- home
- Advanced Search
Filters
Year range
-chevron_right GOCountry
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:The Research Center of the Slovenian Academy of Sciences and Arts (ZRC SAZU) Funded by:MESTD | Ministry of Education, Sc..., EC | EXtremeClimTwinMESTD| Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200125 (University of Novi Sad, Faculty of Science) ,EC| EXtremeClimTwinTin Likić; Tanja Micić Ponjiger; Biljana Basarin; Dušan Sakulski; Milivoj Gavrilov; Slobodan Marković; Matija Zorn; Blaž Komac; Miško Milanović; Dragoslav Pavić; Minučer Mesaroš; Nemanja Marković; Uroš Durlević; Cezar Morar; Aleksandar Petrović;doi: 10.3986/ags.8754
The paper aims to provide an overview of the most important parameters (the occurrence, frequency and magnitude) in Vojvodina Region (North Serbia). Monthly and annual mean precipitation values in the period 1946–2014, for the 12 selected meteorological stations were used. Relevant parameters (precipitation amounts, Angot precipitation index) were used as indicators of rainfall erosivity. Rainfall erosivity index was calculated and classified throughout precipitation susceptibility classes liable of triggering soil erosion. Precipitation trends were obtained and analysed by three different statistical approaches. Results indicate that various susceptibility classes are identified within the observed period, with a higher presence of very severe rainfall erosion in June and July. This study could have implications for mitigation strategies oriented towards reduction of soil erosion by water.
Acta Geographica Slo... arrow_drop_down Acta Geographica SlovenicaArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3986/ags.8754&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 21visibility views 21 download downloads 25 Powered bymore_vert Acta Geographica Slo... arrow_drop_down Acta Geographica SlovenicaArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3986/ags.8754&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Funded by:EC | EXtremeClimTwinEC| EXtremeClimTwinIgor Leščešen; Mojca Šraj; Biljana Basarin; Dragoslav Pavić; Minučer Mesaroš; Manfred Mudelsee;doi: 10.3390/su14159282
Regional flood frequency analysis (RFFA) is a powerful method for interrogating hydrological series since it combines observational time series from several sites within a region to estimate risk-relevant statistical parameters with higher accuracy than from single-site series. Since RFFA extreme value estimates depend on the shape of the selected distribution of the data-generating stochastic process, there is need for a suitable goodness-of-distributional-fit measure in order to optimally utilize given data. Here we present a novel, least-squares-based measure to select the optimal fit from a set of five distributions, namely Generalized Extreme Value (GEV), Generalized Logistic, Gumbel, Log-Normal Type III and Log-Pearson Type III. The fit metric is applied to annual maximum discharge series from six hydrological stations along the Sava River in South-eastern Europe, spanning the years 1961 to 2020. Results reveal that (1) the Sava River basin can be assessed as hydrologically homogeneous and (2) the GEV distribution provides typically the best fit. We offer hydrological-meteorological insights into the differences among the six stations. For the period studied, almost all stations exhibit statistically insignificant trends, which renders the conclusions about flood risk as relevant for hydrological sciences and the design of regional flood protection infrastructure.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14159282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 15visibility views 15 download downloads 13 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14159282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:EC | EXtremeClimTwin, MESTD | Ministry of Education, Sc...EC| EXtremeClimTwin ,MESTD| Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200125 (University of Novi Sad, Faculty of Science)Tanja Micić Ponjiger; Tin Lukić; Biljana Basarin; Maja Jokić; Robert L. Wilby; Dragoslav Pavić; Minučer Mesaroš; Aleksandar Valjarević; Miško M. Milanović; Cezar Morar;doi: 10.3390/su132313355
Estimation of rainfall erosivity (RE) and erosivity density (ED) is essential for understanding the complex relationships between hydrological and soil erosion processes. The main objective of this study is to assess the spatial–temporal trends and variability of the RE and ED in the central and southern Pannonian Basin by using station observations and gridded datasets. To assess RE and ED, precipitation data for 14 meteorological stations, 225 grid points. and an erosion model consisting of daily, monthly, seasonal, and annual rainfall for the period of 1961–2014 were used. Annual RE and ED based on station data match spatially variable patterns of precipitation, with higher values in the southwest (2100 MJ·mm·ha−1·h−1) and southeast (1650 MJ·mm·ha−1·h−1) of the study area, but minimal values in the northern part (700 MJ·mm·ha−1·h−1). On the other hand, gridded datasets display more detailed RE and ED spatial–temporal variability, with the values ranging from 250 to 2800 MJ·mm·ha−1·h−1. The identified trends are showing increasing values of RE (ranging between 0.20 and 21.17 MJ·mm·ha−1·h−1) and ED (ranging between 0.01 and 0.03 MJ·ha−1·h−1) at the annual level. This tendency is also observed for autumn RE (from 5.55 to 0.37 MJ·mm·ha−1·h−1) and ED (from 0.05 to 0.01 MJ·ha−1·h−1), as for spring RE (from 1.00 to 0.01 MJ·mm·ha−1·h−1) and ED (from 0.04 to 0.01 MJ·ha−1·h−1), due to the influence of the large-scale processes of climate variability, with North Atlantic Oscillation (NAO) being the most prominent. These increases may cause a transition to a higher erosive class in the future, thus raising concerns about this type of hydro-meteorological hazard in this part of the Pannonian Basin. The present analysis identifies seasons and places of greatest erosion risk, which is the starting point for implementing suitable mitigation measures at local to regional scales.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132313355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 9visibility views 9 download downloads 41 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132313355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:The Research Center of the Slovenian Academy of Sciences and Arts (ZRC SAZU) Funded by:MESTD | Ministry of Education, Sc..., EC | EXtremeClimTwinMESTD| Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200125 (University of Novi Sad, Faculty of Science) ,EC| EXtremeClimTwinTin Likić; Tanja Micić Ponjiger; Biljana Basarin; Dušan Sakulski; Milivoj Gavrilov; Slobodan Marković; Matija Zorn; Blaž Komac; Miško Milanović; Dragoslav Pavić; Minučer Mesaroš; Nemanja Marković; Uroš Durlević; Cezar Morar; Aleksandar Petrović;doi: 10.3986/ags.8754
The paper aims to provide an overview of the most important parameters (the occurrence, frequency and magnitude) in Vojvodina Region (North Serbia). Monthly and annual mean precipitation values in the period 1946–2014, for the 12 selected meteorological stations were used. Relevant parameters (precipitation amounts, Angot precipitation index) were used as indicators of rainfall erosivity. Rainfall erosivity index was calculated and classified throughout precipitation susceptibility classes liable of triggering soil erosion. Precipitation trends were obtained and analysed by three different statistical approaches. Results indicate that various susceptibility classes are identified within the observed period, with a higher presence of very severe rainfall erosion in June and July. This study could have implications for mitigation strategies oriented towards reduction of soil erosion by water.
Acta Geographica Slo... arrow_drop_down Acta Geographica SlovenicaArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3986/ags.8754&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 21visibility views 21 download downloads 25 Powered bymore_vert Acta Geographica Slo... arrow_drop_down Acta Geographica SlovenicaArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3986/ags.8754&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Funded by:EC | EXtremeClimTwinEC| EXtremeClimTwinIgor Leščešen; Mojca Šraj; Biljana Basarin; Dragoslav Pavić; Minučer Mesaroš; Manfred Mudelsee;doi: 10.3390/su14159282
Regional flood frequency analysis (RFFA) is a powerful method for interrogating hydrological series since it combines observational time series from several sites within a region to estimate risk-relevant statistical parameters with higher accuracy than from single-site series. Since RFFA extreme value estimates depend on the shape of the selected distribution of the data-generating stochastic process, there is need for a suitable goodness-of-distributional-fit measure in order to optimally utilize given data. Here we present a novel, least-squares-based measure to select the optimal fit from a set of five distributions, namely Generalized Extreme Value (GEV), Generalized Logistic, Gumbel, Log-Normal Type III and Log-Pearson Type III. The fit metric is applied to annual maximum discharge series from six hydrological stations along the Sava River in South-eastern Europe, spanning the years 1961 to 2020. Results reveal that (1) the Sava River basin can be assessed as hydrologically homogeneous and (2) the GEV distribution provides typically the best fit. We offer hydrological-meteorological insights into the differences among the six stations. For the period studied, almost all stations exhibit statistically insignificant trends, which renders the conclusions about flood risk as relevant for hydrological sciences and the design of regional flood protection infrastructure.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14159282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 15visibility views 15 download downloads 13 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14159282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:EC | EXtremeClimTwin, MESTD | Ministry of Education, Sc...EC| EXtremeClimTwin ,MESTD| Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200125 (University of Novi Sad, Faculty of Science)Tanja Micić Ponjiger; Tin Lukić; Biljana Basarin; Maja Jokić; Robert L. Wilby; Dragoslav Pavić; Minučer Mesaroš; Aleksandar Valjarević; Miško M. Milanović; Cezar Morar;doi: 10.3390/su132313355
Estimation of rainfall erosivity (RE) and erosivity density (ED) is essential for understanding the complex relationships between hydrological and soil erosion processes. The main objective of this study is to assess the spatial–temporal trends and variability of the RE and ED in the central and southern Pannonian Basin by using station observations and gridded datasets. To assess RE and ED, precipitation data for 14 meteorological stations, 225 grid points. and an erosion model consisting of daily, monthly, seasonal, and annual rainfall for the period of 1961–2014 were used. Annual RE and ED based on station data match spatially variable patterns of precipitation, with higher values in the southwest (2100 MJ·mm·ha−1·h−1) and southeast (1650 MJ·mm·ha−1·h−1) of the study area, but minimal values in the northern part (700 MJ·mm·ha−1·h−1). On the other hand, gridded datasets display more detailed RE and ED spatial–temporal variability, with the values ranging from 250 to 2800 MJ·mm·ha−1·h−1. The identified trends are showing increasing values of RE (ranging between 0.20 and 21.17 MJ·mm·ha−1·h−1) and ED (ranging between 0.01 and 0.03 MJ·ha−1·h−1) at the annual level. This tendency is also observed for autumn RE (from 5.55 to 0.37 MJ·mm·ha−1·h−1) and ED (from 0.05 to 0.01 MJ·ha−1·h−1), as for spring RE (from 1.00 to 0.01 MJ·mm·ha−1·h−1) and ED (from 0.04 to 0.01 MJ·ha−1·h−1), due to the influence of the large-scale processes of climate variability, with North Atlantic Oscillation (NAO) being the most prominent. These increases may cause a transition to a higher erosive class in the future, thus raising concerns about this type of hydro-meteorological hazard in this part of the Pannonian Basin. The present analysis identifies seasons and places of greatest erosion risk, which is the starting point for implementing suitable mitigation measures at local to regional scales.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132313355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 9visibility views 9 download downloads 41 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132313355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu