- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Rafail Isemin; Alexander Mikhalev; Dmitry Klimov; Panagiotis Grammelis; Nikolaos Margaritis; Dimitrios-Sotirios Kourkoumpas; Viktor Zaichenko;Abstract The purpose of this paper is to investigate the preconditions required for the development of a novel technology for simultaneous combustion of coal waste, and biomass. This technology integrates pellet production from a coal and biomass mixture and torrefaction of the produced pellets in low oxygen environment in a temperature range between 230 and 270 °C. The results indicate that the torrefied pellets have 17% higher calorific value and 1.55 times lower hygroscopicity limit when compared to the untreated pellets. Thus, the major advantages of the torrefied pellets produced from a mixture of coal and biomass refer to outdoor storage and the increase of boiler’s combustion efficiency by 5%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2017.09.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2017.09.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Funded by:GSRIGSRINorbert Kienzl; Nikolaos Margaritis; Rafail Isemin; Victor Zaychenko; Christoph Strasser; Dimitrios-Sotirios Kourkoumpas; Panagiotis Grammelis; Dmitry Klimov; Olga Larina; George Sytchev; Aleksandr Mikhalev;The aim of this paper is to test the applicability of upgraded agricultural biomass feedstock such as torrefied sunflower husks during combustion in small and medium heating applications. Sunflower husk is formed in large quantities at enterprises producing sunflower oil and can be used as biofuel. However, big problems arise due to the low bulk density of husks and the rapid growth of ash deposits on the heating surfaces of boilers. In order to solve these problems, it was proposed to produce pellets from husks, and to subject these pellets to torrefaction. After torrefaction, net calorific value was increased by 29% while the risk of high temperature corrosion of boilers was reduced. Signs of ash softening neither occurred in combustion of raw nor in combustion of torrefied sunflower husk pellets. High aerosol emissions, already present in raw sunflower husk pellets, could not be mitigated by torrefaction. First combustion results at medium scale furnaces indicated that sunflower husk pellets (both raw and torrefied) in a commercial boiler < 400 kW, operated in a mode with low primary zone temperatures (< 850 °C), meet current emission limits. Regarding the future upcoming emission limits according to the European Medium Combustion Plant Directive, additional measures are required in order to comply with the dust limits.
Waste and Biomass Va... arrow_drop_down Waste and Biomass ValorizationArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12649-020-01170-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Waste and Biomass Va... arrow_drop_down Waste and Biomass ValorizationArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12649-020-01170-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Rafail Isemin; Natalia Muratova; Sergey Kuzmin; Dmitry Klimov; Vadim Kokh-Tatarenko; Alexander Mikhalev; Oleg Milovanov; Antoine Dalibard; Olayinka Ahmed Ibitowa; Manuel Nowotny; Mathieu Brulé; Fouzi Tabet; Bernd Rogge;doi: 10.3390/pr9112082
Poultry farms with floor-standing poultry generate large amounts of poultry litter waste. The direct application of this waste as an organic fertilizer does not ensure sustainable and cost-efficient utilization of all waste fractions, and can also be linked to environmental hazards. Therefore, the development of new technologies is required for processing poultry litter into a safe product with higher added value. In this work, the characteristics of activated carbon derived from hydrochar, along with the liquid products obtained from hydrothermal carbonization (HTC) and the wet torrefaction (WT) of poultry litter, were investigated. Poultry litter (PL) was applied in a mixture with sawdust (SD) in the following ratios: 1:0 (PL/SD 1:0), 1:1 (PL/SD 1:1), 1:2 (PL/SD 1:2), and 2:1 (PL/SD 2:1). WT processing took place in an innovative fluidized bed system in a superheated steam medium with low overpressure (less than 0.07 MPa) at 300 °C and 350 °C for 30–45 min. Conventional HTC processing was performed in a water medium at 220 °C for 1–4 h. The hydrochar produced in the experiments was activated with steam for 1 h at 450–750 °C. The porosity characteristics of activated hydrochar were measured, including pore size, pore volume, and specific surface area, in view of potential industrial applications as an adsorbent. Additionally, the contents of 5-hydroxymethylfurfural (HMF), as high-value product, were determined in the liquid products obtained from HTC processing, as well as in the condensate obtained after WT processing. Specific surface areas of the activated hydrochars may still be too low for application as adsorbent material. Hence, its use as a biofertilizer and soil improver should be preferred. Interestingly, the liquid fraction obtained from the innovative WT process displayed a significantly higher 5-HMF content compared to the conventional HTC process.
Processes arrow_drop_down ProcessesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2227-9717/9/11/2082/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr9112082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Processes arrow_drop_down ProcessesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2227-9717/9/11/2082/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr9112082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Oleg Milovanov; Dmitry Klimov; G A Sytchev; Rafail Isemin; Olga Larina; Victor Zaichenko;Abstract The problem of waste recycling becomes more serious every year. As the population grows, the amount of organic bio-waste is increased proportionally. Even the subsequent energy utilization of such bio-waste leaves a huge amount of unprocessed organic mass, as in the case of anaerobic digestion. In this paper, the results of experimental studies of the torrefaction of sewage sludge and animal waste (mixture of horse manure and crop waste) after anaerobic digestion are presented. The aim of this work was to investigate the possibility of applying torrefaction to improve the thermotechnical properties of bio-waste products. The research results showed that the torrefaction allows to improve heating value and hygroscopicity, but with increasing of process temperature these values grow insignificantly. In addition, the conclusion about the ash content value of the bio-waste in which it is effectually to apply torrefaction treatment was made.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2019.01.119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2019.01.119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Rafail Isemin; Fouzi Tabet; Artemy Nebyvaev; Vadim Kokh-Tatarenko; Sergey Kuzmin; Oleg Milovanov; Dmitry Klimov; Alexander Mikhalev; Semen Dobkin; Yuri Zhulaev;doi: 10.3390/en15207483
Biomass can be considered an alternative to coal in the production of heat and electricity. Many types of biomass are waste from agriculture and the food industry. This waste is cheap, readily available, and replenished annually. However, most agricultural and food industry wastes (sugar cane pulp, olive and sunflower oil production wastes, straw, etc.) have ash with a low melting point. This leads to a rapid growth of ash deposits on the heating surfaces of boilers; as a result, the actual efficiency of boilers in which waste from agriculture and the food industry is burned is 45–50%. Known biomass pre-treatment technologies that allow for the fuel characteristics of biowaste. For example, leaching of biowaste in water at a temperature of 80–240 °C makes it possible to drastically reduce the content of alkali metal compounds in the ash, the presence of which reduces the melting point of the ash. However, this biomass pre-treatment technology is complex and requires additional costs for drying the treated biomass. We proposed to use torrefaction for pre-treatment of biomass, which makes it possible to increase the heat of combustion of biomass, increase the hydrophobicity of biomass, and reduce the cost of grinding it. However, we are not aware of studies that have studied the effect of torrefaction on the chemical composition of ash from the point of view of solving the problem of preventing the formation of agglomerates and reducing the growth rate of ash deposits on the convective heating surfaces of boilers. In this paper, the characteristics of sunflower husk subjected to torrefaction in an environment of superheated steam at a temperature of 300 °C and in an environment of gaseous products at a temperature of 250 °C are studied. All experiments were conducted using fluidized bed technology. The resulting biochar has a calorific value of 14.8–23% higher than the initial husk. To assess the behavior of sunflower husk ash, predictive coefficients were calculated. Torrefaction of sunflower husks does not exclude the possibility of slagging of the furnace but reduces the likelihood of slagging by 2.31–7.27 times. According to calculations, the torrefaction of sunflower husks reduces the likelihood of ash deposits on the convective heating surfaces of the boiler by 2.1–12.2 times. According to its fuel characteristics, the husk, after torrefaction in an environment of superheated steam, approaches wood waste, i.e., can be burned separately without additives or mixtures with other fuels with refractory ash.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/20/7483/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15207483&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/20/7483/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15207483&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Rafail Isemin; Alexander Mikhalev; Oleg Milovanov; Artemy Nebyvaev;doi: 10.3390/en15072414
Poultry litter mass is formed in large quantities at poultry farms producing poultry meat (1–3 kg of litter mass per 1 kg of produced meat). These wastes represent a threat to the environment because of the presence of pathogenic microflora in them and the greenhouse gas emitted during the storage of these wastes. The procedure of poultry litter mass processing by wet torrefaction in a superheated water vapor environment at a temperature of 150–260 °C is studied. It is shown that after torrefaction at a temperature of 150 °C, the poultry litter mass retains high humidity, i.e., it represents an environment suitable for the re-development of pathogenic microflora. Only after wet torrefaction at a temperature of 260 °C does the humidity of the poultry litter mass decreases to 4%, and the risk of re-infection with pathogenic microflora decreases sharply. The absence of nitrates in the samples after torrefaction at a temperature of 260 °C indicates the termination of the activity of nitrifying bacteria. After torrefaction at a temperature of 260 °C, the poultry litter mass has a pH close to 7. This increases the mobility and availability of microelements for plants. Torrefaction at a temperature of 260 °C increases the content of ash, phosphorus and potassium by 30–40% and nitrogen by 15–20%, which makes the fertilizer more concentrated and optimizes the ratio of nitrogen, phosphorus and potassium. After wet torrefaction, due to the burning of the most easily degradable nitrogen-containing organic compounds and the destruction of some organophosphorus compounds, the mobility of nitrogen decreases, and the mobility of phosphorus increases. As a result of the research, it was found that the treatment of poultry manure by wet torrefaction in an environment of superheated water vapor at a temperature not lower than 260 °C makes it possible to obtain organic fertilizer with the most optimal nutrient content.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/7/2414/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/7/2414/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Rafail Isemin; Alexander Mikhalev; Oleg Milovanov; Dmitry Klimov; Vadim Kokh-Tatarenko; Mathieu Brulé; Fouzi Tabet; Artemy Nebyvaev; Sergey Kuzmin; Valentin Konyakhin;doi: 10.3390/en15062153
Torrefaction is a technology for the preliminary thermochemical treatment of biomass in order to improve its fuel characteristics. The aim of this work is to conduct comparative studies and select the optimal operating conditions of fluidized bed torrefaction for the processing of poultry litter (PL) into an environmentally friendly fuel. PL torrefaction was evaluated according to three different process configurations: (1) torrefaction of PL pellets in a fixed bed in a nitrogen medium at temperatures of 250 °C, 300 °C and 350 °C (NT1, NT2 and NT3); (2) torrefaction of PL pellets in a fluidized bed of quartz sand in a nitrogen medium at temperatures of 250 °C, 300 °C and 350 °C (NT4, NT5 and NT6); and (3) torrefaction of PL pellets in a fluidized bed of quartz sand in an environment of superheated steam at temperatures of 250 °C, 300 °C and 350 °C (ST1, ST2 and ST3). The duration of the torrefaction process in all experiments was determined by the time required for completion of CO2, CO, H2, and CH4 release from the treated biomass samples. The gas analyzer (Vario Plus Syngaz) was used to measure the concentration of these gases. The torrefaction process began from the moment of loading the PL sample into the reactor, which was heated to the required temperature. After the start of the torrefaction process, the concentration of CO2, CO, H2, and CH4 in the gases leaving the reactor initially increased and, subsequently, dropped sharply, indicating the completion of the torrefaction process. The chemical composition of the obtained biochar was studied, and it was found that the biochar contained approximately equal amounts of oxygen, carbon, nitrogen, hydrogen and ash, regardless of the torrefaction method. Furthermore, the biogas yield of the liquid condensate, obtained from the cooling of superheated steam used in the torrefaction process, was evaluated. The results highlight the efficiency of fluidized bed torrefaction, as well as the performance of superheated steam as a fluidization medium.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/6/2153/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15062153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/6/2153/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15062153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Oleg Milovanov; Dmitry Klimov; Sergey Kuzmin; Sergey Grigoriev; Alexander Mikhalev; Rafail Isemin; Mathieu Brulé;doi: 10.3390/en17184643
Sunflower husk (SFH) contributes 45–60% of the total sunflower seed weight and is a by-product of the sunflower oil industry. Among other elements, SFH ash contains K, Na, Ca and Mg. These elements cause rapid growth of ash deposits on convective heating surfaces of the boiler, resulting in reduced efficiency. The aim of this paper is to examine the possibility of producing quality fuel from SFH by its pretreatment with the technique of torrefaction in a fluidized bed in superheated water vapor. Continuous monitoring of the innovative SFH torrefaction process allowed for the determination of optimal process durations. SFH could be converted into a biofuel, having high calorific value and suitable characteristics for co-combustion with coal. Furthermore, the torrefaction in a fluidized bed of superheated water vapor allowed for a 6-fold reduction in the required process duration in comparison with data reported from the literature for the process of torrefaction in a dense bed, along with a 3-fold reduction in the chlorine content in SFH ash. These effects are beneficial to resolve the problem of corrosion on convective heating surfaces of boilers. However, torrefaction in superheated water vapor did not significantly reduce the content of alkaline and alkaline-earth elements in SFH ash. Still, this issue may be alleviated by significantly increasing the duration of SFH pretreatment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17184643&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17184643&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Rafail Isemin; Alexander Mikhalev; Dmitry Klimov; Panagiotis Grammelis; Nikolaos Margaritis; Dimitrios-Sotirios Kourkoumpas; Viktor Zaichenko;Abstract The purpose of this paper is to investigate the preconditions required for the development of a novel technology for simultaneous combustion of coal waste, and biomass. This technology integrates pellet production from a coal and biomass mixture and torrefaction of the produced pellets in low oxygen environment in a temperature range between 230 and 270 °C. The results indicate that the torrefied pellets have 17% higher calorific value and 1.55 times lower hygroscopicity limit when compared to the untreated pellets. Thus, the major advantages of the torrefied pellets produced from a mixture of coal and biomass refer to outdoor storage and the increase of boiler’s combustion efficiency by 5%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2017.09.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2017.09.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Funded by:GSRIGSRINorbert Kienzl; Nikolaos Margaritis; Rafail Isemin; Victor Zaychenko; Christoph Strasser; Dimitrios-Sotirios Kourkoumpas; Panagiotis Grammelis; Dmitry Klimov; Olga Larina; George Sytchev; Aleksandr Mikhalev;The aim of this paper is to test the applicability of upgraded agricultural biomass feedstock such as torrefied sunflower husks during combustion in small and medium heating applications. Sunflower husk is formed in large quantities at enterprises producing sunflower oil and can be used as biofuel. However, big problems arise due to the low bulk density of husks and the rapid growth of ash deposits on the heating surfaces of boilers. In order to solve these problems, it was proposed to produce pellets from husks, and to subject these pellets to torrefaction. After torrefaction, net calorific value was increased by 29% while the risk of high temperature corrosion of boilers was reduced. Signs of ash softening neither occurred in combustion of raw nor in combustion of torrefied sunflower husk pellets. High aerosol emissions, already present in raw sunflower husk pellets, could not be mitigated by torrefaction. First combustion results at medium scale furnaces indicated that sunflower husk pellets (both raw and torrefied) in a commercial boiler < 400 kW, operated in a mode with low primary zone temperatures (< 850 °C), meet current emission limits. Regarding the future upcoming emission limits according to the European Medium Combustion Plant Directive, additional measures are required in order to comply with the dust limits.
Waste and Biomass Va... arrow_drop_down Waste and Biomass ValorizationArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12649-020-01170-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Waste and Biomass Va... arrow_drop_down Waste and Biomass ValorizationArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12649-020-01170-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Rafail Isemin; Natalia Muratova; Sergey Kuzmin; Dmitry Klimov; Vadim Kokh-Tatarenko; Alexander Mikhalev; Oleg Milovanov; Antoine Dalibard; Olayinka Ahmed Ibitowa; Manuel Nowotny; Mathieu Brulé; Fouzi Tabet; Bernd Rogge;doi: 10.3390/pr9112082
Poultry farms with floor-standing poultry generate large amounts of poultry litter waste. The direct application of this waste as an organic fertilizer does not ensure sustainable and cost-efficient utilization of all waste fractions, and can also be linked to environmental hazards. Therefore, the development of new technologies is required for processing poultry litter into a safe product with higher added value. In this work, the characteristics of activated carbon derived from hydrochar, along with the liquid products obtained from hydrothermal carbonization (HTC) and the wet torrefaction (WT) of poultry litter, were investigated. Poultry litter (PL) was applied in a mixture with sawdust (SD) in the following ratios: 1:0 (PL/SD 1:0), 1:1 (PL/SD 1:1), 1:2 (PL/SD 1:2), and 2:1 (PL/SD 2:1). WT processing took place in an innovative fluidized bed system in a superheated steam medium with low overpressure (less than 0.07 MPa) at 300 °C and 350 °C for 30–45 min. Conventional HTC processing was performed in a water medium at 220 °C for 1–4 h. The hydrochar produced in the experiments was activated with steam for 1 h at 450–750 °C. The porosity characteristics of activated hydrochar were measured, including pore size, pore volume, and specific surface area, in view of potential industrial applications as an adsorbent. Additionally, the contents of 5-hydroxymethylfurfural (HMF), as high-value product, were determined in the liquid products obtained from HTC processing, as well as in the condensate obtained after WT processing. Specific surface areas of the activated hydrochars may still be too low for application as adsorbent material. Hence, its use as a biofertilizer and soil improver should be preferred. Interestingly, the liquid fraction obtained from the innovative WT process displayed a significantly higher 5-HMF content compared to the conventional HTC process.
Processes arrow_drop_down ProcessesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2227-9717/9/11/2082/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr9112082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Processes arrow_drop_down ProcessesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2227-9717/9/11/2082/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/pr9112082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Oleg Milovanov; Dmitry Klimov; G A Sytchev; Rafail Isemin; Olga Larina; Victor Zaichenko;Abstract The problem of waste recycling becomes more serious every year. As the population grows, the amount of organic bio-waste is increased proportionally. Even the subsequent energy utilization of such bio-waste leaves a huge amount of unprocessed organic mass, as in the case of anaerobic digestion. In this paper, the results of experimental studies of the torrefaction of sewage sludge and animal waste (mixture of horse manure and crop waste) after anaerobic digestion are presented. The aim of this work was to investigate the possibility of applying torrefaction to improve the thermotechnical properties of bio-waste products. The research results showed that the torrefaction allows to improve heating value and hygroscopicity, but with increasing of process temperature these values grow insignificantly. In addition, the conclusion about the ash content value of the bio-waste in which it is effectually to apply torrefaction treatment was made.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2019.01.119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2019.01.119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Rafail Isemin; Fouzi Tabet; Artemy Nebyvaev; Vadim Kokh-Tatarenko; Sergey Kuzmin; Oleg Milovanov; Dmitry Klimov; Alexander Mikhalev; Semen Dobkin; Yuri Zhulaev;doi: 10.3390/en15207483
Biomass can be considered an alternative to coal in the production of heat and electricity. Many types of biomass are waste from agriculture and the food industry. This waste is cheap, readily available, and replenished annually. However, most agricultural and food industry wastes (sugar cane pulp, olive and sunflower oil production wastes, straw, etc.) have ash with a low melting point. This leads to a rapid growth of ash deposits on the heating surfaces of boilers; as a result, the actual efficiency of boilers in which waste from agriculture and the food industry is burned is 45–50%. Known biomass pre-treatment technologies that allow for the fuel characteristics of biowaste. For example, leaching of biowaste in water at a temperature of 80–240 °C makes it possible to drastically reduce the content of alkali metal compounds in the ash, the presence of which reduces the melting point of the ash. However, this biomass pre-treatment technology is complex and requires additional costs for drying the treated biomass. We proposed to use torrefaction for pre-treatment of biomass, which makes it possible to increase the heat of combustion of biomass, increase the hydrophobicity of biomass, and reduce the cost of grinding it. However, we are not aware of studies that have studied the effect of torrefaction on the chemical composition of ash from the point of view of solving the problem of preventing the formation of agglomerates and reducing the growth rate of ash deposits on the convective heating surfaces of boilers. In this paper, the characteristics of sunflower husk subjected to torrefaction in an environment of superheated steam at a temperature of 300 °C and in an environment of gaseous products at a temperature of 250 °C are studied. All experiments were conducted using fluidized bed technology. The resulting biochar has a calorific value of 14.8–23% higher than the initial husk. To assess the behavior of sunflower husk ash, predictive coefficients were calculated. Torrefaction of sunflower husks does not exclude the possibility of slagging of the furnace but reduces the likelihood of slagging by 2.31–7.27 times. According to calculations, the torrefaction of sunflower husks reduces the likelihood of ash deposits on the convective heating surfaces of the boiler by 2.1–12.2 times. According to its fuel characteristics, the husk, after torrefaction in an environment of superheated steam, approaches wood waste, i.e., can be burned separately without additives or mixtures with other fuels with refractory ash.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/20/7483/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15207483&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/20/7483/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15207483&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Rafail Isemin; Alexander Mikhalev; Oleg Milovanov; Artemy Nebyvaev;doi: 10.3390/en15072414
Poultry litter mass is formed in large quantities at poultry farms producing poultry meat (1–3 kg of litter mass per 1 kg of produced meat). These wastes represent a threat to the environment because of the presence of pathogenic microflora in them and the greenhouse gas emitted during the storage of these wastes. The procedure of poultry litter mass processing by wet torrefaction in a superheated water vapor environment at a temperature of 150–260 °C is studied. It is shown that after torrefaction at a temperature of 150 °C, the poultry litter mass retains high humidity, i.e., it represents an environment suitable for the re-development of pathogenic microflora. Only after wet torrefaction at a temperature of 260 °C does the humidity of the poultry litter mass decreases to 4%, and the risk of re-infection with pathogenic microflora decreases sharply. The absence of nitrates in the samples after torrefaction at a temperature of 260 °C indicates the termination of the activity of nitrifying bacteria. After torrefaction at a temperature of 260 °C, the poultry litter mass has a pH close to 7. This increases the mobility and availability of microelements for plants. Torrefaction at a temperature of 260 °C increases the content of ash, phosphorus and potassium by 30–40% and nitrogen by 15–20%, which makes the fertilizer more concentrated and optimizes the ratio of nitrogen, phosphorus and potassium. After wet torrefaction, due to the burning of the most easily degradable nitrogen-containing organic compounds and the destruction of some organophosphorus compounds, the mobility of nitrogen decreases, and the mobility of phosphorus increases. As a result of the research, it was found that the treatment of poultry manure by wet torrefaction in an environment of superheated water vapor at a temperature not lower than 260 °C makes it possible to obtain organic fertilizer with the most optimal nutrient content.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/7/2414/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/7/2414/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Rafail Isemin; Alexander Mikhalev; Oleg Milovanov; Dmitry Klimov; Vadim Kokh-Tatarenko; Mathieu Brulé; Fouzi Tabet; Artemy Nebyvaev; Sergey Kuzmin; Valentin Konyakhin;doi: 10.3390/en15062153
Torrefaction is a technology for the preliminary thermochemical treatment of biomass in order to improve its fuel characteristics. The aim of this work is to conduct comparative studies and select the optimal operating conditions of fluidized bed torrefaction for the processing of poultry litter (PL) into an environmentally friendly fuel. PL torrefaction was evaluated according to three different process configurations: (1) torrefaction of PL pellets in a fixed bed in a nitrogen medium at temperatures of 250 °C, 300 °C and 350 °C (NT1, NT2 and NT3); (2) torrefaction of PL pellets in a fluidized bed of quartz sand in a nitrogen medium at temperatures of 250 °C, 300 °C and 350 °C (NT4, NT5 and NT6); and (3) torrefaction of PL pellets in a fluidized bed of quartz sand in an environment of superheated steam at temperatures of 250 °C, 300 °C and 350 °C (ST1, ST2 and ST3). The duration of the torrefaction process in all experiments was determined by the time required for completion of CO2, CO, H2, and CH4 release from the treated biomass samples. The gas analyzer (Vario Plus Syngaz) was used to measure the concentration of these gases. The torrefaction process began from the moment of loading the PL sample into the reactor, which was heated to the required temperature. After the start of the torrefaction process, the concentration of CO2, CO, H2, and CH4 in the gases leaving the reactor initially increased and, subsequently, dropped sharply, indicating the completion of the torrefaction process. The chemical composition of the obtained biochar was studied, and it was found that the biochar contained approximately equal amounts of oxygen, carbon, nitrogen, hydrogen and ash, regardless of the torrefaction method. Furthermore, the biogas yield of the liquid condensate, obtained from the cooling of superheated steam used in the torrefaction process, was evaluated. The results highlight the efficiency of fluidized bed torrefaction, as well as the performance of superheated steam as a fluidization medium.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/6/2153/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15062153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/6/2153/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15062153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Oleg Milovanov; Dmitry Klimov; Sergey Kuzmin; Sergey Grigoriev; Alexander Mikhalev; Rafail Isemin; Mathieu Brulé;doi: 10.3390/en17184643
Sunflower husk (SFH) contributes 45–60% of the total sunflower seed weight and is a by-product of the sunflower oil industry. Among other elements, SFH ash contains K, Na, Ca and Mg. These elements cause rapid growth of ash deposits on convective heating surfaces of the boiler, resulting in reduced efficiency. The aim of this paper is to examine the possibility of producing quality fuel from SFH by its pretreatment with the technique of torrefaction in a fluidized bed in superheated water vapor. Continuous monitoring of the innovative SFH torrefaction process allowed for the determination of optimal process durations. SFH could be converted into a biofuel, having high calorific value and suitable characteristics for co-combustion with coal. Furthermore, the torrefaction in a fluidized bed of superheated water vapor allowed for a 6-fold reduction in the required process duration in comparison with data reported from the literature for the process of torrefaction in a dense bed, along with a 3-fold reduction in the chlorine content in SFH ash. These effects are beneficial to resolve the problem of corrosion on convective heating surfaces of boilers. However, torrefaction in superheated water vapor did not significantly reduce the content of alkaline and alkaline-earth elements in SFH ash. Still, this issue may be alleviated by significantly increasing the duration of SFH pretreatment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17184643&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17184643&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu