crystallization temperature. High digestion temperature (120 °C) decreases the overall hydrocarbon selectivity from 60.5% (110 °C) to 39.2%. The relative content of oxygenates reached the lowest value of 35.9% at the digestion and crystallization temperature of 110 °C. The synergistic effect of the MCM-41 shell and the HZSM-5 core promotes the catalytic activity, leading to outstanding deoxygenation capabilities and excellent selectivity to BTEX (52.7%).
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.141215&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.141215&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Zeyu Xue; Zhaoping Zhong; Xudong Lai;pmid: 31563712
Co-combustion of coal and wheat straw (WS) was conducted in a lab-scale BFB combustor. Fuel composition (coal, 70%coal+30%WS), temperature (750, 800, 850, 900, 950 °C), secondary air ratio (0, 10%, 20%, 30%) were varied to on the release of gaseous pollutant was studied. CO, NOx and SO2 concentration in flue gas (FG) were measured on-line by a flue gas analyzer. Fly ash (FA), bottom slag (BS) and bed material (BM) were collected, digested and analyzed by ICP-OES to determine the distribution of heavy metals (e.g. Pb, Zn, Cr and Cd). Results indicated that co-combustion could improve the combustion of coal alone by reducing CO, NOx and SO2 emission and carbon content in fly ash effectively. In co-combustion the increasing secondary air could reduce CO emission and SO2 by enhancing disturbance and promoting sulfation respectively while the minimum NO emission was reached at the ratio of 20%. Co-combustion restrained the release of Zn, Cd and Pb compared with coal combustion alone. In co-combustion, high temperature increased their portion in the flue gas. For Zn, Pb and Cd, their content in the bottom solids increased while the portion of Cr decreased. Secondary air decreased their content in fly ash and transferred into flue gas significantly and in bottom solids content of Zn and Pb decreased while Cd increased.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2019.124853&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2019.124853&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Zeyu Xue; Zhaoping Zhong; Xudong Lai;pmid: 31563712
Co-combustion of coal and wheat straw (WS) was conducted in a lab-scale BFB combustor. Fuel composition (coal, 70%coal+30%WS), temperature (750, 800, 850, 900, 950 °C), secondary air ratio (0, 10%, 20%, 30%) were varied to on the release of gaseous pollutant was studied. CO, NOx and SO2 concentration in flue gas (FG) were measured on-line by a flue gas analyzer. Fly ash (FA), bottom slag (BS) and bed material (BM) were collected, digested and analyzed by ICP-OES to determine the distribution of heavy metals (e.g. Pb, Zn, Cr and Cd). Results indicated that co-combustion could improve the combustion of coal alone by reducing CO, NOx and SO2 emission and carbon content in fly ash effectively. In co-combustion the increasing secondary air could reduce CO emission and SO2 by enhancing disturbance and promoting sulfation respectively while the minimum NO emission was reached at the ratio of 20%. Co-combustion restrained the release of Zn, Cd and Pb compared with coal combustion alone. In co-combustion, high temperature increased their portion in the flue gas. For Zn, Pb and Cd, their content in the bottom solids increased while the portion of Cr decreased. Secondary air decreased their content in fly ash and transferred into flue gas significantly and in bottom solids content of Zn and Pb decreased while Cd increased.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2019.124853&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2019.124853&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Zeyu Xue; Zhaoping Zhong; Bo Zhang;To delve into the law of hydrocarbon production in microwave-assisted catalytic fast pyrolysis (MACFP) of corn straw, physical mixed Mesoporous Crystalline Material-41 (MCM-41) and Zeolite Socony Mobile-5 (ZSM-5) catalyst prototypes were exploited in this study. Besides, the effects exerted by temperature of reaction and MCM-41/ZSM-5 mass ratio were explored. As revealed from the results, carbon outputs of hydrocarbons rose initially as the temperature of MACFP rose and reached the maximal data at 550 °C; subsequently, it declined as reaction temperature rose. Moreover, the MCM-41/ZSM-5 mass ratio of 1:2 was second-to-none for hydrocarbon formation in the course of biomass MACFP. It was reported that adding MCM-41 can hinder coke formation on ZSM-5. Furthermore, MCM-41/ZSM-5 mixture exhibited more significant catalytic activity than ZSM-5/MCM-41 composite, demonstrating that hydrocarbon producing process can be stimulated by a simple physical MCM-41 and ZSM-5 catalysts mixture instead of synthesizing complex hierarchically-structured ZSM-5/MCM-41 composite.
Catalysts arrow_drop_down CatalystsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4344/10/6/685/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal10060685&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4344/10/6/685/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal10060685&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Zeyu Xue; Zhaoping Zhong; Bo Zhang;To delve into the law of hydrocarbon production in microwave-assisted catalytic fast pyrolysis (MACFP) of corn straw, physical mixed Mesoporous Crystalline Material-41 (MCM-41) and Zeolite Socony Mobile-5 (ZSM-5) catalyst prototypes were exploited in this study. Besides, the effects exerted by temperature of reaction and MCM-41/ZSM-5 mass ratio were explored. As revealed from the results, carbon outputs of hydrocarbons rose initially as the temperature of MACFP rose and reached the maximal data at 550 °C; subsequently, it declined as reaction temperature rose. Moreover, the MCM-41/ZSM-5 mass ratio of 1:2 was second-to-none for hydrocarbon formation in the course of biomass MACFP. It was reported that adding MCM-41 can hinder coke formation on ZSM-5. Furthermore, MCM-41/ZSM-5 mixture exhibited more significant catalytic activity than ZSM-5/MCM-41 composite, demonstrating that hydrocarbon producing process can be stimulated by a simple physical MCM-41 and ZSM-5 catalysts mixture instead of synthesizing complex hierarchically-structured ZSM-5/MCM-41 composite.
Catalysts arrow_drop_down CatalystsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4344/10/6/685/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal10060685&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4344/10/6/685/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal10060685&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Zeyu Xue; Zhaoping Zhong; Bo Zhang; Chao Xu;doi: 10.3390/catal9100849
To investigate the catalytic pyrolysis performance of complex metal oxide catalysts for biomass, γ-Al2O3 was prepared through the precipitation method, and then ZrO2 and γ-Al2O3 were blended in the proportion of 2:8 using the co-precipitation method. Next, CeO2 was loaded on the surface of the catalyst for further modification. The three catalysts, A, ZA and CZA, were obtained. The specific surface and acidity of the catalysts were characterized by nitrogen adsorption–desorption and NH3-Temperature Programmed Desorption (NH3-TPD) respectively. The catalytic pyrolysis performance of catalysts for bamboo residues was investigated by Pyrolysis gas chromatography mass spectrometry (Py-GC/MS). Chromatograms were analyzed for identification of the pyrolysis products and the relative amounts of each component were calculated. Experimental results indicated that catalyst A had a good catalytic activity for the fast pyrolysis of bamboo residues. The addition of ZrO2 and CeO2 could continuously enhance the acidity of the catalyst and further promote the pyrolysis of macromolecular compounds and deoxidation of oxygen-containing compounds. Finally, catalyst CZA, obtained by compound modification, could not only dramatically reduce the relative content of phenol, acid and aldehyde and other oxygen-containing compounds, but also achieved the maximum hydrocarbon yield of 23.38%. The catalytic performance of catalyst CZA improved significantly compared with catalyst A.
Catalysts arrow_drop_down CatalystsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2073-4344/9/10/849/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal9100849&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2073-4344/9/10/849/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal9100849&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Zeyu Xue; Zhaoping Zhong; Bo Zhang; Chao Xu;doi: 10.3390/catal9100849
To investigate the catalytic pyrolysis performance of complex metal oxide catalysts for biomass, γ-Al2O3 was prepared through the precipitation method, and then ZrO2 and γ-Al2O3 were blended in the proportion of 2:8 using the co-precipitation method. Next, CeO2 was loaded on the surface of the catalyst for further modification. The three catalysts, A, ZA and CZA, were obtained. The specific surface and acidity of the catalysts were characterized by nitrogen adsorption–desorption and NH3-Temperature Programmed Desorption (NH3-TPD) respectively. The catalytic pyrolysis performance of catalysts for bamboo residues was investigated by Pyrolysis gas chromatography mass spectrometry (Py-GC/MS). Chromatograms were analyzed for identification of the pyrolysis products and the relative amounts of each component were calculated. Experimental results indicated that catalyst A had a good catalytic activity for the fast pyrolysis of bamboo residues. The addition of ZrO2 and CeO2 could continuously enhance the acidity of the catalyst and further promote the pyrolysis of macromolecular compounds and deoxidation of oxygen-containing compounds. Finally, catalyst CZA, obtained by compound modification, could not only dramatically reduce the relative content of phenol, acid and aldehyde and other oxygen-containing compounds, but also achieved the maximum hydrocarbon yield of 23.38%. The catalytic performance of catalyst CZA improved significantly compared with catalyst A.
Catalysts arrow_drop_down CatalystsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2073-4344/9/10/849/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal9100849&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2073-4344/9/10/849/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal9100849&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Zhaoying Li; Zhaoping Zhong; Bo Zhang; Wei Wang; Hao Zhao; Gabriel V.S. Seufitelli; Fernando L.P. Resende;pmid: 32862000
This paper reports the results obtained for microwave-assisted catalytic fast pyrolysis (MACFP) of rice husk. The MACFP process employed a hierarchical catalyst prepared via a combination of organic alkali treatment (TPAOH) and the generation of an external layer of MCM-41-type mesoporous channels. We propose this catalyst which is used for the first time for pyrolysis of lignocellulosic biomass, as a tool to reduce coke agglomeration and increase hydrocarbon yields. Our results indicate that during catalyst preparation the mass fraction of cetyltrimethylammonium bromide (CTAB) has a direct effect on the content of MCM-41 formed on top of the HZSM-5 core. For MACFP, we hypothesize that the small molecules generated from thermal decomposition of rice husk react further to form aromatic and aliphatic hydrocarbons by decarbonylation, decarboxylation, oligomerization and aromatization. The highest hydrocarbon yield (60.5%) was obtained for a catalyst modified by a 2.0 mol/L TPAOH solution, with 10 wt% of CTAB (template for producing MCM-41), as well as with digestion and crystallization at 110 °C for 24 h. In addition, the highest liquid yield (47.6 wt%) was obtained at 550 °C. The relative content of hydrocarbons goes through a maximum of 60.5% with CTAB mass fraction which was higher than values obtained with MCM-41 (3.2%) and HZSM-5 (36.0%). Characterization and catalytic testing results suggest that the digestion temperature plays a more important role in the catalyst synthesis than the crystallization temperature. High digestion temperature (120 °C) decreases the overall hydrocarbon selectivity from 60.5% (110 °C) to 39.2%. The relative content of oxygenates reached the lowest value of 35.9% at the digestion and crystallization temperature of 110 °C. The synergistic effect of the MCM-41 shell and the HZSM-5 core promotes the catalytic activity, leading to outstanding deoxygenation capabilities and excellent selectivity to BTEX (52.7%).
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.141215&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.141215&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Zhaoying Li; Zhaoping Zhong; Bo Zhang; Wei Wang; Hao Zhao; Gabriel V.S. Seufitelli; Fernando L.P. Resende;pmid: 32862000
This paper reports the results obtained for microwave-assisted catalytic fast pyrolysis (MACFP) of rice husk. The MACFP process employed a hierarchical catalyst prepared via a combination of organic alkali treatment (TPAOH) and the generation of an external layer of MCM-41-type mesoporous channels. We propose this catalyst which is used for the first time for pyrolysis of lignocellulosic biomass, as a tool to reduce coke agglomeration and increase hydrocarbon yields. Our results indicate that during catalyst preparation the mass fraction of cetyltrimethylammonium bromide (CTAB) has a direct effect on the content of MCM-41 formed on top of the HZSM-5 core. For MACFP, we hypothesize that the small molecules generated from thermal decomposition of rice husk react further to form aromatic and aliphatic hydrocarbons by decarbonylation, decarboxylation, oligomerization and aromatization. The highest hydrocarbon yield (60.5%) was obtained for a catalyst modified by a 2.0 mol/L TPAOH solution, with 10 wt% of CTAB (template for producing MCM-41), as well as with digestion and crystallization at 110 °C for 24 h. In addition, the highest liquid yield (47.6 wt%) was obtained at 550 °C. The relative content of hydrocarbons goes through a maximum of 60.5% with CTAB mass fraction which was higher than values obtained with MCM-41 (3.2%) and HZSM-5 (36.0%). Characterization and catalytic testing results suggest that the digestion temperature plays a more important role in the catalyst synthesis than the crystallization temperature. High digestion temperature (120 °C) decreases the overall hydrocarbon selectivity from 60.5% (110 °C) to 39.2%. The relative content of oxygenates reached the lowest value of 35.9% at the digestion and crystallization temperature of 110 °C. The synergistic effect of the MCM-41 shell and the HZSM-5 core promotes the catalytic activity, leading to outstanding deoxygenation capabilities and excellent selectivity to BTEX (52.7%).
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.141215&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.141215&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Zeyu Xue; Zhaoping Zhong; Xudong Lai;pmid: 31563712
Co-combustion of coal and wheat straw (WS) was conducted in a lab-scale BFB combustor. Fuel composition (coal, 70%coal+30%WS), temperature (750, 800, 850, 900, 950 °C), secondary air ratio (0, 10%, 20%, 30%) were varied to on the release of gaseous pollutant was studied. CO, NOx and SO2 concentration in flue gas (FG) were measured on-line by a flue gas analyzer. Fly ash (FA), bottom slag (BS) and bed material (BM) were collected, digested and analyzed by ICP-OES to determine the distribution of heavy metals (e.g. Pb, Zn, Cr and Cd). Results indicated that co-combustion could improve the combustion of coal alone by reducing CO, NOx and SO2 emission and carbon content in fly ash effectively. In co-combustion the increasing secondary air could reduce CO emission and SO2 by enhancing disturbance and promoting sulfation respectively while the minimum NO emission was reached at the ratio of 20%. Co-combustion restrained the release of Zn, Cd and Pb compared with coal combustion alone. In co-combustion, high temperature increased their portion in the flue gas. For Zn, Pb and Cd, their content in the bottom solids increased while the portion of Cr decreased. Secondary air decreased their content in fly ash and transferred into flue gas significantly and in bottom solids content of Zn and Pb decreased while Cd increased.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2019.124853&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2019.124853&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Zeyu Xue; Zhaoping Zhong; Xudong Lai;pmid: 31563712
Co-combustion of coal and wheat straw (WS) was conducted in a lab-scale BFB combustor. Fuel composition (coal, 70%coal+30%WS), temperature (750, 800, 850, 900, 950 °C), secondary air ratio (0, 10%, 20%, 30%) were varied to on the release of gaseous pollutant was studied. CO, NOx and SO2 concentration in flue gas (FG) were measured on-line by a flue gas analyzer. Fly ash (FA), bottom slag (BS) and bed material (BM) were collected, digested and analyzed by ICP-OES to determine the distribution of heavy metals (e.g. Pb, Zn, Cr and Cd). Results indicated that co-combustion could improve the combustion of coal alone by reducing CO, NOx and SO2 emission and carbon content in fly ash effectively. In co-combustion the increasing secondary air could reduce CO emission and SO2 by enhancing disturbance and promoting sulfation respectively while the minimum NO emission was reached at the ratio of 20%. Co-combustion restrained the release of Zn, Cd and Pb compared with coal combustion alone. In co-combustion, high temperature increased their portion in the flue gas. For Zn, Pb and Cd, their content in the bottom solids increased while the portion of Cr decreased. Secondary air decreased their content in fly ash and transferred into flue gas significantly and in bottom solids content of Zn and Pb decreased while Cd increased.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2019.124853&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2019.124853&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Zeyu Xue; Zhaoping Zhong; Bo Zhang;To delve into the law of hydrocarbon production in microwave-assisted catalytic fast pyrolysis (MACFP) of corn straw, physical mixed Mesoporous Crystalline Material-41 (MCM-41) and Zeolite Socony Mobile-5 (ZSM-5) catalyst prototypes were exploited in this study. Besides, the effects exerted by temperature of reaction and MCM-41/ZSM-5 mass ratio were explored. As revealed from the results, carbon outputs of hydrocarbons rose initially as the temperature of MACFP rose and reached the maximal data at 550 °C; subsequently, it declined as reaction temperature rose. Moreover, the MCM-41/ZSM-5 mass ratio of 1:2 was second-to-none for hydrocarbon formation in the course of biomass MACFP. It was reported that adding MCM-41 can hinder coke formation on ZSM-5. Furthermore, MCM-41/ZSM-5 mixture exhibited more significant catalytic activity than ZSM-5/MCM-41 composite, demonstrating that hydrocarbon producing process can be stimulated by a simple physical MCM-41 and ZSM-5 catalysts mixture instead of synthesizing complex hierarchically-structured ZSM-5/MCM-41 composite.
Catalysts arrow_drop_down CatalystsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4344/10/6/685/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal10060685&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4344/10/6/685/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal10060685&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Zeyu Xue; Zhaoping Zhong; Bo Zhang;To delve into the law of hydrocarbon production in microwave-assisted catalytic fast pyrolysis (MACFP) of corn straw, physical mixed Mesoporous Crystalline Material-41 (MCM-41) and Zeolite Socony Mobile-5 (ZSM-5) catalyst prototypes were exploited in this study. Besides, the effects exerted by temperature of reaction and MCM-41/ZSM-5 mass ratio were explored. As revealed from the results, carbon outputs of hydrocarbons rose initially as the temperature of MACFP rose and reached the maximal data at 550 °C; subsequently, it declined as reaction temperature rose. Moreover, the MCM-41/ZSM-5 mass ratio of 1:2 was second-to-none for hydrocarbon formation in the course of biomass MACFP. It was reported that adding MCM-41 can hinder coke formation on ZSM-5. Furthermore, MCM-41/ZSM-5 mixture exhibited more significant catalytic activity than ZSM-5/MCM-41 composite, demonstrating that hydrocarbon producing process can be stimulated by a simple physical MCM-41 and ZSM-5 catalysts mixture instead of synthesizing complex hierarchically-structured ZSM-5/MCM-41 composite.
Catalysts arrow_drop_down CatalystsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4344/10/6/685/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal10060685&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4344/10/6/685/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal10060685&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Zeyu Xue; Zhaoping Zhong; Bo Zhang; Chao Xu;doi: 10.3390/catal9100849
To investigate the catalytic pyrolysis performance of complex metal oxide catalysts for biomass, γ-Al2O3 was prepared through the precipitation method, and then ZrO2 and γ-Al2O3 were blended in the proportion of 2:8 using the co-precipitation method. Next, CeO2 was loaded on the surface of the catalyst for further modification. The three catalysts, A, ZA and CZA, were obtained. The specific surface and acidity of the catalysts were characterized by nitrogen adsorption–desorption and NH3-Temperature Programmed Desorption (NH3-TPD) respectively. The catalytic pyrolysis performance of catalysts for bamboo residues was investigated by Pyrolysis gas chromatography mass spectrometry (Py-GC/MS). Chromatograms were analyzed for identification of the pyrolysis products and the relative amounts of each component were calculated. Experimental results indicated that catalyst A had a good catalytic activity for the fast pyrolysis of bamboo residues. The addition of ZrO2 and CeO2 could continuously enhance the acidity of the catalyst and further promote the pyrolysis of macromolecular compounds and deoxidation of oxygen-containing compounds. Finally, catalyst CZA, obtained by compound modification, could not only dramatically reduce the relative content of phenol, acid and aldehyde and other oxygen-containing compounds, but also achieved the maximum hydrocarbon yield of 23.38%. The catalytic performance of catalyst CZA improved significantly compared with catalyst A.
Catalysts arrow_drop_down CatalystsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2073-4344/9/10/849/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal9100849&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2073-4344/9/10/849/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal9100849&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Zeyu Xue; Zhaoping Zhong; Bo Zhang; Chao Xu;doi: 10.3390/catal9100849
To investigate the catalytic pyrolysis performance of complex metal oxide catalysts for biomass, γ-Al2O3 was prepared through the precipitation method, and then ZrO2 and γ-Al2O3 were blended in the proportion of 2:8 using the co-precipitation method. Next, CeO2 was loaded on the surface of the catalyst for further modification. The three catalysts, A, ZA and CZA, were obtained. The specific surface and acidity of the catalysts were characterized by nitrogen adsorption–desorption and NH3-Temperature Programmed Desorption (NH3-TPD) respectively. The catalytic pyrolysis performance of catalysts for bamboo residues was investigated by Pyrolysis gas chromatography mass spectrometry (Py-GC/MS). Chromatograms were analyzed for identification of the pyrolysis products and the relative amounts of each component were calculated. Experimental results indicated that catalyst A had a good catalytic activity for the fast pyrolysis of bamboo residues. The addition of ZrO2 and CeO2 could continuously enhance the acidity of the catalyst and further promote the pyrolysis of macromolecular compounds and deoxidation of oxygen-containing compounds. Finally, catalyst CZA, obtained by compound modification, could not only dramatically reduce the relative content of phenol, acid and aldehyde and other oxygen-containing compounds, but also achieved the maximum hydrocarbon yield of 23.38%. The catalytic performance of catalyst CZA improved significantly compared with catalyst A.
Catalysts arrow_drop_down CatalystsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2073-4344/9/10/849/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal9100849&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2073-4344/9/10/849/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal9100849&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu