- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Nipon Pisutpaisal; Vanatpornratt Sawasdee;AbstractSimultaneous electricity generation and combined carbon and nitrogen removal in wastewater using microbial fuel cells are an intriguing process. The generation of electricity from nitrogen-rich wastewater was examined using single chamber air cathode microbial fuel cells (SCMFCs). SCMFCs were fed with an artificial wastewater containing the initial chemical oxygen demand (COD): total nitrogen (N) ratio of 2.5:1.0, and operated under mesophilic batch mode. The power density increased with increasing wastewater concentration. Performance of SCMFCs with external resistances, 500 and 1,000Ω, based on maximum power density and current was compared. The SCMFCs with 500Ω gained higher maximum power density and current output by 12.5 and 23.3%, respectively, compared to 1,000Ω. The COD and ammonium removal in 500Ω condition was 81 and 98%, respectively. The findings suggested that MFC is a potential technology to treat carbon and nitrogen pollutants in wastewater, and recover electric energy at the same time.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.1063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.1063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Nipon Pisutpaisal; Vanatpornratt Sawasdee;AbstractSimultaneous electricity generation and combined carbon and nitrogen removal in wastewater using microbial fuel cells are an intriguing process. The generation of electricity from nitrogen-rich wastewater was examined using single chamber air cathode microbial fuel cells (SCMFCs). SCMFCs were fed with an artificial wastewater containing the initial chemical oxygen demand (COD): total nitrogen (N) ratio of 2.5:1.0, and operated under mesophilic batch mode. The power density increased with increasing wastewater concentration. Performance of SCMFCs with external resistances, 500 and 1,000Ω, based on maximum power density and current was compared. The SCMFCs with 500Ω gained higher maximum power density and current output by 12.5 and 23.3%, respectively, compared to 1,000Ω. The COD and ammonium removal in 500Ω condition was 81 and 98%, respectively. The findings suggested that MFC is a potential technology to treat carbon and nitrogen pollutants in wastewater, and recover electric energy at the same time.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.1063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.1063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Pinanong Tanikkul; Nipon Pisutpaisal;AbstractThe influence of external resistances in the range of 10 to 1,000 Ω and carbohydrate-rich wastewater concentration on electricity generation in air-cathode single-chamber microbial fuel cells (SCMFCs) operated at pH 7.0 and 37°C was examined. Enrichment of microbial seed in SCMFCs was stable with maximum current output of 0.1 mA after one month inoculation. The maximum current density, chemical oxygen demand (COD) removal and coulombic efficiency (CE) of 1.0 A m-2, 85% and 20%, respectively, were achieved when Rext of 10 Ω was used (1,000 mg COD L-1). The power density increased with the increase of wastewater concentration and obtained maximum value of 39.2 mW m-2 (CE=20.4%) at 3,000 mg COD L-1. The results indicated that the wastewater can be used as a substrate to produce electricity and can be treated in SCMFCs. The current outputs and wastewater concentrations displayed a strongly linear correlation in the concentration range of 125 to 3,000 mg COD L-1 (r2=0.96). The current findings shows SCMFC not only simultaneously generate electricity and treat wastewater but also potentially work as a sensor device for measuring industrial wastewater concentration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.1067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.1067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Pinanong Tanikkul; Nipon Pisutpaisal;AbstractThe influence of external resistances in the range of 10 to 1,000 Ω and carbohydrate-rich wastewater concentration on electricity generation in air-cathode single-chamber microbial fuel cells (SCMFCs) operated at pH 7.0 and 37°C was examined. Enrichment of microbial seed in SCMFCs was stable with maximum current output of 0.1 mA after one month inoculation. The maximum current density, chemical oxygen demand (COD) removal and coulombic efficiency (CE) of 1.0 A m-2, 85% and 20%, respectively, were achieved when Rext of 10 Ω was used (1,000 mg COD L-1). The power density increased with the increase of wastewater concentration and obtained maximum value of 39.2 mW m-2 (CE=20.4%) at 3,000 mg COD L-1. The results indicated that the wastewater can be used as a substrate to produce electricity and can be treated in SCMFCs. The current outputs and wastewater concentrations displayed a strongly linear correlation in the concentration range of 125 to 3,000 mg COD L-1 (r2=0.96). The current findings shows SCMFC not only simultaneously generate electricity and treat wastewater but also potentially work as a sensor device for measuring industrial wastewater concentration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.1067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.1067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Ubonrat Sirisukpoca; Nipon Pisutpaisal;AbstractA new and environmental friendly method for the rapid determination of Chemical Oxygen Demand (COD) as a measure of organic pollution was developed. Ozone was used as an oxidizing agent in the current method. Experiment was setup in 500mL glass bottle containing 390mL distilled water and 10mL wastewater sample at 31°C. The extent of dissolved ozone reacted with the wastewater sample was monitored through an ozone sensor. Reaction time of 60seconds achieved good linear correlation between the extent of ozone degradation and the wastewater concentrations. The results showed that the rate and extent of ozone degradation are linearly proportional to the initial COD concentrations in range of 0-80mg/L for the glucose- containing distilled water and canteen wastewater.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.06.087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.06.087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Ubonrat Sirisukpoca; Nipon Pisutpaisal;AbstractA new and environmental friendly method for the rapid determination of Chemical Oxygen Demand (COD) as a measure of organic pollution was developed. Ozone was used as an oxidizing agent in the current method. Experiment was setup in 500mL glass bottle containing 390mL distilled water and 10mL wastewater sample at 31°C. The extent of dissolved ozone reacted with the wastewater sample was monitored through an ozone sensor. Reaction time of 60seconds achieved good linear correlation between the extent of ozone degradation and the wastewater concentrations. The results showed that the rate and extent of ozone degradation are linearly proportional to the initial COD concentrations in range of 0-80mg/L for the glucose- containing distilled water and canteen wastewater.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.06.087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.06.087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Vanatpornratt Sawasdee; Nipon Pisutpaisal;AbstractThe nitrogen removal in wastewater using single chamber microbial fuel cells is an interesting process. The nitrogen removal from nitrogen wastewater was examined using single chamber air cathode microbial fuel cells (SC-MFCs). SC-MFCs were fed with synthetic wastewater containing the initial chemical oxygen demand (COD) 1,000mg L-1 and nitrogen (N) 125, 250, 625, and 875 mg-N L-1, respectively and operated under mesophilic batch mode. Performance of SC-MFCs with external resistances 1,000Ω was based on maximum power density, COD and nitrogen removal. The SC-MFCs with ammonia-N concentration 625 mg-N L-1 gained higher maximum power density by 160 mW m-2.The ammonium removal was 58%. The results suggested that SC-MFCs are potential technology for simultaneous nitrogen and COD removal; and electricity generation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Vanatpornratt Sawasdee; Nipon Pisutpaisal;AbstractThe nitrogen removal in wastewater using single chamber microbial fuel cells is an interesting process. The nitrogen removal from nitrogen wastewater was examined using single chamber air cathode microbial fuel cells (SC-MFCs). SC-MFCs were fed with synthetic wastewater containing the initial chemical oxygen demand (COD) 1,000mg L-1 and nitrogen (N) 125, 250, 625, and 875 mg-N L-1, respectively and operated under mesophilic batch mode. Performance of SC-MFCs with external resistances 1,000Ω was based on maximum power density, COD and nitrogen removal. The SC-MFCs with ammonia-N concentration 625 mg-N L-1 gained higher maximum power density by 160 mW m-2.The ammonium removal was 58%. The results suggested that SC-MFCs are potential technology for simultaneous nitrogen and COD removal; and electricity generation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Siriorn Boonyawanich; Nunthaphan Vikromvarasiri; Nipon Pisutpaisal;AbstractThe presence of hydrogen sulfide (H2S) in biogas is one of the biggest factors limiting the use of biogas since related it can cause corrosion in internal combustion engines. This study investigated and compared the properties and sulfur oxidizing activities of Halothiobacillus neapolitanus (HTN) and Paracoccus pantotrophus (PCP) in their suitable conditions for apply in biotrickling filter to remove hydrogen sulfide in biogas. These bacteria were screened and characterized from different wastewater treatment plants. The results indicated that HTN had higher specific growth rate than PCP. However, the sulfate production rates of HTN and PCP are not significantly different, but HTN can produce higher sulfate concentration, and can tolerant high sulfide and sodium chloride concentration and low pH, which are advantages to apply in biotrickling filter in term of preventing contaminations. This study demonstrated that HTN is better option than PCP for application in the hydrogen sulfide removal in the biogas. However, PCP has challenge to apply for hydrogen sulfide removal in the other conditions such as denitrifying condition.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Siriorn Boonyawanich; Nunthaphan Vikromvarasiri; Nipon Pisutpaisal;AbstractThe presence of hydrogen sulfide (H2S) in biogas is one of the biggest factors limiting the use of biogas since related it can cause corrosion in internal combustion engines. This study investigated and compared the properties and sulfur oxidizing activities of Halothiobacillus neapolitanus (HTN) and Paracoccus pantotrophus (PCP) in their suitable conditions for apply in biotrickling filter to remove hydrogen sulfide in biogas. These bacteria were screened and characterized from different wastewater treatment plants. The results indicated that HTN had higher specific growth rate than PCP. However, the sulfate production rates of HTN and PCP are not significantly different, but HTN can produce higher sulfate concentration, and can tolerant high sulfide and sodium chloride concentration and low pH, which are advantages to apply in biotrickling filter in term of preventing contaminations. This study demonstrated that HTN is better option than PCP for application in the hydrogen sulfide removal in the biogas. However, PCP has challenge to apply for hydrogen sulfide removal in the other conditions such as denitrifying condition.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Siriorn Boonyawanich; Saowaluck Housagul; Ubonrat Sirisukpoka; Nipon Pisutpaisal;AbstractBanana peel and biodiesel derived glycerol are one of the most abundant agricultural waste in Southeast Asian countries. This current research demonstrated potential biomethane production from co-digestion of agricultural wastes under mesophilic fermentation. The wastes used include (1) banana peel (varying total solids in the range 2.5-10% w/v) and (2) Banana peel mixed with pure or waste glycerol. All treatments were setup in duplicate in 0.5 L batch reacotr. Gas and liquid samples were collected every 12 and 24 hr, respectively. Maximum methane production potential and yield were 181 mL and 188mL g-1 TS at 7.5% banana peel. The maximum methane production potential and yield of 7.5% banana peel mixed with 7.5 g L-1 pure glycerol (in the presence of buffer) were 467 mL and 151 mL g-1 COD, respectively, while those of 7.5% banana peel mixed with 7.5 g L-1 waste glycerol (in the presence of buffer) were 652 mL and 281 mL g-1 COD, respectively. Small amount of VFAs and ethanol was accumulated in the reactor content. The current findings indicate the potential use of glycerol waste as a co-substrate in biomethane production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.12.113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.12.113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Siriorn Boonyawanich; Saowaluck Housagul; Ubonrat Sirisukpoka; Nipon Pisutpaisal;AbstractBanana peel and biodiesel derived glycerol are one of the most abundant agricultural waste in Southeast Asian countries. This current research demonstrated potential biomethane production from co-digestion of agricultural wastes under mesophilic fermentation. The wastes used include (1) banana peel (varying total solids in the range 2.5-10% w/v) and (2) Banana peel mixed with pure or waste glycerol. All treatments were setup in duplicate in 0.5 L batch reacotr. Gas and liquid samples were collected every 12 and 24 hr, respectively. Maximum methane production potential and yield were 181 mL and 188mL g-1 TS at 7.5% banana peel. The maximum methane production potential and yield of 7.5% banana peel mixed with 7.5 g L-1 pure glycerol (in the presence of buffer) were 467 mL and 151 mL g-1 COD, respectively, while those of 7.5% banana peel mixed with 7.5 g L-1 waste glycerol (in the presence of buffer) were 652 mL and 281 mL g-1 COD, respectively. Small amount of VFAs and ethanol was accumulated in the reactor content. The current findings indicate the potential use of glycerol waste as a co-substrate in biomethane production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.12.113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.12.113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Chananchida Nathao; Ubonrat Sirisukpoka; Nipon Pisutpaisal;AbstractTotal energy recovery from food waste fermentation in a two-stage 5-L CSTR system, in which hydrogen and methane production were sequential setup, was evaluated. The first –stage hydrogen, and the second-stage methane were produced under mesophilic fermentation with the initial pH 6 and 7; and hydraulic retention time of 12 and 24h, respectively. The results showed that the hydrogen and methane yields were 292.7 and 391.6mL g-1 VS at the steady stage operation. The methane yield in the one-stage from food waste fermentation were 364.3mL g-1 VS. The total energy recovery from two-stage process was 6.5x10-2 kW-h, while that from one-stage process was 4.7x10-2 kW-h. The research study found that the total energy recovery from a two-stage fermentation process consisting of hydrogen and methane production potential high energy than one-stage methane production. Clostridium sp. and Lactobacillus are dominant bacteria in the hydrogen fermentation under the steady state operation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.06.088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.06.088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Chananchida Nathao; Ubonrat Sirisukpoka; Nipon Pisutpaisal;AbstractTotal energy recovery from food waste fermentation in a two-stage 5-L CSTR system, in which hydrogen and methane production were sequential setup, was evaluated. The first –stage hydrogen, and the second-stage methane were produced under mesophilic fermentation with the initial pH 6 and 7; and hydraulic retention time of 12 and 24h, respectively. The results showed that the hydrogen and methane yields were 292.7 and 391.6mL g-1 VS at the steady stage operation. The methane yield in the one-stage from food waste fermentation were 364.3mL g-1 VS. The total energy recovery from two-stage process was 6.5x10-2 kW-h, while that from one-stage process was 4.7x10-2 kW-h. The research study found that the total energy recovery from a two-stage fermentation process consisting of hydrogen and methane production potential high energy than one-stage methane production. Clostridium sp. and Lactobacillus are dominant bacteria in the hydrogen fermentation under the steady state operation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.06.088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.06.088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Nunthaphan Vikromvarasiri; Nipon Pisutpaisal; Siriorn Boonyawanich;AbstractBiogas has been used as alternatives for renewable energy in many applications. Hydrogen sulfide in the biogas is a significant factor to limit its usages. This research focused on using a pure bacterial strain for hydrogen sulfide removal from the biogas in a biotrickling filter process. The pure bacterial strain was isolated from a full-scale leather industry wastewater treatment plant. 16S rDNA sequence of the isolated bacterium is closely related to Paracoccus pantotrophus. P. pantotrophus is able to use sulfide and thiosulfate as energy sources for growth under aerobic conditions. The optimum concentrations of phosphate buffer (26 - 78mM, pH 8) and thiosulfate concentrations (5 – 20g/L) were evaluated in order to maximize microbial growth and sulfur oxidation activity before applying in the biotrickling filter system. The result showed that 52mM buffer concentration and 10g/L thiosulfate were suitable for growth and sulfur oxidation activity. The research findings suggest that P. pantotrophus has the potential application in the biotrickling filter process of hydrogen sulfide removal for upgrading biogas quality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Nunthaphan Vikromvarasiri; Nipon Pisutpaisal; Siriorn Boonyawanich;AbstractBiogas has been used as alternatives for renewable energy in many applications. Hydrogen sulfide in the biogas is a significant factor to limit its usages. This research focused on using a pure bacterial strain for hydrogen sulfide removal from the biogas in a biotrickling filter process. The pure bacterial strain was isolated from a full-scale leather industry wastewater treatment plant. 16S rDNA sequence of the isolated bacterium is closely related to Paracoccus pantotrophus. P. pantotrophus is able to use sulfide and thiosulfate as energy sources for growth under aerobic conditions. The optimum concentrations of phosphate buffer (26 - 78mM, pH 8) and thiosulfate concentrations (5 – 20g/L) were evaluated in order to maximize microbial growth and sulfur oxidation activity before applying in the biotrickling filter system. The result showed that 52mM buffer concentration and 10g/L thiosulfate were suitable for growth and sulfur oxidation activity. The research findings suggest that P. pantotrophus has the potential application in the biotrickling filter process of hydrogen sulfide removal for upgrading biogas quality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Technoscience Publications Siriorn Boonyawanich; Peerada Prommeenate; Sukunya Oaew; Nipon Pisutpaisal; Saowaluck Haosagul;Hydrogen sulfide (H2S) is highly corrosive to electric generators, which is the main problem of biogas utilization. The industrial scale of the biofilter system relies on the performance of sulfide-oxidizing bacteria (SOB) via the activity of sulfur oxidation (soxABXYZ) and flavocytochrome sulfide dehydrogenase (fccAB) enzymes to reduce to a concentration below 100 ppm before using in industrial machinery. The main purpose of this research is to investigate the SOB community in full-scale H2S removal and their gene expression (fccAB and soxABXYZ) associated with H2S elimination efficiency. In this study, SOB communities were obtained from 2 sampling sites of the full-scale biofilter of palm oil factory (PPG), comprising starting sludge (PPG1) and recirculating sludge (PPG2). The abundance of SOB strains was examined by next-generation sequencing analysis (NGS) based on the 16S rRNA gene. The changes in the expression of genes involved in sulfur oxidation, namely soxABXYZ, and fccAB, between the 2 sampling sites were evaluated by using a comparative genomic hybridization (CGH) microarray. The results indicate that the high abundance of SOB genera that could play a vital role in biofilters belonged mainly to Sulfurovum, Paracoccus, Acidihalobacter, Acidithiobacillus, Thioalkalispira, Thiofaba, Caldisericum, Bacillus, were rapidly increased in the biofilter tank. Interestingly, expressions of soxAXYZ gene cluster at PPG2 were increased in Paracoccus pantotrophus J40 and Paracoccus alkenifer DSM 11593 for 1.1188 and 1.0518-fold, respectively, while in Acidihalobacter prosperus F5, the expression of fccAB genes was up to 1.3704 fold in comparison with PPG1. Increasing both relative abundance and gene expressions at PPG2 were correlated with 95% H2S removal efficiency. Hence, stabilization of the SOB microbiome is vital to H2S removal in industrial-scale biogas applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.46488/nept.2024.v23i02.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.46488/nept.2024.v23i02.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Technoscience Publications Siriorn Boonyawanich; Peerada Prommeenate; Sukunya Oaew; Nipon Pisutpaisal; Saowaluck Haosagul;Hydrogen sulfide (H2S) is highly corrosive to electric generators, which is the main problem of biogas utilization. The industrial scale of the biofilter system relies on the performance of sulfide-oxidizing bacteria (SOB) via the activity of sulfur oxidation (soxABXYZ) and flavocytochrome sulfide dehydrogenase (fccAB) enzymes to reduce to a concentration below 100 ppm before using in industrial machinery. The main purpose of this research is to investigate the SOB community in full-scale H2S removal and their gene expression (fccAB and soxABXYZ) associated with H2S elimination efficiency. In this study, SOB communities were obtained from 2 sampling sites of the full-scale biofilter of palm oil factory (PPG), comprising starting sludge (PPG1) and recirculating sludge (PPG2). The abundance of SOB strains was examined by next-generation sequencing analysis (NGS) based on the 16S rRNA gene. The changes in the expression of genes involved in sulfur oxidation, namely soxABXYZ, and fccAB, between the 2 sampling sites were evaluated by using a comparative genomic hybridization (CGH) microarray. The results indicate that the high abundance of SOB genera that could play a vital role in biofilters belonged mainly to Sulfurovum, Paracoccus, Acidihalobacter, Acidithiobacillus, Thioalkalispira, Thiofaba, Caldisericum, Bacillus, were rapidly increased in the biofilter tank. Interestingly, expressions of soxAXYZ gene cluster at PPG2 were increased in Paracoccus pantotrophus J40 and Paracoccus alkenifer DSM 11593 for 1.1188 and 1.0518-fold, respectively, while in Acidihalobacter prosperus F5, the expression of fccAB genes was up to 1.3704 fold in comparison with PPG1. Increasing both relative abundance and gene expressions at PPG2 were correlated with 95% H2S removal efficiency. Hence, stabilization of the SOB microbiome is vital to H2S removal in industrial-scale biogas applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.46488/nept.2024.v23i02.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.46488/nept.2024.v23i02.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Glyn Hobbs; Peerada Prommeenate; Nipon Pisutpaisal; Saowaluck Haosagul; Saowaluck Haosagul;Abstract The industrial-scale of hydrogen sulfide (H2S) removal system using biological process relies on the performance of sulfide-oxidizing bacteria (SOB) to reduce corrosive H2S before being used as fuel in an industrial boiler or electric generator. The sulfide-oxidizing bacteria community in the bioscrubber treating H2S in biogas from swine farm based on the 16S rRNA gene and Sox gene sequences analysis. Microbial sludge from SPM Feedmill Co., Ltd. (SPM swine farm) were collected from the inlet and outlet sampling ports of the bioscrubber. Sequencing of full-length 16S rRNA gene and next-generation sequencing (NGS) of short-read 16S region were employed to identify the SOB communities. The cultural dependent technique has been applied for isolation of pure SOB strains, including Acinetobacter towneri (MF765755), Enterobacter asburiae (MF765756) and Aeromonas veronii (MK659586). Together with NGS analysis, which showed bacteria belong to the genera Sulfurovum (37%), Sulfuricurvum (17%) and Thiothrix (9%) could play an important role in oxidized H2S in biogas. Therefore, these SOB genera: Acinetobacter, Aeromonas, Enterobacter, Sulfurovum, and Sulfuricurvum can be applied as an indicator for efficiency and stability of H2S treatment systems in biogas from swine farms.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.11.139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.11.139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Glyn Hobbs; Peerada Prommeenate; Nipon Pisutpaisal; Saowaluck Haosagul; Saowaluck Haosagul;Abstract The industrial-scale of hydrogen sulfide (H2S) removal system using biological process relies on the performance of sulfide-oxidizing bacteria (SOB) to reduce corrosive H2S before being used as fuel in an industrial boiler or electric generator. The sulfide-oxidizing bacteria community in the bioscrubber treating H2S in biogas from swine farm based on the 16S rRNA gene and Sox gene sequences analysis. Microbial sludge from SPM Feedmill Co., Ltd. (SPM swine farm) were collected from the inlet and outlet sampling ports of the bioscrubber. Sequencing of full-length 16S rRNA gene and next-generation sequencing (NGS) of short-read 16S region were employed to identify the SOB communities. The cultural dependent technique has been applied for isolation of pure SOB strains, including Acinetobacter towneri (MF765755), Enterobacter asburiae (MF765756) and Aeromonas veronii (MK659586). Together with NGS analysis, which showed bacteria belong to the genera Sulfurovum (37%), Sulfuricurvum (17%) and Thiothrix (9%) could play an important role in oxidized H2S in biogas. Therefore, these SOB genera: Acinetobacter, Aeromonas, Enterobacter, Sulfurovum, and Sulfuricurvum can be applied as an indicator for efficiency and stability of H2S treatment systems in biogas from swine farms.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.11.139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.11.139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Nipon Pisutpaisal; Vanatpornratt Sawasdee;AbstractSimultaneous electricity generation and combined carbon and nitrogen removal in wastewater using microbial fuel cells are an intriguing process. The generation of electricity from nitrogen-rich wastewater was examined using single chamber air cathode microbial fuel cells (SCMFCs). SCMFCs were fed with an artificial wastewater containing the initial chemical oxygen demand (COD): total nitrogen (N) ratio of 2.5:1.0, and operated under mesophilic batch mode. The power density increased with increasing wastewater concentration. Performance of SCMFCs with external resistances, 500 and 1,000Ω, based on maximum power density and current was compared. The SCMFCs with 500Ω gained higher maximum power density and current output by 12.5 and 23.3%, respectively, compared to 1,000Ω. The COD and ammonium removal in 500Ω condition was 81 and 98%, respectively. The findings suggested that MFC is a potential technology to treat carbon and nitrogen pollutants in wastewater, and recover electric energy at the same time.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.1063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.1063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Nipon Pisutpaisal; Vanatpornratt Sawasdee;AbstractSimultaneous electricity generation and combined carbon and nitrogen removal in wastewater using microbial fuel cells are an intriguing process. The generation of electricity from nitrogen-rich wastewater was examined using single chamber air cathode microbial fuel cells (SCMFCs). SCMFCs were fed with an artificial wastewater containing the initial chemical oxygen demand (COD): total nitrogen (N) ratio of 2.5:1.0, and operated under mesophilic batch mode. The power density increased with increasing wastewater concentration. Performance of SCMFCs with external resistances, 500 and 1,000Ω, based on maximum power density and current was compared. The SCMFCs with 500Ω gained higher maximum power density and current output by 12.5 and 23.3%, respectively, compared to 1,000Ω. The COD and ammonium removal in 500Ω condition was 81 and 98%, respectively. The findings suggested that MFC is a potential technology to treat carbon and nitrogen pollutants in wastewater, and recover electric energy at the same time.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.1063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.1063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Pinanong Tanikkul; Nipon Pisutpaisal;AbstractThe influence of external resistances in the range of 10 to 1,000 Ω and carbohydrate-rich wastewater concentration on electricity generation in air-cathode single-chamber microbial fuel cells (SCMFCs) operated at pH 7.0 and 37°C was examined. Enrichment of microbial seed in SCMFCs was stable with maximum current output of 0.1 mA after one month inoculation. The maximum current density, chemical oxygen demand (COD) removal and coulombic efficiency (CE) of 1.0 A m-2, 85% and 20%, respectively, were achieved when Rext of 10 Ω was used (1,000 mg COD L-1). The power density increased with the increase of wastewater concentration and obtained maximum value of 39.2 mW m-2 (CE=20.4%) at 3,000 mg COD L-1. The results indicated that the wastewater can be used as a substrate to produce electricity and can be treated in SCMFCs. The current outputs and wastewater concentrations displayed a strongly linear correlation in the concentration range of 125 to 3,000 mg COD L-1 (r2=0.96). The current findings shows SCMFC not only simultaneously generate electricity and treat wastewater but also potentially work as a sensor device for measuring industrial wastewater concentration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.1067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.1067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Pinanong Tanikkul; Nipon Pisutpaisal;AbstractThe influence of external resistances in the range of 10 to 1,000 Ω and carbohydrate-rich wastewater concentration on electricity generation in air-cathode single-chamber microbial fuel cells (SCMFCs) operated at pH 7.0 and 37°C was examined. Enrichment of microbial seed in SCMFCs was stable with maximum current output of 0.1 mA after one month inoculation. The maximum current density, chemical oxygen demand (COD) removal and coulombic efficiency (CE) of 1.0 A m-2, 85% and 20%, respectively, were achieved when Rext of 10 Ω was used (1,000 mg COD L-1). The power density increased with the increase of wastewater concentration and obtained maximum value of 39.2 mW m-2 (CE=20.4%) at 3,000 mg COD L-1. The results indicated that the wastewater can be used as a substrate to produce electricity and can be treated in SCMFCs. The current outputs and wastewater concentrations displayed a strongly linear correlation in the concentration range of 125 to 3,000 mg COD L-1 (r2=0.96). The current findings shows SCMFC not only simultaneously generate electricity and treat wastewater but also potentially work as a sensor device for measuring industrial wastewater concentration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.1067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.1067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Ubonrat Sirisukpoca; Nipon Pisutpaisal;AbstractA new and environmental friendly method for the rapid determination of Chemical Oxygen Demand (COD) as a measure of organic pollution was developed. Ozone was used as an oxidizing agent in the current method. Experiment was setup in 500mL glass bottle containing 390mL distilled water and 10mL wastewater sample at 31°C. The extent of dissolved ozone reacted with the wastewater sample was monitored through an ozone sensor. Reaction time of 60seconds achieved good linear correlation between the extent of ozone degradation and the wastewater concentrations. The results showed that the rate and extent of ozone degradation are linearly proportional to the initial COD concentrations in range of 0-80mg/L for the glucose- containing distilled water and canteen wastewater.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.06.087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.06.087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Ubonrat Sirisukpoca; Nipon Pisutpaisal;AbstractA new and environmental friendly method for the rapid determination of Chemical Oxygen Demand (COD) as a measure of organic pollution was developed. Ozone was used as an oxidizing agent in the current method. Experiment was setup in 500mL glass bottle containing 390mL distilled water and 10mL wastewater sample at 31°C. The extent of dissolved ozone reacted with the wastewater sample was monitored through an ozone sensor. Reaction time of 60seconds achieved good linear correlation between the extent of ozone degradation and the wastewater concentrations. The results showed that the rate and extent of ozone degradation are linearly proportional to the initial COD concentrations in range of 0-80mg/L for the glucose- containing distilled water and canteen wastewater.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.06.087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.06.087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Vanatpornratt Sawasdee; Nipon Pisutpaisal;AbstractThe nitrogen removal in wastewater using single chamber microbial fuel cells is an interesting process. The nitrogen removal from nitrogen wastewater was examined using single chamber air cathode microbial fuel cells (SC-MFCs). SC-MFCs were fed with synthetic wastewater containing the initial chemical oxygen demand (COD) 1,000mg L-1 and nitrogen (N) 125, 250, 625, and 875 mg-N L-1, respectively and operated under mesophilic batch mode. Performance of SC-MFCs with external resistances 1,000Ω was based on maximum power density, COD and nitrogen removal. The SC-MFCs with ammonia-N concentration 625 mg-N L-1 gained higher maximum power density by 160 mW m-2.The ammonium removal was 58%. The results suggested that SC-MFCs are potential technology for simultaneous nitrogen and COD removal; and electricity generation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Vanatpornratt Sawasdee; Nipon Pisutpaisal;AbstractThe nitrogen removal in wastewater using single chamber microbial fuel cells is an interesting process. The nitrogen removal from nitrogen wastewater was examined using single chamber air cathode microbial fuel cells (SC-MFCs). SC-MFCs were fed with synthetic wastewater containing the initial chemical oxygen demand (COD) 1,000mg L-1 and nitrogen (N) 125, 250, 625, and 875 mg-N L-1, respectively and operated under mesophilic batch mode. Performance of SC-MFCs with external resistances 1,000Ω was based on maximum power density, COD and nitrogen removal. The SC-MFCs with ammonia-N concentration 625 mg-N L-1 gained higher maximum power density by 160 mW m-2.The ammonium removal was 58%. The results suggested that SC-MFCs are potential technology for simultaneous nitrogen and COD removal; and electricity generation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Siriorn Boonyawanich; Nunthaphan Vikromvarasiri; Nipon Pisutpaisal;AbstractThe presence of hydrogen sulfide (H2S) in biogas is one of the biggest factors limiting the use of biogas since related it can cause corrosion in internal combustion engines. This study investigated and compared the properties and sulfur oxidizing activities of Halothiobacillus neapolitanus (HTN) and Paracoccus pantotrophus (PCP) in their suitable conditions for apply in biotrickling filter to remove hydrogen sulfide in biogas. These bacteria were screened and characterized from different wastewater treatment plants. The results indicated that HTN had higher specific growth rate than PCP. However, the sulfate production rates of HTN and PCP are not significantly different, but HTN can produce higher sulfate concentration, and can tolerant high sulfide and sodium chloride concentration and low pH, which are advantages to apply in biotrickling filter in term of preventing contaminations. This study demonstrated that HTN is better option than PCP for application in the hydrogen sulfide removal in the biogas. However, PCP has challenge to apply for hydrogen sulfide removal in the other conditions such as denitrifying condition.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Siriorn Boonyawanich; Nunthaphan Vikromvarasiri; Nipon Pisutpaisal;AbstractThe presence of hydrogen sulfide (H2S) in biogas is one of the biggest factors limiting the use of biogas since related it can cause corrosion in internal combustion engines. This study investigated and compared the properties and sulfur oxidizing activities of Halothiobacillus neapolitanus (HTN) and Paracoccus pantotrophus (PCP) in their suitable conditions for apply in biotrickling filter to remove hydrogen sulfide in biogas. These bacteria were screened and characterized from different wastewater treatment plants. The results indicated that HTN had higher specific growth rate than PCP. However, the sulfate production rates of HTN and PCP are not significantly different, but HTN can produce higher sulfate concentration, and can tolerant high sulfide and sodium chloride concentration and low pH, which are advantages to apply in biotrickling filter in term of preventing contaminations. This study demonstrated that HTN is better option than PCP for application in the hydrogen sulfide removal in the biogas. However, PCP has challenge to apply for hydrogen sulfide removal in the other conditions such as denitrifying condition.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.582&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Siriorn Boonyawanich; Saowaluck Housagul; Ubonrat Sirisukpoka; Nipon Pisutpaisal;AbstractBanana peel and biodiesel derived glycerol are one of the most abundant agricultural waste in Southeast Asian countries. This current research demonstrated potential biomethane production from co-digestion of agricultural wastes under mesophilic fermentation. The wastes used include (1) banana peel (varying total solids in the range 2.5-10% w/v) and (2) Banana peel mixed with pure or waste glycerol. All treatments were setup in duplicate in 0.5 L batch reacotr. Gas and liquid samples were collected every 12 and 24 hr, respectively. Maximum methane production potential and yield were 181 mL and 188mL g-1 TS at 7.5% banana peel. The maximum methane production potential and yield of 7.5% banana peel mixed with 7.5 g L-1 pure glycerol (in the presence of buffer) were 467 mL and 151 mL g-1 COD, respectively, while those of 7.5% banana peel mixed with 7.5 g L-1 waste glycerol (in the presence of buffer) were 652 mL and 281 mL g-1 COD, respectively. Small amount of VFAs and ethanol was accumulated in the reactor content. The current findings indicate the potential use of glycerol waste as a co-substrate in biomethane production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.12.113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.12.113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Siriorn Boonyawanich; Saowaluck Housagul; Ubonrat Sirisukpoka; Nipon Pisutpaisal;AbstractBanana peel and biodiesel derived glycerol are one of the most abundant agricultural waste in Southeast Asian countries. This current research demonstrated potential biomethane production from co-digestion of agricultural wastes under mesophilic fermentation. The wastes used include (1) banana peel (varying total solids in the range 2.5-10% w/v) and (2) Banana peel mixed with pure or waste glycerol. All treatments were setup in duplicate in 0.5 L batch reacotr. Gas and liquid samples were collected every 12 and 24 hr, respectively. Maximum methane production potential and yield were 181 mL and 188mL g-1 TS at 7.5% banana peel. The maximum methane production potential and yield of 7.5% banana peel mixed with 7.5 g L-1 pure glycerol (in the presence of buffer) were 467 mL and 151 mL g-1 COD, respectively, while those of 7.5% banana peel mixed with 7.5 g L-1 waste glycerol (in the presence of buffer) were 652 mL and 281 mL g-1 COD, respectively. Small amount of VFAs and ethanol was accumulated in the reactor content. The current findings indicate the potential use of glycerol waste as a co-substrate in biomethane production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.12.113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.12.113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Chananchida Nathao; Ubonrat Sirisukpoka; Nipon Pisutpaisal;AbstractTotal energy recovery from food waste fermentation in a two-stage 5-L CSTR system, in which hydrogen and methane production were sequential setup, was evaluated. The first –stage hydrogen, and the second-stage methane were produced under mesophilic fermentation with the initial pH 6 and 7; and hydraulic retention time of 12 and 24h, respectively. The results showed that the hydrogen and methane yields were 292.7 and 391.6mL g-1 VS at the steady stage operation. The methane yield in the one-stage from food waste fermentation were 364.3mL g-1 VS. The total energy recovery from two-stage process was 6.5x10-2 kW-h, while that from one-stage process was 4.7x10-2 kW-h. The research study found that the total energy recovery from a two-stage fermentation process consisting of hydrogen and methane production potential high energy than one-stage methane production. Clostridium sp. and Lactobacillus are dominant bacteria in the hydrogen fermentation under the steady state operation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.06.088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.06.088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Chananchida Nathao; Ubonrat Sirisukpoka; Nipon Pisutpaisal;AbstractTotal energy recovery from food waste fermentation in a two-stage 5-L CSTR system, in which hydrogen and methane production were sequential setup, was evaluated. The first –stage hydrogen, and the second-stage methane were produced under mesophilic fermentation with the initial pH 6 and 7; and hydraulic retention time of 12 and 24h, respectively. The results showed that the hydrogen and methane yields were 292.7 and 391.6mL g-1 VS at the steady stage operation. The methane yield in the one-stage from food waste fermentation were 364.3mL g-1 VS. The total energy recovery from two-stage process was 6.5x10-2 kW-h, while that from one-stage process was 4.7x10-2 kW-h. The research study found that the total energy recovery from a two-stage fermentation process consisting of hydrogen and methane production potential high energy than one-stage methane production. Clostridium sp. and Lactobacillus are dominant bacteria in the hydrogen fermentation under the steady state operation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.06.088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.06.088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Nunthaphan Vikromvarasiri; Nipon Pisutpaisal; Siriorn Boonyawanich;AbstractBiogas has been used as alternatives for renewable energy in many applications. Hydrogen sulfide in the biogas is a significant factor to limit its usages. This research focused on using a pure bacterial strain for hydrogen sulfide removal from the biogas in a biotrickling filter process. The pure bacterial strain was isolated from a full-scale leather industry wastewater treatment plant. 16S rDNA sequence of the isolated bacterium is closely related to Paracoccus pantotrophus. P. pantotrophus is able to use sulfide and thiosulfate as energy sources for growth under aerobic conditions. The optimum concentrations of phosphate buffer (26 - 78mM, pH 8) and thiosulfate concentrations (5 – 20g/L) were evaluated in order to maximize microbial growth and sulfur oxidation activity before applying in the biotrickling filter system. The result showed that 52mM buffer concentration and 10g/L thiosulfate were suitable for growth and sulfur oxidation activity. The research findings suggest that P. pantotrophus has the potential application in the biotrickling filter process of hydrogen sulfide removal for upgrading biogas quality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Nunthaphan Vikromvarasiri; Nipon Pisutpaisal; Siriorn Boonyawanich;AbstractBiogas has been used as alternatives for renewable energy in many applications. Hydrogen sulfide in the biogas is a significant factor to limit its usages. This research focused on using a pure bacterial strain for hydrogen sulfide removal from the biogas in a biotrickling filter process. The pure bacterial strain was isolated from a full-scale leather industry wastewater treatment plant. 16S rDNA sequence of the isolated bacterium is closely related to Paracoccus pantotrophus. P. pantotrophus is able to use sulfide and thiosulfate as energy sources for growth under aerobic conditions. The optimum concentrations of phosphate buffer (26 - 78mM, pH 8) and thiosulfate concentrations (5 – 20g/L) were evaluated in order to maximize microbial growth and sulfur oxidation activity before applying in the biotrickling filter system. The result showed that 52mM buffer concentration and 10g/L thiosulfate were suitable for growth and sulfur oxidation activity. The research findings suggest that P. pantotrophus has the potential application in the biotrickling filter process of hydrogen sulfide removal for upgrading biogas quality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.544&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Technoscience Publications Siriorn Boonyawanich; Peerada Prommeenate; Sukunya Oaew; Nipon Pisutpaisal; Saowaluck Haosagul;Hydrogen sulfide (H2S) is highly corrosive to electric generators, which is the main problem of biogas utilization. The industrial scale of the biofilter system relies on the performance of sulfide-oxidizing bacteria (SOB) via the activity of sulfur oxidation (soxABXYZ) and flavocytochrome sulfide dehydrogenase (fccAB) enzymes to reduce to a concentration below 100 ppm before using in industrial machinery. The main purpose of this research is to investigate the SOB community in full-scale H2S removal and their gene expression (fccAB and soxABXYZ) associated with H2S elimination efficiency. In this study, SOB communities were obtained from 2 sampling sites of the full-scale biofilter of palm oil factory (PPG), comprising starting sludge (PPG1) and recirculating sludge (PPG2). The abundance of SOB strains was examined by next-generation sequencing analysis (NGS) based on the 16S rRNA gene. The changes in the expression of genes involved in sulfur oxidation, namely soxABXYZ, and fccAB, between the 2 sampling sites were evaluated by using a comparative genomic hybridization (CGH) microarray. The results indicate that the high abundance of SOB genera that could play a vital role in biofilters belonged mainly to Sulfurovum, Paracoccus, Acidihalobacter, Acidithiobacillus, Thioalkalispira, Thiofaba, Caldisericum, Bacillus, were rapidly increased in the biofilter tank. Interestingly, expressions of soxAXYZ gene cluster at PPG2 were increased in Paracoccus pantotrophus J40 and Paracoccus alkenifer DSM 11593 for 1.1188 and 1.0518-fold, respectively, while in Acidihalobacter prosperus F5, the expression of fccAB genes was up to 1.3704 fold in comparison with PPG1. Increasing both relative abundance and gene expressions at PPG2 were correlated with 95% H2S removal efficiency. Hence, stabilization of the SOB microbiome is vital to H2S removal in industrial-scale biogas applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.46488/nept.2024.v23i02.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.46488/nept.2024.v23i02.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Technoscience Publications Siriorn Boonyawanich; Peerada Prommeenate; Sukunya Oaew; Nipon Pisutpaisal; Saowaluck Haosagul;Hydrogen sulfide (H2S) is highly corrosive to electric generators, which is the main problem of biogas utilization. The industrial scale of the biofilter system relies on the performance of sulfide-oxidizing bacteria (SOB) via the activity of sulfur oxidation (soxABXYZ) and flavocytochrome sulfide dehydrogenase (fccAB) enzymes to reduce to a concentration below 100 ppm before using in industrial machinery. The main purpose of this research is to investigate the SOB community in full-scale H2S removal and their gene expression (fccAB and soxABXYZ) associated with H2S elimination efficiency. In this study, SOB communities were obtained from 2 sampling sites of the full-scale biofilter of palm oil factory (PPG), comprising starting sludge (PPG1) and recirculating sludge (PPG2). The abundance of SOB strains was examined by next-generation sequencing analysis (NGS) based on the 16S rRNA gene. The changes in the expression of genes involved in sulfur oxidation, namely soxABXYZ, and fccAB, between the 2 sampling sites were evaluated by using a comparative genomic hybridization (CGH) microarray. The results indicate that the high abundance of SOB genera that could play a vital role in biofilters belonged mainly to Sulfurovum, Paracoccus, Acidihalobacter, Acidithiobacillus, Thioalkalispira, Thiofaba, Caldisericum, Bacillus, were rapidly increased in the biofilter tank. Interestingly, expressions of soxAXYZ gene cluster at PPG2 were increased in Paracoccus pantotrophus J40 and Paracoccus alkenifer DSM 11593 for 1.1188 and 1.0518-fold, respectively, while in Acidihalobacter prosperus F5, the expression of fccAB genes was up to 1.3704 fold in comparison with PPG1. Increasing both relative abundance and gene expressions at PPG2 were correlated with 95% H2S removal efficiency. Hence, stabilization of the SOB microbiome is vital to H2S removal in industrial-scale biogas applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.46488/nept.2024.v23i02.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.46488/nept.2024.v23i02.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Glyn Hobbs; Peerada Prommeenate; Nipon Pisutpaisal; Saowaluck Haosagul; Saowaluck Haosagul;Abstract The industrial-scale of hydrogen sulfide (H2S) removal system using biological process relies on the performance of sulfide-oxidizing bacteria (SOB) to reduce corrosive H2S before being used as fuel in an industrial boiler or electric generator. The sulfide-oxidizing bacteria community in the bioscrubber treating H2S in biogas from swine farm based on the 16S rRNA gene and Sox gene sequences analysis. Microbial sludge from SPM Feedmill Co., Ltd. (SPM swine farm) were collected from the inlet and outlet sampling ports of the bioscrubber. Sequencing of full-length 16S rRNA gene and next-generation sequencing (NGS) of short-read 16S region were employed to identify the SOB communities. The cultural dependent technique has been applied for isolation of pure SOB strains, including Acinetobacter towneri (MF765755), Enterobacter asburiae (MF765756) and Aeromonas veronii (MK659586). Together with NGS analysis, which showed bacteria belong to the genera Sulfurovum (37%), Sulfuricurvum (17%) and Thiothrix (9%) could play an important role in oxidized H2S in biogas. Therefore, these SOB genera: Acinetobacter, Aeromonas, Enterobacter, Sulfurovum, and Sulfuricurvum can be applied as an indicator for efficiency and stability of H2S treatment systems in biogas from swine farms.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.11.139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.11.139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Glyn Hobbs; Peerada Prommeenate; Nipon Pisutpaisal; Saowaluck Haosagul; Saowaluck Haosagul;Abstract The industrial-scale of hydrogen sulfide (H2S) removal system using biological process relies on the performance of sulfide-oxidizing bacteria (SOB) to reduce corrosive H2S before being used as fuel in an industrial boiler or electric generator. The sulfide-oxidizing bacteria community in the bioscrubber treating H2S in biogas from swine farm based on the 16S rRNA gene and Sox gene sequences analysis. Microbial sludge from SPM Feedmill Co., Ltd. (SPM swine farm) were collected from the inlet and outlet sampling ports of the bioscrubber. Sequencing of full-length 16S rRNA gene and next-generation sequencing (NGS) of short-read 16S region were employed to identify the SOB communities. The cultural dependent technique has been applied for isolation of pure SOB strains, including Acinetobacter towneri (MF765755), Enterobacter asburiae (MF765756) and Aeromonas veronii (MK659586). Together with NGS analysis, which showed bacteria belong to the genera Sulfurovum (37%), Sulfuricurvum (17%) and Thiothrix (9%) could play an important role in oxidized H2S in biogas. Therefore, these SOB genera: Acinetobacter, Aeromonas, Enterobacter, Sulfurovum, and Sulfuricurvum can be applied as an indicator for efficiency and stability of H2S treatment systems in biogas from swine farms.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.11.139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.11.139&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu