- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Norway, France, France, Belgium, France, Germany, PolandPublisher:American Association for the Advancement of Science (AAAS) Funded by:UKRI | RootDetect: Remote Detect..., NSF | IntBIO Collaborative Rese..., NSF | IntBIO Collaborative Rese... +1 projectsUKRI| RootDetect: Remote Detection and Precision Management of Root Health ,NSF| IntBIO Collaborative Research: Assessing drivers of the nitrogen-fixing symbiosis at continental scales ,NSF| IntBIO Collaborative Research: Assessing drivers of the nitrogen-fixing symbiosis at continental scales ,NSF| IntBIO Collaborative Research: Assessing drivers of the nitrogen-fixing symbiosis at continental scalesPablo Moreno-García; Flavia Montaño-Centellas; Yu Liu; Evelin Y. Reyes-Mendez; Rohit Raj Jha; Robert P. Guralnick; Ryan Folk; Donald M. Waller; Kris Verheyen; Lander Baeten; Antoine Becker-Scarpitta; Imre Berki; Markus Bernhardt-Römermann; Jörg Brunet; Hans Van Calster; Markéta Chudomelová; Deborah Closset; Pieter De Frenne; Guillaume Decocq; Frank S. Gilliam; John-Arvid Grytnes; Radim Hédl; Thilo Heinken; Bogdan Jaroszewicz; Martin Kopecký; Jonathan Lenoir; Martin Macek; František Máliš; Tobias Naaf; Anna Orczewska; Petr Petřík; Kamila Reczyńska; Fride Høistad Schei; Wolfgang Schmidt; Alina Stachurska-Swakoń; Tibor Standovár; Krzysztof Świerkosz; Balázs Teleki; Ondřej Vild; Daijiang Li;pmid: 39423266
pmc: PMC11488573
Biological nitrogen fixation is a fundamental part of ecosystem functioning. Anthropogenic nitrogen deposition and climate change may, however, limit the competitive advantage of nitrogen-fixing plants, leading to reduced relative diversity of nitrogen-fixing plants. Yet, assessments of changes of nitrogen-fixing plant long-term community diversity are rare. Here, we examine temporal trends in the diversity of nitrogen-fixing plants and their relationships with anthropogenic nitrogen deposition while accounting for changes in temperature and aridity. We used forest-floor vegetation resurveys of temperate forests in Europe and the United States spanning multiple decades. Nitrogen-fixer richness declined as nitrogen deposition increased over time but did not respond to changes in climate. Phylogenetic diversity also declined, as distinct lineages of N-fixers were lost between surveys, but the “winners” and “losers” among nitrogen-fixing lineages varied among study sites, suggesting that losses are context dependent. Anthropogenic nitrogen deposition reduces nitrogen-fixing plant diversity in ways that may strongly affect natural nitrogen fixation.
Science Advances arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2024Bergen Open Research Archive - UiBArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.adp7953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Science Advances arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2024Bergen Open Research Archive - UiBArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.adp7953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Belgium, ItalyPublisher:Wiley Funded by:EC | FORMICAEC| FORMICADe Pauw, Karen; Sanczuk, Pieter; Meeussen, Camille; Depauw, Leen; De Lombaerde, Emiel; Govaert, Sanne; Vanneste, Thomas; Brunet, Jörg; Cousins, Sara A. O.; Gasperini, Cristina; Hedwall, Per‐Ola; Iacopetti, Giovanni; Lenoir, Jonathan; Plue, Jan; Selvi, Federico; Spicher, Fabien; Uria‐Diez, Jaime; Verheyen, Kris; Vangansbeke, Pieter; De Frenne, Pieter;Summary Forests harbour large spatiotemporal heterogeneity in canopy structure. This variation drives the microclimate and light availability at the forest floor. So far, we do not know how light availability and sub‐canopy temperature interactively mediate the impact of macroclimate warming on understorey communities. We therefore assessed the functional response of understorey plant communities to warming and light addition in a full factorial experiment installed in temperate deciduous forests across Europe along natural microclimate, light and macroclimate gradients. Furthermore, we related these functional responses to the species’ life‐history syndromes and thermal niches. We found no significant community responses to the warming treatment. The light treatment, however, had a stronger impact on communities, mainly due to responses by fast‐colonizing generalists and not by slow‐colonizing forest specialists. The forest structure strongly mediated the response to light addition and also had a clear impact on functional traits and total plant cover. The effects of short‐term experimental warming were small and suggest a time‐lag in the response of understorey species to climate change. Canopy disturbance, for instance due to drought, pests or logging, has a strong and immediate impact and particularly favours generalists in the understorey in structurally complex forests.
Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2022Full-Text: https://flore.unifi.it/bitstream/2158/1248932/4/De%2bPaw%2bet%2bal.%2bNew%2bPhytol%202022.pdfData sources: Flore (Florence Research Repository)New PhytologistArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 47 citations 47 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2022Full-Text: https://flore.unifi.it/bitstream/2158/1248932/4/De%2bPaw%2bet%2bal.%2bNew%2bPhytol%202022.pdfData sources: Flore (Florence Research Repository)New PhytologistArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Italy, BelgiumPublisher:Wiley Funded by:EC | FORMICAEC| FORMICALiping Wei; Pieter Sanczuk; Karen De Pauw; Maria Mercedes Caron; Federico Selvi; Per‐Ola Hedwall; Jörg Brunet; Sara A. O. Cousins; Jan Plue; Fabien Spicher; Cristina Gasperini; Giovanni Iacopetti; Anna Orczewska; Jaime Uria‐Diez; Jonathan Lenoir; Pieter Vangansbeke; Pieter De Frenne;AbstractClimate change is pushing species towards and potentially beyond their critical thermal limits. The extent to which species can cope with temperatures exceeding their critical thermal limits is still uncertain. To better assess species' responses to warming, we compute the warming tolerance (ΔTniche) as a thermal vulnerability index, using species' upper thermal limits (the temperature at the warm limit of their distribution range) minus the local habitat temperature actually experienced at a given location. This metric is useful to predict how much more warming species can tolerate before negative impacts are expected to occur. Here we set up a cross‐continental transplant experiment involving five regions distributed along a latitudinal gradient across Europe (43° N–61° N). Transplant sites were located in dense and open forests stands, and at forest edges and in interiors. We estimated the warming tolerance for 12 understory plant species common in European temperate forests. During 3 years, we examined the effects of the warming tolerance of each species across all transplanted locations on local plant performance, in terms of survival, height, ground cover, flowering probabilities and flower number. We found that the warming tolerance (ΔTniche) of the 12 studied understory species was significantly different across Europe and varied by up to 8°C. In general, ΔTniche were smaller (less positive) towards the forest edge and in open stands. Plant performance (growth and reproduction) increased with increasing ΔTniche across all 12 species. Our study demonstrated that ΔTniche of understory plant species varied with macroclimatic differences among regions across Europe, as well as in response to forest microclimates, albeit to a lesser extent. Our findings support the hypothesis that plant performance across species decreases in terms of growth and reproduction as local temperature conditions reach or exceed the warm limit of the focal species.
Flore (Florence Rese... arrow_drop_down Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Flore (Florence Rese... arrow_drop_down Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Italy, BelgiumPublisher:Elsevier BV Funded by:EC | FORMICA, EC | 3D-FOGRODEC| FORMICA ,EC| 3D-FOGRODMeeussen, Camille; Govaert, Sanne; Vanneste, Thomas; Haesen, Stef; van Meerbeek, Koenraad; Bollmann, Kurt; Brunet, Jörg; Calders, Kim; Cousins, Sara A.O.; Diekmann, Martin; Graae, Bente; Iacopetti, Giovanni; Lenoir, Jonathan; Orczewska, Anna; Ponette, Quentin; Plue, Jan; Selvi, Federico; Spicher, Fabien; Sørensen, Mia Vedel; Verbeeck, Hans; Vermeir, Pieter; Verheyen, Kris; Vangansbeke, Pieter; de Frenne, Pieter;pmid: 33246733
handle: 2078.1/238470 , 2158/1217534 , 1854/LU-8681831
Forests play a key role in global carbon cycling and sequestration. However, the potential for carbon drawdown is affected by forest fragmentation and resulting changes in microclimate, nutrient inputs, disturbance and productivity near edges. Up to 20% of the global forested area lies within 100 m of an edge and, even in temperate forests, knowledge on how edge conditions affect carbon stocks and how far this influence penetrates into forest interiors is scarce. Here we studied carbon stocks in the aboveground biomass, forest floor and the mineral topsoil in 225 plots in deciduous forest edges across Europe and tested the impact of macroclimate, nitrogen deposition and smaller-grained drivers (e.g. microclimate) on these stocks. Total carbon and carbon in the aboveground biomass stock were on average 39% and 95% higher at the forest edge than 100 m into the interior. The increase in the aboveground biomass stock close to the edge was mainly related to enhanced nitrogen deposition. No edge influence was found for stocks in the mineral topsoil. Edge-to-interior gradients in forest floor carbon changed across latitude: carbon stocks in the forest floor were higher near the edge in southern Europe. Forest floor carbon decreased with increasing litter quality (i.e. high decomposition rate) and decreasing plant area index, whereas higher soil temperatures negatively affected the mineral topsoil carbon. Based on high-resolution forest fragmentation maps, we estimate that the additional carbon stored in deciduous forest edges across Europe amounts to not less than 183 Tg carbon, which is equivalent to the storage capacity of 1 million ha of additional forest. This study underpins the importance of including edge influences when quantifying the carbon stocks in temperate forests and stresses the importance of preserving natural forest edges and small forest patches with a high edge-to-interior surface area.
Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2021Full-Text: https://flore.unifi.it/bitstream/2158/1217534/5/Meeusen%20et%20al.%2c%20STOTEN%202021%20.pdfData sources: Flore (Florence Research Repository)The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyThe Science of The Total EnvironmentArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.143497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2021Full-Text: https://flore.unifi.it/bitstream/2158/1217534/5/Meeusen%20et%20al.%2c%20STOTEN%202021%20.pdfData sources: Flore (Florence Research Repository)The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyThe Science of The Total EnvironmentArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.143497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 France, Netherlands, France, Belgium, United Kingdom, France, GermanyPublisher:Wiley Publicly fundedFunded by:EC | PASTFORWARDEC| PASTFORWARDLanduyt, Dries; Perring, Michael; Blondeel, Haben; de Lombaerde, Emiel; Depauw, Leen; Lorer, Eline; Maes, Sybryn; Baeten, Lander; Bergès, Laurent; Bernhardt-Römermann, Markus; Brūmelis, Guntis; Brunet, Jörg; Chudomelová, Markéta; Czerepko, Janusz; Decocq, Guillaume; den Ouden, Jan; de Frenne, Pieter; Dirnböck, Thomas; Durak, Tomasz; Fichtner, Andreas; Gawryś, Radosław; Härdtle, Werner; Hédl, Radim; Heinrichs, Steffi; Heinken, Thilo; Jaroszewicz, Bogdan; Kirby, Keith; Kopecký, Martin; Máliš, František; Macek, Martin; Mitchell, Fraser; Naaf, Tobias; Petřík, Petr; Reczyńska, Kamila; Schmidt, Wolfgang; Standovár, Tibor; Swierkosz, Krzysztof; Smart, Simon; van Calster, Hans; Vild, Ondřej; Waller, Donald; Wulf, Monika; Verheyen, Kris;AbstractPlant communities are being exposed to changing environmental conditions all around the globe, leading to alterations in plant diversity, community composition, and ecosystem functioning. For herbaceous understorey communities in temperate forests, responses to global change are postulated to be complex, due to the presence of a tree layer that modulates understorey responses to external pressures such as climate change and changes in atmospheric nitrogen deposition rates. Multiple investigative approaches have been put forward as tools to detect, quantify and predict understorey responses to these global‐change drivers, including, among others, distributed resurvey studies and manipulative experiments. These investigative approaches are generally designed and reported upon in isolation, while integration across investigative approaches is rarely considered. In this study, we integrate three investigative approaches (two complementary resurvey approaches and one experimental approach) to investigate how climate warming and changes in nitrogen deposition affect the functional composition of the understorey and how functional responses in the understorey are modulated by canopy disturbance, that is, changes in overstorey canopy openness over time. Our resurvey data reveal that most changes in understorey functional characteristics represent responses to changes in canopy openness with shifts in macroclimate temperature and aerial nitrogen deposition playing secondary roles. Contrary to expectations, we found little evidence that these drivers interact. In addition, experimental findings deviated from the observational findings, suggesting that the forces driving understorey change at the regional scale differ from those driving change at the forest floor (i.e., the experimental treatments). Our study demonstrates that different approaches need to be integrated to acquire a full picture of how understorey communities respond to global change.
Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2024Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic BibliographyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2024Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic BibliographyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 BelgiumPublisher:Wiley Funded by:EC | FORMICAEC| FORMICAFernández‐Fernández, P.; Sanczuk, P.; Vanneste, T.; Brunet, J.; Ehrlén, J.; Hedwall, P.‐O.; Hylander, K.; Van Den Berge, S.; Verheyen, K.; De Frenne, P.;ABSTRACT The effectiveness of hedgerows as functional corridors in the face of climate warming has been little researched. Here we investigated the effects of warming temperatures on plant performance and population growth of Geum urbanum in forests versus hedgerows in two European temperate regions. Adult individuals were transplanted in three forest–hedgerow pairs in each of two different latitudes, and an experimental warming treatment using open‐top chambers was used in a full factorial design. Plant performance was analysed using mixed models and population performance was analysed using Integral Projection Models and elasticity analyses. Temperature increases due to open‐top chamber installation were higher in forests than in hedgerows. In forests, the warming treatment had a significant negative effect on the population growth rate of G. urbanum. In contrast, no significant effect of the warming treatment on population dynamics was detected in hedgerows. Overall, the highest population growth rates were found in the forest control sites, which was driven by a higher fecundity rather than a higher survival probability. Effects of warming treatments on G. urbanum population growth rates differed between forests and hedgerows. In forests, warming treatments negatively affected population growth, but not in hedgerows. This could be a consequence of the overall lower warming achieved in hedgerows. We conclude that maintenance of cooler forest microclimates coul, at least temporarily, moderate the species response to climate warming.
Plant Biology arrow_drop_down Plant BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/plb.13418&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Plant Biology arrow_drop_down Plant BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/plb.13418&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Embargo end date: 30 Jan 2020 Netherlands, Germany, Belgium, Czech Republic, Germany, Czech Republic, United KingdomPublisher:Wiley Funded by:EC | FORMICA, SNSF | How does forest microclim..., EC | PASTFORWARD +1 projectsEC| FORMICA ,SNSF| How does forest microclimate affect biodiversity dynamics? ,EC| PASTFORWARD ,UKRI| Biodiversity and Ecosystem Processes in Human-Modified Tropical ForestsKris Verheyen; Sybryn L. Maes; Monika Wulf; Gauthier Buyse; Florian Zellweger; Florian Zellweger; Jonathan Lenoir; Bogdan Jaroszewicz; Steffi Heinrichs; David A. Coomes; Jörg Brunet; Fabien Spicher; Wolfgang Schmidt; Jan den Ouden; Leen Depauw; Martin Kopecký; Martin Kopecký; Keith Kirby; Pieter De Frenne; František Máliš;AbstractAimForest understorey microclimates are often buffered against extreme heat or cold, with important implications for the organisms living in these environments. We quantified seasonal effects of understorey microclimate predictors describing canopy structure, canopy composition and topography (i.e., local factors) and the forest patch size and distance to the coast (i.e., landscape factors).LocationTemperate forests in Europe.Time period2017–2018.Major taxa studiedWoody plants.MethodsWe combined data from a microclimate sensor network with weather‐station records to calculate the difference, or offset, between temperatures measured inside and outside forests. We used regression analysis to study the effects of local and landscape factors on the seasonal offset of minimum, mean and maximum temperatures.ResultsThe maximum temperature during the summer was on average cooler by 2.1 °C inside than outside forests, and the minimum temperatures during the winter and spring were 0.4 and 0.9 °C warmer. The local canopy cover was a strong nonlinear driver of the maximum temperature offset during summer, and we found increased cooling beneath tree species that cast the deepest shade. Seasonal offsets of minimum temperature were mainly regulated by landscape and topographic features, such as the distance to the coast and topographic position.Main conclusionsForest organisms experience less severe temperature extremes than suggested by currently available macroclimate data; therefore, climate–species relationships and the responses of species to anthropogenic global warming cannot be modelled accurately in forests using macroclimate data alone. Changes in canopy cover and composition will strongly modulate the warming of maximum temperatures in forest understories, with important implications for understanding the responses of forest biodiversity and functioning to the combined threats of land‐use change and climate change. Our predictive models are generally applicable across lowland temperate deciduous forests, providing ecologically important microclimate data for forest understories.
Hyper Article en Lig... arrow_drop_down Global Ecology and BiogeographyArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Publikationenserver der Georg-August-Universität GöttingenArticle . 2019 . Peer-reviewedRepository of the Czech Academy of SciencesArticle . 2019Data sources: Repository of the Czech Academy of SciencesGöttingen Research Online PublicationsArticle . 2019License: CC BYData sources: Göttingen Research Online PublicationsWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsGhent University Academic BibliographyArticle . 2019Data sources: Ghent University Academic Bibliographyhttp://dx.doi.org/doi.org/10.1...Article . Peer-reviewedData sources: European Union Open Data PortalGlobal Ecology and BiogeographyArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 163 citations 163 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Global Ecology and BiogeographyArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Publikationenserver der Georg-August-Universität GöttingenArticle . 2019 . Peer-reviewedRepository of the Czech Academy of SciencesArticle . 2019Data sources: Repository of the Czech Academy of SciencesGöttingen Research Online PublicationsArticle . 2019License: CC BYData sources: Göttingen Research Online PublicationsWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsGhent University Academic BibliographyArticle . 2019Data sources: Ghent University Academic Bibliographyhttp://dx.doi.org/doi.org/10.1...Article . Peer-reviewedData sources: European Union Open Data PortalGlobal Ecology and BiogeographyArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, Germany, Argentina, Belgium, Czech Republic, Czech Republic, ArgentinaPublisher:Wiley Funded by:EC | UnderSCORE, SNSF | How does forest microclim..., EC | FORMICA +1 projectsEC| UnderSCORE ,SNSF| How does forest microclimate affect biodiversity dynamics? ,EC| FORMICA ,SNSF| Climate change impacts on biodiversity: From macro- to microclimateKamila Reczyńska; Martin Macek; Florian Zellweger; Jonathan Lenoir; Wolfgang Schmidt; Imre Berki; Thomas Dirnböck; Lander Baeten; Markus Bernhardt-Römermann; Krzysztof Świerkosz; Pieter De Frenne; Sandra Díaz; Sandra Díaz; Tomasz Durak; Remigiusz Pielech; Kris Verheyen; Jörg Brunet; Bogdan Jaroszewicz; Radim Hédl; Monika Wulf; Guillaume Decocq; Thilo Heinken; Petr Petřík; Martin Kopecký; Martin Kopecký; María Mercedes Carón; Marek Malicki; Marek Malicki; Balázs Teleki; Thomas A. Nagel; František Máliš; Michael P. Perring; Michael P. Perring;handle: 11336/157745 , 1854/LU-8746181
Abstract Woody species' requirements and environmental sensitivity change from seedlings to adults, a process referred to as ontogenetic shift. Such shifts can be increased by climate change. To assess the changes in the difference of temperature experienced by seedlings and adults in the context of climate change, it is essential to have reliable climatic data over long periods that capture the thermal conditions experienced by the individuals throughout their life cycle. Here we used a unique cross‐European database of 2,195 pairs of resurveyed forest plots with a mean intercensus time interval of 37 years. We inferred macroclimatic temperature (free‐air conditions above tree canopies—representative of the conditions experienced by adult trees) and microclimatic temperature (representative of the juvenile stage at the forest floor, inferred from the relationship between canopy cover, distance to the coast and below‐canopy temperature) at both surveys. We then address the long‐term, large‐scale and multitaxa dynamics of the difference between the temperatures experienced by adults and juveniles of 25 temperate tree species. We found significant, but species‐specific, variations in the perceived temperature (calculated from presence/absence data) between life stages during both surveys. Additionally, the difference of the temperature experienced by the adult versus juveniles significantly increased between surveys for 8 of 25 species. We found evidence of a relationship between the difference of temperature experienced by juveniles and adults over time and one key functional trait (i.e. leaf area). Together, these results suggest that the temperatures experienced by adults versus juveniles became more decoupled over time for a subset of species, probably due to the combination of climate change and a recorded increase of canopy cover between the surveys resulting in higher rates of macroclimate than microclimate warming. Synthesis. We document warming and canopy‐cover induced changes in the difference of the temperature experienced by juveniles and adults. These findings have implications for forest management adaptation to climate change such as the promotion of tree regeneration by creating suitable species‐specific microclimatic conditions. Such adaptive management will help to mitigate the macroclimate change in the understorey layer.
NERC Open Research A... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesJournal of EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13773&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesJournal of EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13773&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 United Kingdom, France, Germany, Netherlands, France, Belgium, Czech Republic, France, Czech RepublicPublisher:Wiley Monika Wulf; Ilze Liepiņa; Kris Verheyen; Haben Blondeel; Simon M. Smart; Sybryn L. Maes; Radosław Gawryś; Thilo Heinken; Jörg Brunet; Werner Härdtle; Emiel De Lombaerde; Karol Ujházy; Guillaume Decocq; Michael P. Perring; Michael P. Perring; Steffi Heinrichs; Bogdan Jaroszewicz; Leen Depauw; František Máliš; Dries Landuyt; Wolfgang Schmidt; Radim Hédl; Jan den Ouden; Janusz Czerepko; Guntis Brūmelis; Déborah Closset-Kopp; Martin Macek; Martin Kopecký; Martin Kopecký;handle: 1854/LU-8639585
Abstract A central challenge of today's ecological research is predicting how ecosystems will develop under future global change. Accurate predictions are complicated by (a) simultaneous effects of different drivers, such as climate change, nitrogen deposition and management changes; and (b) legacy effects from previous land use. We tested whether herb layer biodiversity (i.e. richness, Shannon diversity and evenness) and functional (i.e. herb cover, specific leaf area [SLA] and plant height) responses to environmental change drivers depended on land‐use history. We used resurvey data from 192 plots across nineteen European temperate forest regions, with large spatial variability in environmental change factors. We tested for interactions between land‐use history, distinguishing ancient and recent (i.e. post‐agricultural) forests and four drivers: temperature, nitrogen deposition, and aridity at the regional scale and light dynamics at the plot‐scale. Land‐use history significantly modulated global change effects on the functional signature of the herb layer (i.e. cover, SLA and plant height). Light availability was the main environmental driver of change interacting with land‐use history. We found greater herb cover and plant height decreases and SLA increases with decreasing light availability in ancient than in recent forests. Furthermore, we found greater decreases in herb cover with increased nitrogen deposition in ancient forests, whereas warming had the strongest decreasing effect on the herb cover in recent forests. Interactive effects between land‐use history and global change on biodiversity were not found, but species evenness increased more in ancient than in recent forests. Synthesis. Our results demonstrate that land‐use history should not be overlooked when predicting forest herb layer responses to global change. Moreover, we found that herb layer composition in semi‐natural deciduous forests is mainly controlled by local canopy characteristics, regulating light levels at the forest floor, and much less by environmental changes at the regional scale (here: warming, nitrogen deposition and aridity). The observed disconnect between biodiversity and functional herb layer responses to environmental changes demonstrates the importance of assessing both types of responses to increase our understanding of the possible impact of global change on the herb layer.
Journal of Ecology arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesJournal of EcologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic BibliographyNatural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 62 citations 62 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Ecology arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesJournal of EcologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic BibliographyNatural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United Kingdom, Slovenia, Belgium, Germany, Netherlands, Belgium, SloveniaPublisher:American Association for the Advancement of Science (AAAS) Funded by:EC | eLTER PLUS, DFG | German Centre for Integra..., SNSF | Climate change impacts on... +1 projectsEC| eLTER PLUS ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,SNSF| Climate change impacts on biodiversity: From macro- to microclimate ,EC| FORMICAPieter Sanczuk; Kris Verheyen; Jonathan Lenoir; Florian Zellweger; Jonas J. Lembrechts; Francisco Rodríguez-Sánchez; Lander Baeten; Markus Bernhardt-Römermann; Karen De Pauw; Pieter Vangansbeke; Michael P. Perring; Imre Berki; Anne D. Bjorkman; Jörg Brunet; Markéta Chudomelová; Emiel De Lombaerde; Guillaume Decocq; Thomas Dirnböck; Tomasz Durak; Caroline Greiser; Radim Hédl; Thilo Heinken; Ute Jandt; Bogdan Jaroszewicz; Martin Kopecký; Dries Landuyt; Martin Macek; František Máliš; Tobias Naaf; Thomas A. Nagel; Petr Petřík; Kamila Reczyńska; Wolfgang Schmidt; Tibor Standovár; Ingmar R. Staude; Krzysztof Świerkosz; Balázs Teleki; Thomas Vanneste; Ondrej Vild; Donald Waller; Pieter De Frenne;Climate change is commonly assumed to induce species’ range shifts toward the poles. Yet, other environmental changes may affect the geographical distribution of species in unexpected ways. Here, we quantify multidecadal shifts in the distribution of European forest plants and link these shifts to key drivers of forest biodiversity change: climate change, atmospheric deposition (nitrogen and sulfur), and forest canopy dynamics. Surprisingly, westward distribution shifts were 2.6 times more likely than northward ones. Not climate change, but nitrogen-mediated colonization events, possibly facilitated by the recovery from past acidifying deposition, best explain westward movements. Biodiversity redistribution patterns appear complex and are more likely driven by the interplay among several environmental changes than due to the exclusive effects of climate change alone.
NERC Open Research A... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2024Institutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenGhent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.ado0878&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2024Institutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenGhent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.ado0878&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Norway, France, France, Belgium, France, Germany, PolandPublisher:American Association for the Advancement of Science (AAAS) Funded by:UKRI | RootDetect: Remote Detect..., NSF | IntBIO Collaborative Rese..., NSF | IntBIO Collaborative Rese... +1 projectsUKRI| RootDetect: Remote Detection and Precision Management of Root Health ,NSF| IntBIO Collaborative Research: Assessing drivers of the nitrogen-fixing symbiosis at continental scales ,NSF| IntBIO Collaborative Research: Assessing drivers of the nitrogen-fixing symbiosis at continental scales ,NSF| IntBIO Collaborative Research: Assessing drivers of the nitrogen-fixing symbiosis at continental scalesPablo Moreno-García; Flavia Montaño-Centellas; Yu Liu; Evelin Y. Reyes-Mendez; Rohit Raj Jha; Robert P. Guralnick; Ryan Folk; Donald M. Waller; Kris Verheyen; Lander Baeten; Antoine Becker-Scarpitta; Imre Berki; Markus Bernhardt-Römermann; Jörg Brunet; Hans Van Calster; Markéta Chudomelová; Deborah Closset; Pieter De Frenne; Guillaume Decocq; Frank S. Gilliam; John-Arvid Grytnes; Radim Hédl; Thilo Heinken; Bogdan Jaroszewicz; Martin Kopecký; Jonathan Lenoir; Martin Macek; František Máliš; Tobias Naaf; Anna Orczewska; Petr Petřík; Kamila Reczyńska; Fride Høistad Schei; Wolfgang Schmidt; Alina Stachurska-Swakoń; Tibor Standovár; Krzysztof Świerkosz; Balázs Teleki; Ondřej Vild; Daijiang Li;pmid: 39423266
pmc: PMC11488573
Biological nitrogen fixation is a fundamental part of ecosystem functioning. Anthropogenic nitrogen deposition and climate change may, however, limit the competitive advantage of nitrogen-fixing plants, leading to reduced relative diversity of nitrogen-fixing plants. Yet, assessments of changes of nitrogen-fixing plant long-term community diversity are rare. Here, we examine temporal trends in the diversity of nitrogen-fixing plants and their relationships with anthropogenic nitrogen deposition while accounting for changes in temperature and aridity. We used forest-floor vegetation resurveys of temperate forests in Europe and the United States spanning multiple decades. Nitrogen-fixer richness declined as nitrogen deposition increased over time but did not respond to changes in climate. Phylogenetic diversity also declined, as distinct lineages of N-fixers were lost between surveys, but the “winners” and “losers” among nitrogen-fixing lineages varied among study sites, suggesting that losses are context dependent. Anthropogenic nitrogen deposition reduces nitrogen-fixing plant diversity in ways that may strongly affect natural nitrogen fixation.
Science Advances arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2024Bergen Open Research Archive - UiBArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.adp7953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Science Advances arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2024Bergen Open Research Archive - UiBArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.adp7953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Belgium, ItalyPublisher:Wiley Funded by:EC | FORMICAEC| FORMICADe Pauw, Karen; Sanczuk, Pieter; Meeussen, Camille; Depauw, Leen; De Lombaerde, Emiel; Govaert, Sanne; Vanneste, Thomas; Brunet, Jörg; Cousins, Sara A. O.; Gasperini, Cristina; Hedwall, Per‐Ola; Iacopetti, Giovanni; Lenoir, Jonathan; Plue, Jan; Selvi, Federico; Spicher, Fabien; Uria‐Diez, Jaime; Verheyen, Kris; Vangansbeke, Pieter; De Frenne, Pieter;Summary Forests harbour large spatiotemporal heterogeneity in canopy structure. This variation drives the microclimate and light availability at the forest floor. So far, we do not know how light availability and sub‐canopy temperature interactively mediate the impact of macroclimate warming on understorey communities. We therefore assessed the functional response of understorey plant communities to warming and light addition in a full factorial experiment installed in temperate deciduous forests across Europe along natural microclimate, light and macroclimate gradients. Furthermore, we related these functional responses to the species’ life‐history syndromes and thermal niches. We found no significant community responses to the warming treatment. The light treatment, however, had a stronger impact on communities, mainly due to responses by fast‐colonizing generalists and not by slow‐colonizing forest specialists. The forest structure strongly mediated the response to light addition and also had a clear impact on functional traits and total plant cover. The effects of short‐term experimental warming were small and suggest a time‐lag in the response of understorey species to climate change. Canopy disturbance, for instance due to drought, pests or logging, has a strong and immediate impact and particularly favours generalists in the understorey in structurally complex forests.
Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2022Full-Text: https://flore.unifi.it/bitstream/2158/1248932/4/De%2bPaw%2bet%2bal.%2bNew%2bPhytol%202022.pdfData sources: Flore (Florence Research Repository)New PhytologistArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 47 citations 47 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2022Full-Text: https://flore.unifi.it/bitstream/2158/1248932/4/De%2bPaw%2bet%2bal.%2bNew%2bPhytol%202022.pdfData sources: Flore (Florence Research Repository)New PhytologistArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.17803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Italy, BelgiumPublisher:Wiley Funded by:EC | FORMICAEC| FORMICALiping Wei; Pieter Sanczuk; Karen De Pauw; Maria Mercedes Caron; Federico Selvi; Per‐Ola Hedwall; Jörg Brunet; Sara A. O. Cousins; Jan Plue; Fabien Spicher; Cristina Gasperini; Giovanni Iacopetti; Anna Orczewska; Jaime Uria‐Diez; Jonathan Lenoir; Pieter Vangansbeke; Pieter De Frenne;AbstractClimate change is pushing species towards and potentially beyond their critical thermal limits. The extent to which species can cope with temperatures exceeding their critical thermal limits is still uncertain. To better assess species' responses to warming, we compute the warming tolerance (ΔTniche) as a thermal vulnerability index, using species' upper thermal limits (the temperature at the warm limit of their distribution range) minus the local habitat temperature actually experienced at a given location. This metric is useful to predict how much more warming species can tolerate before negative impacts are expected to occur. Here we set up a cross‐continental transplant experiment involving five regions distributed along a latitudinal gradient across Europe (43° N–61° N). Transplant sites were located in dense and open forests stands, and at forest edges and in interiors. We estimated the warming tolerance for 12 understory plant species common in European temperate forests. During 3 years, we examined the effects of the warming tolerance of each species across all transplanted locations on local plant performance, in terms of survival, height, ground cover, flowering probabilities and flower number. We found that the warming tolerance (ΔTniche) of the 12 studied understory species was significantly different across Europe and varied by up to 8°C. In general, ΔTniche were smaller (less positive) towards the forest edge and in open stands. Plant performance (growth and reproduction) increased with increasing ΔTniche across all 12 species. Our study demonstrated that ΔTniche of understory plant species varied with macroclimatic differences among regions across Europe, as well as in response to forest microclimates, albeit to a lesser extent. Our findings support the hypothesis that plant performance across species decreases in terms of growth and reproduction as local temperature conditions reach or exceed the warm limit of the focal species.
Flore (Florence Rese... arrow_drop_down Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Flore (Florence Rese... arrow_drop_down Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Italy, BelgiumPublisher:Elsevier BV Funded by:EC | FORMICA, EC | 3D-FOGRODEC| FORMICA ,EC| 3D-FOGRODMeeussen, Camille; Govaert, Sanne; Vanneste, Thomas; Haesen, Stef; van Meerbeek, Koenraad; Bollmann, Kurt; Brunet, Jörg; Calders, Kim; Cousins, Sara A.O.; Diekmann, Martin; Graae, Bente; Iacopetti, Giovanni; Lenoir, Jonathan; Orczewska, Anna; Ponette, Quentin; Plue, Jan; Selvi, Federico; Spicher, Fabien; Sørensen, Mia Vedel; Verbeeck, Hans; Vermeir, Pieter; Verheyen, Kris; Vangansbeke, Pieter; de Frenne, Pieter;pmid: 33246733
handle: 2078.1/238470 , 2158/1217534 , 1854/LU-8681831
Forests play a key role in global carbon cycling and sequestration. However, the potential for carbon drawdown is affected by forest fragmentation and resulting changes in microclimate, nutrient inputs, disturbance and productivity near edges. Up to 20% of the global forested area lies within 100 m of an edge and, even in temperate forests, knowledge on how edge conditions affect carbon stocks and how far this influence penetrates into forest interiors is scarce. Here we studied carbon stocks in the aboveground biomass, forest floor and the mineral topsoil in 225 plots in deciduous forest edges across Europe and tested the impact of macroclimate, nitrogen deposition and smaller-grained drivers (e.g. microclimate) on these stocks. Total carbon and carbon in the aboveground biomass stock were on average 39% and 95% higher at the forest edge than 100 m into the interior. The increase in the aboveground biomass stock close to the edge was mainly related to enhanced nitrogen deposition. No edge influence was found for stocks in the mineral topsoil. Edge-to-interior gradients in forest floor carbon changed across latitude: carbon stocks in the forest floor were higher near the edge in southern Europe. Forest floor carbon decreased with increasing litter quality (i.e. high decomposition rate) and decreasing plant area index, whereas higher soil temperatures negatively affected the mineral topsoil carbon. Based on high-resolution forest fragmentation maps, we estimate that the additional carbon stored in deciduous forest edges across Europe amounts to not less than 183 Tg carbon, which is equivalent to the storage capacity of 1 million ha of additional forest. This study underpins the importance of including edge influences when quantifying the carbon stocks in temperate forests and stresses the importance of preserving natural forest edges and small forest patches with a high edge-to-interior surface area.
Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2021Full-Text: https://flore.unifi.it/bitstream/2158/1217534/5/Meeusen%20et%20al.%2c%20STOTEN%202021%20.pdfData sources: Flore (Florence Research Repository)The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyThe Science of The Total EnvironmentArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.143497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2021Full-Text: https://flore.unifi.it/bitstream/2158/1217534/5/Meeusen%20et%20al.%2c%20STOTEN%202021%20.pdfData sources: Flore (Florence Research Repository)The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyThe Science of The Total EnvironmentArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2020.143497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 France, Netherlands, France, Belgium, United Kingdom, France, GermanyPublisher:Wiley Publicly fundedFunded by:EC | PASTFORWARDEC| PASTFORWARDLanduyt, Dries; Perring, Michael; Blondeel, Haben; de Lombaerde, Emiel; Depauw, Leen; Lorer, Eline; Maes, Sybryn; Baeten, Lander; Bergès, Laurent; Bernhardt-Römermann, Markus; Brūmelis, Guntis; Brunet, Jörg; Chudomelová, Markéta; Czerepko, Janusz; Decocq, Guillaume; den Ouden, Jan; de Frenne, Pieter; Dirnböck, Thomas; Durak, Tomasz; Fichtner, Andreas; Gawryś, Radosław; Härdtle, Werner; Hédl, Radim; Heinrichs, Steffi; Heinken, Thilo; Jaroszewicz, Bogdan; Kirby, Keith; Kopecký, Martin; Máliš, František; Macek, Martin; Mitchell, Fraser; Naaf, Tobias; Petřík, Petr; Reczyńska, Kamila; Schmidt, Wolfgang; Standovár, Tibor; Swierkosz, Krzysztof; Smart, Simon; van Calster, Hans; Vild, Ondřej; Waller, Donald; Wulf, Monika; Verheyen, Kris;AbstractPlant communities are being exposed to changing environmental conditions all around the globe, leading to alterations in plant diversity, community composition, and ecosystem functioning. For herbaceous understorey communities in temperate forests, responses to global change are postulated to be complex, due to the presence of a tree layer that modulates understorey responses to external pressures such as climate change and changes in atmospheric nitrogen deposition rates. Multiple investigative approaches have been put forward as tools to detect, quantify and predict understorey responses to these global‐change drivers, including, among others, distributed resurvey studies and manipulative experiments. These investigative approaches are generally designed and reported upon in isolation, while integration across investigative approaches is rarely considered. In this study, we integrate three investigative approaches (two complementary resurvey approaches and one experimental approach) to investigate how climate warming and changes in nitrogen deposition affect the functional composition of the understorey and how functional responses in the understorey are modulated by canopy disturbance, that is, changes in overstorey canopy openness over time. Our resurvey data reveal that most changes in understorey functional characteristics represent responses to changes in canopy openness with shifts in macroclimate temperature and aerial nitrogen deposition playing secondary roles. Contrary to expectations, we found little evidence that these drivers interact. In addition, experimental findings deviated from the observational findings, suggesting that the forces driving understorey change at the regional scale differ from those driving change at the forest floor (i.e., the experimental treatments). Our study demonstrates that different approaches need to be integrated to acquire a full picture of how understorey communities respond to global change.
Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2024Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic BibliographyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Publikationenserver ... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2024Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic BibliographyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 BelgiumPublisher:Wiley Funded by:EC | FORMICAEC| FORMICAFernández‐Fernández, P.; Sanczuk, P.; Vanneste, T.; Brunet, J.; Ehrlén, J.; Hedwall, P.‐O.; Hylander, K.; Van Den Berge, S.; Verheyen, K.; De Frenne, P.;ABSTRACT The effectiveness of hedgerows as functional corridors in the face of climate warming has been little researched. Here we investigated the effects of warming temperatures on plant performance and population growth of Geum urbanum in forests versus hedgerows in two European temperate regions. Adult individuals were transplanted in three forest–hedgerow pairs in each of two different latitudes, and an experimental warming treatment using open‐top chambers was used in a full factorial design. Plant performance was analysed using mixed models and population performance was analysed using Integral Projection Models and elasticity analyses. Temperature increases due to open‐top chamber installation were higher in forests than in hedgerows. In forests, the warming treatment had a significant negative effect on the population growth rate of G. urbanum. In contrast, no significant effect of the warming treatment on population dynamics was detected in hedgerows. Overall, the highest population growth rates were found in the forest control sites, which was driven by a higher fecundity rather than a higher survival probability. Effects of warming treatments on G. urbanum population growth rates differed between forests and hedgerows. In forests, warming treatments negatively affected population growth, but not in hedgerows. This could be a consequence of the overall lower warming achieved in hedgerows. We conclude that maintenance of cooler forest microclimates coul, at least temporarily, moderate the species response to climate warming.
Plant Biology arrow_drop_down Plant BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/plb.13418&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Plant Biology arrow_drop_down Plant BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/plb.13418&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Embargo end date: 30 Jan 2020 Netherlands, Germany, Belgium, Czech Republic, Germany, Czech Republic, United KingdomPublisher:Wiley Funded by:EC | FORMICA, SNSF | How does forest microclim..., EC | PASTFORWARD +1 projectsEC| FORMICA ,SNSF| How does forest microclimate affect biodiversity dynamics? ,EC| PASTFORWARD ,UKRI| Biodiversity and Ecosystem Processes in Human-Modified Tropical ForestsKris Verheyen; Sybryn L. Maes; Monika Wulf; Gauthier Buyse; Florian Zellweger; Florian Zellweger; Jonathan Lenoir; Bogdan Jaroszewicz; Steffi Heinrichs; David A. Coomes; Jörg Brunet; Fabien Spicher; Wolfgang Schmidt; Jan den Ouden; Leen Depauw; Martin Kopecký; Martin Kopecký; Keith Kirby; Pieter De Frenne; František Máliš;AbstractAimForest understorey microclimates are often buffered against extreme heat or cold, with important implications for the organisms living in these environments. We quantified seasonal effects of understorey microclimate predictors describing canopy structure, canopy composition and topography (i.e., local factors) and the forest patch size and distance to the coast (i.e., landscape factors).LocationTemperate forests in Europe.Time period2017–2018.Major taxa studiedWoody plants.MethodsWe combined data from a microclimate sensor network with weather‐station records to calculate the difference, or offset, between temperatures measured inside and outside forests. We used regression analysis to study the effects of local and landscape factors on the seasonal offset of minimum, mean and maximum temperatures.ResultsThe maximum temperature during the summer was on average cooler by 2.1 °C inside than outside forests, and the minimum temperatures during the winter and spring were 0.4 and 0.9 °C warmer. The local canopy cover was a strong nonlinear driver of the maximum temperature offset during summer, and we found increased cooling beneath tree species that cast the deepest shade. Seasonal offsets of minimum temperature were mainly regulated by landscape and topographic features, such as the distance to the coast and topographic position.Main conclusionsForest organisms experience less severe temperature extremes than suggested by currently available macroclimate data; therefore, climate–species relationships and the responses of species to anthropogenic global warming cannot be modelled accurately in forests using macroclimate data alone. Changes in canopy cover and composition will strongly modulate the warming of maximum temperatures in forest understories, with important implications for understanding the responses of forest biodiversity and functioning to the combined threats of land‐use change and climate change. Our predictive models are generally applicable across lowland temperate deciduous forests, providing ecologically important microclimate data for forest understories.
Hyper Article en Lig... arrow_drop_down Global Ecology and BiogeographyArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Publikationenserver der Georg-August-Universität GöttingenArticle . 2019 . Peer-reviewedRepository of the Czech Academy of SciencesArticle . 2019Data sources: Repository of the Czech Academy of SciencesGöttingen Research Online PublicationsArticle . 2019License: CC BYData sources: Göttingen Research Online PublicationsWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsGhent University Academic BibliographyArticle . 2019Data sources: Ghent University Academic Bibliographyhttp://dx.doi.org/doi.org/10.1...Article . Peer-reviewedData sources: European Union Open Data PortalGlobal Ecology and BiogeographyArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 163 citations 163 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Global Ecology and BiogeographyArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Publikationenserver der Georg-August-Universität GöttingenArticle . 2019 . Peer-reviewedRepository of the Czech Academy of SciencesArticle . 2019Data sources: Repository of the Czech Academy of SciencesGöttingen Research Online PublicationsArticle . 2019License: CC BYData sources: Göttingen Research Online PublicationsWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsGhent University Academic BibliographyArticle . 2019Data sources: Ghent University Academic Bibliographyhttp://dx.doi.org/doi.org/10.1...Article . Peer-reviewedData sources: European Union Open Data PortalGlobal Ecology and BiogeographyArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, Germany, Argentina, Belgium, Czech Republic, Czech Republic, ArgentinaPublisher:Wiley Funded by:EC | UnderSCORE, SNSF | How does forest microclim..., EC | FORMICA +1 projectsEC| UnderSCORE ,SNSF| How does forest microclimate affect biodiversity dynamics? ,EC| FORMICA ,SNSF| Climate change impacts on biodiversity: From macro- to microclimateKamila Reczyńska; Martin Macek; Florian Zellweger; Jonathan Lenoir; Wolfgang Schmidt; Imre Berki; Thomas Dirnböck; Lander Baeten; Markus Bernhardt-Römermann; Krzysztof Świerkosz; Pieter De Frenne; Sandra Díaz; Sandra Díaz; Tomasz Durak; Remigiusz Pielech; Kris Verheyen; Jörg Brunet; Bogdan Jaroszewicz; Radim Hédl; Monika Wulf; Guillaume Decocq; Thilo Heinken; Petr Petřík; Martin Kopecký; Martin Kopecký; María Mercedes Carón; Marek Malicki; Marek Malicki; Balázs Teleki; Thomas A. Nagel; František Máliš; Michael P. Perring; Michael P. Perring;handle: 11336/157745 , 1854/LU-8746181
Abstract Woody species' requirements and environmental sensitivity change from seedlings to adults, a process referred to as ontogenetic shift. Such shifts can be increased by climate change. To assess the changes in the difference of temperature experienced by seedlings and adults in the context of climate change, it is essential to have reliable climatic data over long periods that capture the thermal conditions experienced by the individuals throughout their life cycle. Here we used a unique cross‐European database of 2,195 pairs of resurveyed forest plots with a mean intercensus time interval of 37 years. We inferred macroclimatic temperature (free‐air conditions above tree canopies—representative of the conditions experienced by adult trees) and microclimatic temperature (representative of the juvenile stage at the forest floor, inferred from the relationship between canopy cover, distance to the coast and below‐canopy temperature) at both surveys. We then address the long‐term, large‐scale and multitaxa dynamics of the difference between the temperatures experienced by adults and juveniles of 25 temperate tree species. We found significant, but species‐specific, variations in the perceived temperature (calculated from presence/absence data) between life stages during both surveys. Additionally, the difference of the temperature experienced by the adult versus juveniles significantly increased between surveys for 8 of 25 species. We found evidence of a relationship between the difference of temperature experienced by juveniles and adults over time and one key functional trait (i.e. leaf area). Together, these results suggest that the temperatures experienced by adults versus juveniles became more decoupled over time for a subset of species, probably due to the combination of climate change and a recorded increase of canopy cover between the surveys resulting in higher rates of macroclimate than microclimate warming. Synthesis. We document warming and canopy‐cover induced changes in the difference of the temperature experienced by juveniles and adults. These findings have implications for forest management adaptation to climate change such as the promotion of tree regeneration by creating suitable species‐specific microclimatic conditions. Such adaptive management will help to mitigate the macroclimate change in the understorey layer.
NERC Open Research A... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesJournal of EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13773&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the Czech Academy of SciencesArticle . 2021Data sources: Repository of the Czech Academy of SciencesJournal of EcologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2021Data sources: Ghent University Academic BibliographyNatural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13773&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 United Kingdom, France, Germany, Netherlands, France, Belgium, Czech Republic, France, Czech RepublicPublisher:Wiley Monika Wulf; Ilze Liepiņa; Kris Verheyen; Haben Blondeel; Simon M. Smart; Sybryn L. Maes; Radosław Gawryś; Thilo Heinken; Jörg Brunet; Werner Härdtle; Emiel De Lombaerde; Karol Ujházy; Guillaume Decocq; Michael P. Perring; Michael P. Perring; Steffi Heinrichs; Bogdan Jaroszewicz; Leen Depauw; František Máliš; Dries Landuyt; Wolfgang Schmidt; Radim Hédl; Jan den Ouden; Janusz Czerepko; Guntis Brūmelis; Déborah Closset-Kopp; Martin Macek; Martin Kopecký; Martin Kopecký;handle: 1854/LU-8639585
Abstract A central challenge of today's ecological research is predicting how ecosystems will develop under future global change. Accurate predictions are complicated by (a) simultaneous effects of different drivers, such as climate change, nitrogen deposition and management changes; and (b) legacy effects from previous land use. We tested whether herb layer biodiversity (i.e. richness, Shannon diversity and evenness) and functional (i.e. herb cover, specific leaf area [SLA] and plant height) responses to environmental change drivers depended on land‐use history. We used resurvey data from 192 plots across nineteen European temperate forest regions, with large spatial variability in environmental change factors. We tested for interactions between land‐use history, distinguishing ancient and recent (i.e. post‐agricultural) forests and four drivers: temperature, nitrogen deposition, and aridity at the regional scale and light dynamics at the plot‐scale. Land‐use history significantly modulated global change effects on the functional signature of the herb layer (i.e. cover, SLA and plant height). Light availability was the main environmental driver of change interacting with land‐use history. We found greater herb cover and plant height decreases and SLA increases with decreasing light availability in ancient than in recent forests. Furthermore, we found greater decreases in herb cover with increased nitrogen deposition in ancient forests, whereas warming had the strongest decreasing effect on the herb cover in recent forests. Interactive effects between land‐use history and global change on biodiversity were not found, but species evenness increased more in ancient than in recent forests. Synthesis. Our results demonstrate that land‐use history should not be overlooked when predicting forest herb layer responses to global change. Moreover, we found that herb layer composition in semi‐natural deciduous forests is mainly controlled by local canopy characteristics, regulating light levels at the forest floor, and much less by environmental changes at the regional scale (here: warming, nitrogen deposition and aridity). The observed disconnect between biodiversity and functional herb layer responses to environmental changes demonstrates the importance of assessing both types of responses to increase our understanding of the possible impact of global change on the herb layer.
Journal of Ecology arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesJournal of EcologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic BibliographyNatural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 62 citations 62 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Ecology arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesJournal of EcologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic BibliographyNatural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2745.13339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United Kingdom, Slovenia, Belgium, Germany, Netherlands, Belgium, SloveniaPublisher:American Association for the Advancement of Science (AAAS) Funded by:EC | eLTER PLUS, DFG | German Centre for Integra..., SNSF | Climate change impacts on... +1 projectsEC| eLTER PLUS ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,SNSF| Climate change impacts on biodiversity: From macro- to microclimate ,EC| FORMICAPieter Sanczuk; Kris Verheyen; Jonathan Lenoir; Florian Zellweger; Jonas J. Lembrechts; Francisco Rodríguez-Sánchez; Lander Baeten; Markus Bernhardt-Römermann; Karen De Pauw; Pieter Vangansbeke; Michael P. Perring; Imre Berki; Anne D. Bjorkman; Jörg Brunet; Markéta Chudomelová; Emiel De Lombaerde; Guillaume Decocq; Thomas Dirnböck; Tomasz Durak; Caroline Greiser; Radim Hédl; Thilo Heinken; Ute Jandt; Bogdan Jaroszewicz; Martin Kopecký; Dries Landuyt; Martin Macek; František Máliš; Tobias Naaf; Thomas A. Nagel; Petr Petřík; Kamila Reczyńska; Wolfgang Schmidt; Tibor Standovár; Ingmar R. Staude; Krzysztof Świerkosz; Balázs Teleki; Thomas Vanneste; Ondrej Vild; Donald Waller; Pieter De Frenne;Climate change is commonly assumed to induce species’ range shifts toward the poles. Yet, other environmental changes may affect the geographical distribution of species in unexpected ways. Here, we quantify multidecadal shifts in the distribution of European forest plants and link these shifts to key drivers of forest biodiversity change: climate change, atmospheric deposition (nitrogen and sulfur), and forest canopy dynamics. Surprisingly, westward distribution shifts were 2.6 times more likely than northward ones. Not climate change, but nitrogen-mediated colonization events, possibly facilitated by the recovery from past acidifying deposition, best explain westward movements. Biodiversity redistribution patterns appear complex and are more likely driven by the interplay among several environmental changes than due to the exclusive effects of climate change alone.
NERC Open Research A... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2024Institutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenGhent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.ado0878&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Publikationenserver der Georg-August-Universität GöttingenArticle . 2024Institutional Repository Universiteit AntwerpenArticle . 2024Data sources: Institutional Repository Universiteit AntwerpenGhent University Academic BibliographyArticle . 2024Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.ado0878&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu