- home
- Advanced Search
- Energy Research
- Energy Research
Research data keyboard_double_arrow_right Dataset 2018Publisher:PANGAEA Raes, Eric J; Bodrossy, Levente; Van De Kamp, Jodie; Bissett, Andrew; Ostrowski, Martin; Brown, Mark; Sow, Swan Li San; Sloyan, Bernardette; Waite, Anya M;B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2018License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.887801&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2018License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.887801&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 Switzerland, AustraliaPublisher:Springer Science and Business Media LLC Malcolm Robb; Anthony J. Richardson; Anthony J. Richardson; Iain M. Suthers; Christine Crawford; Daniel P. Harrison; Kerrie M. Swadling; Kerrie M. Swadling; Sophie C. Leterme; Martina A. Doblin; Sarah A. Pausina; Sarah A. Pausina; Paul G. Thomson; Nicole L. Patten; Emily Ann Saeck; Peter Scanes; Christel S. Hassler; Anya M. Waite; Anya M. Waite; Peter C. Rothlisberg; Jason D. Everett; Julian Uribe-Palomino; Mark E. Baird; Simon W. Wright; Jason Beard; Jocelyn Dela-Cruz; Natasha Henschke; Penelope A. Ajani; Roger Proctor; Peter Coad; Renee Patten; Ian Jameson; John K. Keesing; Andrew Moss; Miles Furnas; Linda Armbrecht; Claire H. Davies; Samantha Talbot; Margaret Miller; T Ingleton; Michele A. Burford; Steven Edgar; Peter A. Thompson; James McLaughlin; Lesley Clementson; Xavier Hoenner; S. Nayar; Ruth Eriksen; Ruth Eriksen; Eric J Raes; Eric J Raes; David B. Moffatt; Paul D. van Ruth; Natalia Atkins; P. Bonham;AbstractChlorophyll a is the most commonly used indicator of phytoplankton biomass in the marine environment. It is relatively simple and cost effective to measure when compared to phytoplankton abundance and is thus routinely included in many surveys. Here we collate 173, 333 records of chlorophyll a collected since 1965 from Australian waters gathered from researchers on regular coastal monitoring surveys and ocean voyages into a single repository. This dataset includes the chlorophyll a values as measured from samples analysed using spectrophotometry, fluorometry and high performance liquid chromatography (HPLC). The Australian Chlorophyll a database is freely available through the Australian Ocean Data Network portal (https://portal.aodn.org.au/). These data can be used in isolation as an index of phytoplankton biomass or in combination with other data to provide insight into water quality, ecosystem state, and relationships with other trophic levels such as zooplankton or fish.
Scientific Data arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10072/383751Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2018Full-Text: http://hdl.handle.net/2440/119016Data sources: Bielefeld Academic Search Engine (BASE)Flinders Academic Commons (FAC - Flinders University)Article . 2018License: CC BYFull-Text: http://hdl.handle.net/2328/37783Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/sdata.2018.18&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Scientific Data arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10072/383751Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2018Full-Text: http://hdl.handle.net/2440/119016Data sources: Bielefeld Academic Search Engine (BASE)Flinders Academic Commons (FAC - Flinders University)Article . 2018License: CC BYFull-Text: http://hdl.handle.net/2328/37783Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/sdata.2018.18&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 France, France, France, Germany, France, FrancePublisher:Frontiers Media SA Funded by:ANR | TAD, EC | TRIATLASANR| TAD ,EC| TRIATLASLaetitia Drago; Thelma Panaïotis; Jean-Olivier Irisson; Marcel Babin; Tristan Biard; François Carlotti; François Carlotti; Laurent Coppola; Laurent Coppola; Lionel Guidi; Helena Hauss; Lee Karp-Boss; Fabien Lombard; Fabien Lombard; Andrew M. P. McDonnell; Marc Picheral; Andreas Rogge; Anya M. Waite; Lars Stemmann; Rainer Kiko;Zooplankton plays a major role in ocean food webs and biogeochemical cycles, and provides major ecosystem services as a main driver of the biological carbon pump and in sustaining fish communities. Zooplankton is also sensitive to its environment and reacts to its changes. To better understand the importance of zooplankton, and to inform prognostic models that try to represent them, spatially-resolved biomass estimates of key plankton taxa are desirable. In this study we predict, for the first time, the global biomass distribution of 19 zooplankton taxa (1-50 mm Equivalent Spherical Diameter) using observations with the Underwater Vision Profiler 5, a quantitative in situ imaging instrument. After classification of 466,872 organisms from more than 3,549 profiles (0-500 m) obtained between 2008 and 2019 throughout the globe, we estimated their individual biovolumes and converted them to biomass using taxa-specific conversion factors. We then associated these biomass estimates with climatologies of environmental variables (temperature, salinity, oxygen, etc.), to build habitat models using boosted regression trees. The results reveal maximal zooplankton biomass values around 60°N and 55°S as well as minimal values around the oceanic gyres. An increased zooplankton biomass is also predicted for the equator. Global integrated biomass (0-500 m) was estimated at 0.403 PgC. It was largely dominated by Copepoda (35.7%, mostly in polar regions), followed by Eumalacostraca (26.6%) Rhizaria (16.4%, mostly in the intertropical convergence zone). The machine learning approach used here is sensitive to the size of the training set and generates reliable predictions for abundant groups such as Copepoda (R2 ≈ 20-66%) but not for rare ones (Ctenophora, Cnidaria, R2 < 5%). Still, this study offers a first protocol to estimate global, spatially resolved zooplankton biomass and community composition from in situ imaging observations of individual organisms. The underlying dataset covers a period of 10 years while approaches that rely on net samples utilized datasets gathered since the 1960s. Increased use of digital imaging approaches should enable us to obtain zooplankton biomass distribution estimates at basin to global scales in shorter time frames in the future.
OceanRep arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information CenterFrontiers in Marine ScienceArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2022.894372&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert OceanRep arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information CenterFrontiers in Marine ScienceArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2022.894372&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Publisher:PANGAEA Raes, Eric J; Bodrossy, Levente; Van De Kamp, Jodie; Bissett, Andrew; Ostrowski, Martin; Brown, Mark; Sow, Swan Li San; Sloyan, Bernardette; Waite, Anya M;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.887802&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.887802&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 GermanyPublisher:Springer Science and Business Media LLC Wilken-Jon von Appen; Anya M. Waite; Melanie Bergmann; Christina Bienhold; Olaf Boebel; Astrid Bracher; Boris Cisewski; Jonas Hagemann; Mario Hoppema; Morten H. Iversen; Christian Konrad; Thomas Krumpen; Normen Lochthofen; Katja Metfies; Barbara Niehoff; Eva-Maria Nöthig; Autun Purser; Ian Salter; Matthias Schaber; Daniel Scholz; Thomas Soltwedel; Sinhue Torres-Valdes; Claudia Wekerle; Frank Wenzhöfer; Matthias Wietz; Antje Boetius;pmid: 34911949
pmc: PMC8674288
AbstractThe ocean moderates the world’s climate through absorption of heat and carbon, but how much carbon the ocean will continue to absorb remains unknown. The North Atlantic Ocean west (Baffin Bay/Labrador Sea) and east (Fram Strait/Greenland Sea) of Greenland features the most intense absorption of anthropogenic carbon globally; the biological carbon pump (BCP) contributes substantially. As Arctic sea-ice melts, the BCP changes, impacting global climate and other critical ocean attributes (e.g. biodiversity). Full understanding requires year-round observations across a range of ice conditions. Here we present such observations: autonomously collected Eulerian continuous 24-month time-series in Fram Strait. We show that, compared to ice-unaffected conditions, sea-ice derived meltwater stratification slows the BCP by 4 months, a shift from an export to a retention system, with measurable impacts on benthic communities. This has implications for ecosystem dynamics in the future warmer Arctic where the seasonal ice zone is expected to expand.
Nature Communication... arrow_drop_down Electronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-26943-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 47 citations 47 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down Electronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-26943-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Norway, GermanyPublisher:Springer Science and Business Media LLC Funded by:RCN | Topographic control in th..., RCN | iC3 - Centre for ice, Cry...RCN| Topographic control in the Arctic Ocean ,RCN| iC3 - Centre for ice, Cryosphere, Carbon and ClimateCora Hörstmann; Tore Hattermann; Pauline C. Thomé; Pier Luigi Buttigieg; Isidora Morel; Anya M. Waite; Uwe John;pmid: 38431695
pmc: PMC10908816
AbstractClimate change is opening the Arctic Ocean to increasing human impact and ecosystem changes. Arctic fjords, the region’s most productive ecosystems, are sustained by a diverse microbial community at the base of the food web. Here we show that Arctic fjords become more prokaryotic in the picoplankton (0.2–3 µm) with increasing water temperatures. Across 21 fjords, we found that Arctic fjords had proportionally more trophically diverse (autotrophic, mixotrophic, and heterotrophic) picoeukaryotes, while subarctic and temperate fjords had relatively more diverse prokaryotic trophic groups. Modeled oceanographic connectivity between fjords suggested that transport alone would create a smooth gradient in beta diversity largely following the North Atlantic Current and East Greenland Current. Deviations from this suggested that picoeukaryotes had some strong regional patterns in beta diversity that reduced the effect of oceanographic connectivity, while prokaryotes were mainly stopped in their dispersal if strong temperature differences between sites were present. Fjords located in high Arctic regions also generally had very low prokaryotic alpha diversity. Ultimately, warming of Arctic fjords could induce a fundamental shift from more trophic diverse eukaryotic- to prokaryotic-dominated communities, with profound implications for Arctic ecosystem dynamics including their productivity patterns.
OceanRep arrow_drop_down Munin - Open Research ArchiveArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveElectronic Publication Information CenterArticle . 2024Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s42003-024-05946-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert OceanRep arrow_drop_down Munin - Open Research ArchiveArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveElectronic Publication Information CenterArticle . 2024Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s42003-024-05946-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 China (People's Republic of), China (People's Republic of), United Kingdom, China (People's Republic of)Publisher:Wiley Ryan J. Lowe; Anya M. Waite; James L. Falter; Alex S. J. Wyatt; Alex S. J. Wyatt; Stuart Humphries;Nitrate and nitrite (NOx) and phosphate (PO4) dynamics over Ningaloo Reef, Western Australia, are shown to depend on oceanographic forcing of coupled mass transfer limited (MTL) gross uptake and gross release from remineralized oceanic particulate organic matter (POM). Estimates of gross release rates increased significantly with increasing POM uptake and were of the same order as gross uptake rates. Gross uptake rates increased significantly with increasing oceanic concentrations and wave energy dissipation, were 35–80% higher over the reef crest (7–9 mmol NOx m−2 d−1 and 4–5 mmol PO4 m−2 d−1), and were significantly correlated with independent estimates of POM‐mediated gross NOx uptake, supporting both MTL uptake and the strong role of oceanic POM supply. The relative supply of NOx and POM was linked to the seasonal dynamics of a regional current system. In late spring, upwelling associated with seasonally strong equator‐ward winds led to increased NOx concentrations (0.71 ± 0.2 µmol L−1), POM < NOx and the reef was a net nutrient sink (5390 mmol NOx m−1 d−1 and 270 mmol PO4 m−1 d−1). In contrast, during the autumn, NOx was low (0.16 ± 0.06 µmol L−1), but POM > NOx and the reef was a net nutrient source (−7060 mmol NOx m−1 d−1 and −730 mmol PO4 m−1 d−1). The autumn enhancement of oceanic POM supply to the reef can be attributed to a regional phytoplankton bloom associated with acceleration of the oligotrophic Leeuwin Current, which may result in a significant supply of dissolved nutrients to downstream communities.
Limnology and Oceano... arrow_drop_down Limnology and OceanographyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Lincoln: Lincoln RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4319/lo.2012.57.2.0401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Limnology and Oceano... arrow_drop_down Limnology and OceanographyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Lincoln: Lincoln RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4319/lo.2012.57.2.0401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 Australia, Switzerland, GermanyPublisher:Springer Science and Business Media LLC Anthony J. Richardson; Anthony J. Richardson; Jason Ruszczyk; Tim Pritchard; Thomas W. Trull; Thomas W. Trull; Felicity R. McEnnulty; Shauna A. Murray; Christian Lønborg; Alex Coughlan; Tim Ingleton; Anthony Zammit; Steve Brett; Claire H. Davies; Michele A. Burford; Rouna Yauwenas; Richard Brinkman; P. Bonham; Anya M. Waite; Anya M. Waite; Gustaaf M. Hallegraeff; Diane Purcell-Meyerink; David J. Hill; Peter Coad; Margaret Miller; Sophie C. Leterme; A. David McKinnon; Michelle Devlin; Paul G. Thomson; Jocelyn Dela-Cruz; Julian Uribe-Palomino; Eric J Raes; Anita Slotwinski; James McLaughlin; Diana M. Davies; Diana M. Davies; Penelope A. Ajani; Roger Proctor; Natalia Atkins; Christel S. Hassler; Ian Jameson; Linda Armbrecht; Kerrie M. Swadling; Kerrie M. Swadling; Mark Tonks; Lesley Clementson; Steven Edgar; S. Nayar; Renee Patten; Frank Coman; Ruth Eriksen; Ruth Eriksen; Miles Furnas; Katherine Tattersall; Peter A. Thompson; Michael Holmes; David Rissik;pmc: PMC4915276 , PMC5387918
handle: 10072/142615 , 2328/37095
AbstractThere have been many individual phytoplankton datasets collected across Australia since the mid 1900s, but most are unavailable to the research community. We have searched archives, contacted researchers, and scanned the primary and grey literature to collate 3,621,847 records of marine phytoplankton species from Australian waters from 1844 to the present. Many of these are small datasets collected for local questions, but combined they provide over 170 years of data on phytoplankton communities in Australian waters. Units and taxonomy have been standardised, obviously erroneous data removed, and all metadata included. We have lodged this dataset with the Australian Ocean Data Network (http://portal.aodn.org.au/) allowing public access. The Australian Phytoplankton Database will be invaluable for global change studies, as it allows analysis of ecological indicators of climate change and eutrophication (e.g., changes in distribution; diatom:dinoflagellate ratios). In addition, the standardised conversion of abundance records to biomass provides modellers with quantifiable data to initialise and validate ecosystem models of lower marine trophic levels.
Scientific Data arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2016Full-Text: http://doi.org/10.1038/sdata.2016.43Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2016Full-Text: http://hdl.handle.net/10072/142615Data sources: Bielefeld Academic Search Engine (BASE)Flinders Academic Commons (FAC - Flinders University)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/2328/37095Data sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2016Data sources: Electronic Publication Information CenterThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/sdata.2016.43&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Scientific Data arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2016Full-Text: http://doi.org/10.1038/sdata.2016.43Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2016Full-Text: http://hdl.handle.net/10072/142615Data sources: Bielefeld Academic Search Engine (BASE)Flinders Academic Commons (FAC - Flinders University)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/2328/37095Data sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2016Data sources: Electronic Publication Information CenterThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/sdata.2016.43&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2018Publisher:PANGAEA Raes, Eric J; Bodrossy, Levente; Van De Kamp, Jodie; Bissett, Andrew; Ostrowski, Martin; Brown, Mark; Sow, Swan Li San; Sloyan, Bernardette; Waite, Anya M;B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2018License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.887801&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2018License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.887801&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 Switzerland, AustraliaPublisher:Springer Science and Business Media LLC Malcolm Robb; Anthony J. Richardson; Anthony J. Richardson; Iain M. Suthers; Christine Crawford; Daniel P. Harrison; Kerrie M. Swadling; Kerrie M. Swadling; Sophie C. Leterme; Martina A. Doblin; Sarah A. Pausina; Sarah A. Pausina; Paul G. Thomson; Nicole L. Patten; Emily Ann Saeck; Peter Scanes; Christel S. Hassler; Anya M. Waite; Anya M. Waite; Peter C. Rothlisberg; Jason D. Everett; Julian Uribe-Palomino; Mark E. Baird; Simon W. Wright; Jason Beard; Jocelyn Dela-Cruz; Natasha Henschke; Penelope A. Ajani; Roger Proctor; Peter Coad; Renee Patten; Ian Jameson; John K. Keesing; Andrew Moss; Miles Furnas; Linda Armbrecht; Claire H. Davies; Samantha Talbot; Margaret Miller; T Ingleton; Michele A. Burford; Steven Edgar; Peter A. Thompson; James McLaughlin; Lesley Clementson; Xavier Hoenner; S. Nayar; Ruth Eriksen; Ruth Eriksen; Eric J Raes; Eric J Raes; David B. Moffatt; Paul D. van Ruth; Natalia Atkins; P. Bonham;AbstractChlorophyll a is the most commonly used indicator of phytoplankton biomass in the marine environment. It is relatively simple and cost effective to measure when compared to phytoplankton abundance and is thus routinely included in many surveys. Here we collate 173, 333 records of chlorophyll a collected since 1965 from Australian waters gathered from researchers on regular coastal monitoring surveys and ocean voyages into a single repository. This dataset includes the chlorophyll a values as measured from samples analysed using spectrophotometry, fluorometry and high performance liquid chromatography (HPLC). The Australian Chlorophyll a database is freely available through the Australian Ocean Data Network portal (https://portal.aodn.org.au/). These data can be used in isolation as an index of phytoplankton biomass or in combination with other data to provide insight into water quality, ecosystem state, and relationships with other trophic levels such as zooplankton or fish.
Scientific Data arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10072/383751Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2018Full-Text: http://hdl.handle.net/2440/119016Data sources: Bielefeld Academic Search Engine (BASE)Flinders Academic Commons (FAC - Flinders University)Article . 2018License: CC BYFull-Text: http://hdl.handle.net/2328/37783Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/sdata.2018.18&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Scientific Data arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10072/383751Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2018Full-Text: http://hdl.handle.net/2440/119016Data sources: Bielefeld Academic Search Engine (BASE)Flinders Academic Commons (FAC - Flinders University)Article . 2018License: CC BYFull-Text: http://hdl.handle.net/2328/37783Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/sdata.2018.18&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 France, France, France, Germany, France, FrancePublisher:Frontiers Media SA Funded by:ANR | TAD, EC | TRIATLASANR| TAD ,EC| TRIATLASLaetitia Drago; Thelma Panaïotis; Jean-Olivier Irisson; Marcel Babin; Tristan Biard; François Carlotti; François Carlotti; Laurent Coppola; Laurent Coppola; Lionel Guidi; Helena Hauss; Lee Karp-Boss; Fabien Lombard; Fabien Lombard; Andrew M. P. McDonnell; Marc Picheral; Andreas Rogge; Anya M. Waite; Lars Stemmann; Rainer Kiko;Zooplankton plays a major role in ocean food webs and biogeochemical cycles, and provides major ecosystem services as a main driver of the biological carbon pump and in sustaining fish communities. Zooplankton is also sensitive to its environment and reacts to its changes. To better understand the importance of zooplankton, and to inform prognostic models that try to represent them, spatially-resolved biomass estimates of key plankton taxa are desirable. In this study we predict, for the first time, the global biomass distribution of 19 zooplankton taxa (1-50 mm Equivalent Spherical Diameter) using observations with the Underwater Vision Profiler 5, a quantitative in situ imaging instrument. After classification of 466,872 organisms from more than 3,549 profiles (0-500 m) obtained between 2008 and 2019 throughout the globe, we estimated their individual biovolumes and converted them to biomass using taxa-specific conversion factors. We then associated these biomass estimates with climatologies of environmental variables (temperature, salinity, oxygen, etc.), to build habitat models using boosted regression trees. The results reveal maximal zooplankton biomass values around 60°N and 55°S as well as minimal values around the oceanic gyres. An increased zooplankton biomass is also predicted for the equator. Global integrated biomass (0-500 m) was estimated at 0.403 PgC. It was largely dominated by Copepoda (35.7%, mostly in polar regions), followed by Eumalacostraca (26.6%) Rhizaria (16.4%, mostly in the intertropical convergence zone). The machine learning approach used here is sensitive to the size of the training set and generates reliable predictions for abundant groups such as Copepoda (R2 ≈ 20-66%) but not for rare ones (Ctenophora, Cnidaria, R2 < 5%). Still, this study offers a first protocol to estimate global, spatially resolved zooplankton biomass and community composition from in situ imaging observations of individual organisms. The underlying dataset covers a period of 10 years while approaches that rely on net samples utilized datasets gathered since the 1960s. Increased use of digital imaging approaches should enable us to obtain zooplankton biomass distribution estimates at basin to global scales in shorter time frames in the future.
OceanRep arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information CenterFrontiers in Marine ScienceArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2022.894372&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert OceanRep arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information CenterFrontiers in Marine ScienceArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2022.894372&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Publisher:PANGAEA Raes, Eric J; Bodrossy, Levente; Van De Kamp, Jodie; Bissett, Andrew; Ostrowski, Martin; Brown, Mark; Sow, Swan Li San; Sloyan, Bernardette; Waite, Anya M;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.887802&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.887802&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 GermanyPublisher:Springer Science and Business Media LLC Wilken-Jon von Appen; Anya M. Waite; Melanie Bergmann; Christina Bienhold; Olaf Boebel; Astrid Bracher; Boris Cisewski; Jonas Hagemann; Mario Hoppema; Morten H. Iversen; Christian Konrad; Thomas Krumpen; Normen Lochthofen; Katja Metfies; Barbara Niehoff; Eva-Maria Nöthig; Autun Purser; Ian Salter; Matthias Schaber; Daniel Scholz; Thomas Soltwedel; Sinhue Torres-Valdes; Claudia Wekerle; Frank Wenzhöfer; Matthias Wietz; Antje Boetius;pmid: 34911949
pmc: PMC8674288
AbstractThe ocean moderates the world’s climate through absorption of heat and carbon, but how much carbon the ocean will continue to absorb remains unknown. The North Atlantic Ocean west (Baffin Bay/Labrador Sea) and east (Fram Strait/Greenland Sea) of Greenland features the most intense absorption of anthropogenic carbon globally; the biological carbon pump (BCP) contributes substantially. As Arctic sea-ice melts, the BCP changes, impacting global climate and other critical ocean attributes (e.g. biodiversity). Full understanding requires year-round observations across a range of ice conditions. Here we present such observations: autonomously collected Eulerian continuous 24-month time-series in Fram Strait. We show that, compared to ice-unaffected conditions, sea-ice derived meltwater stratification slows the BCP by 4 months, a shift from an export to a retention system, with measurable impacts on benthic communities. This has implications for ecosystem dynamics in the future warmer Arctic where the seasonal ice zone is expected to expand.
Nature Communication... arrow_drop_down Electronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-26943-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 47 citations 47 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down Electronic Publication Information CenterArticle . 2021Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-021-26943-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Norway, GermanyPublisher:Springer Science and Business Media LLC Funded by:RCN | Topographic control in th..., RCN | iC3 - Centre for ice, Cry...RCN| Topographic control in the Arctic Ocean ,RCN| iC3 - Centre for ice, Cryosphere, Carbon and ClimateCora Hörstmann; Tore Hattermann; Pauline C. Thomé; Pier Luigi Buttigieg; Isidora Morel; Anya M. Waite; Uwe John;pmid: 38431695
pmc: PMC10908816
AbstractClimate change is opening the Arctic Ocean to increasing human impact and ecosystem changes. Arctic fjords, the region’s most productive ecosystems, are sustained by a diverse microbial community at the base of the food web. Here we show that Arctic fjords become more prokaryotic in the picoplankton (0.2–3 µm) with increasing water temperatures. Across 21 fjords, we found that Arctic fjords had proportionally more trophically diverse (autotrophic, mixotrophic, and heterotrophic) picoeukaryotes, while subarctic and temperate fjords had relatively more diverse prokaryotic trophic groups. Modeled oceanographic connectivity between fjords suggested that transport alone would create a smooth gradient in beta diversity largely following the North Atlantic Current and East Greenland Current. Deviations from this suggested that picoeukaryotes had some strong regional patterns in beta diversity that reduced the effect of oceanographic connectivity, while prokaryotes were mainly stopped in their dispersal if strong temperature differences between sites were present. Fjords located in high Arctic regions also generally had very low prokaryotic alpha diversity. Ultimately, warming of Arctic fjords could induce a fundamental shift from more trophic diverse eukaryotic- to prokaryotic-dominated communities, with profound implications for Arctic ecosystem dynamics including their productivity patterns.
OceanRep arrow_drop_down Munin - Open Research ArchiveArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveElectronic Publication Information CenterArticle . 2024Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s42003-024-05946-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert OceanRep arrow_drop_down Munin - Open Research ArchiveArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveElectronic Publication Information CenterArticle . 2024Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s42003-024-05946-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 China (People's Republic of), China (People's Republic of), United Kingdom, China (People's Republic of)Publisher:Wiley Ryan J. Lowe; Anya M. Waite; James L. Falter; Alex S. J. Wyatt; Alex S. J. Wyatt; Stuart Humphries;Nitrate and nitrite (NOx) and phosphate (PO4) dynamics over Ningaloo Reef, Western Australia, are shown to depend on oceanographic forcing of coupled mass transfer limited (MTL) gross uptake and gross release from remineralized oceanic particulate organic matter (POM). Estimates of gross release rates increased significantly with increasing POM uptake and were of the same order as gross uptake rates. Gross uptake rates increased significantly with increasing oceanic concentrations and wave energy dissipation, were 35–80% higher over the reef crest (7–9 mmol NOx m−2 d−1 and 4–5 mmol PO4 m−2 d−1), and were significantly correlated with independent estimates of POM‐mediated gross NOx uptake, supporting both MTL uptake and the strong role of oceanic POM supply. The relative supply of NOx and POM was linked to the seasonal dynamics of a regional current system. In late spring, upwelling associated with seasonally strong equator‐ward winds led to increased NOx concentrations (0.71 ± 0.2 µmol L−1), POM < NOx and the reef was a net nutrient sink (5390 mmol NOx m−1 d−1 and 270 mmol PO4 m−1 d−1). In contrast, during the autumn, NOx was low (0.16 ± 0.06 µmol L−1), but POM > NOx and the reef was a net nutrient source (−7060 mmol NOx m−1 d−1 and −730 mmol PO4 m−1 d−1). The autumn enhancement of oceanic POM supply to the reef can be attributed to a regional phytoplankton bloom associated with acceleration of the oligotrophic Leeuwin Current, which may result in a significant supply of dissolved nutrients to downstream communities.
Limnology and Oceano... arrow_drop_down Limnology and OceanographyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Lincoln: Lincoln RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4319/lo.2012.57.2.0401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Limnology and Oceano... arrow_drop_down Limnology and OceanographyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Lincoln: Lincoln RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4319/lo.2012.57.2.0401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 Australia, Switzerland, GermanyPublisher:Springer Science and Business Media LLC Anthony J. Richardson; Anthony J. Richardson; Jason Ruszczyk; Tim Pritchard; Thomas W. Trull; Thomas W. Trull; Felicity R. McEnnulty; Shauna A. Murray; Christian Lønborg; Alex Coughlan; Tim Ingleton; Anthony Zammit; Steve Brett; Claire H. Davies; Michele A. Burford; Rouna Yauwenas; Richard Brinkman; P. Bonham; Anya M. Waite; Anya M. Waite; Gustaaf M. Hallegraeff; Diane Purcell-Meyerink; David J. Hill; Peter Coad; Margaret Miller; Sophie C. Leterme; A. David McKinnon; Michelle Devlin; Paul G. Thomson; Jocelyn Dela-Cruz; Julian Uribe-Palomino; Eric J Raes; Anita Slotwinski; James McLaughlin; Diana M. Davies; Diana M. Davies; Penelope A. Ajani; Roger Proctor; Natalia Atkins; Christel S. Hassler; Ian Jameson; Linda Armbrecht; Kerrie M. Swadling; Kerrie M. Swadling; Mark Tonks; Lesley Clementson; Steven Edgar; S. Nayar; Renee Patten; Frank Coman; Ruth Eriksen; Ruth Eriksen; Miles Furnas; Katherine Tattersall; Peter A. Thompson; Michael Holmes; David Rissik;pmc: PMC4915276 , PMC5387918
handle: 10072/142615 , 2328/37095
AbstractThere have been many individual phytoplankton datasets collected across Australia since the mid 1900s, but most are unavailable to the research community. We have searched archives, contacted researchers, and scanned the primary and grey literature to collate 3,621,847 records of marine phytoplankton species from Australian waters from 1844 to the present. Many of these are small datasets collected for local questions, but combined they provide over 170 years of data on phytoplankton communities in Australian waters. Units and taxonomy have been standardised, obviously erroneous data removed, and all metadata included. We have lodged this dataset with the Australian Ocean Data Network (http://portal.aodn.org.au/) allowing public access. The Australian Phytoplankton Database will be invaluable for global change studies, as it allows analysis of ecological indicators of climate change and eutrophication (e.g., changes in distribution; diatom:dinoflagellate ratios). In addition, the standardised conversion of abundance records to biomass provides modellers with quantifiable data to initialise and validate ecosystem models of lower marine trophic levels.
Scientific Data arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2016Full-Text: http://doi.org/10.1038/sdata.2016.43Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2016Full-Text: http://hdl.handle.net/10072/142615Data sources: Bielefeld Academic Search Engine (BASE)Flinders Academic Commons (FAC - Flinders University)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/2328/37095Data sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2016Data sources: Electronic Publication Information CenterThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/sdata.2016.43&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Scientific Data arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2016Full-Text: http://doi.org/10.1038/sdata.2016.43Data sources: Bielefeld Academic Search Engine (BASE)Griffith University: Griffith Research OnlineArticle . 2016Full-Text: http://hdl.handle.net/10072/142615Data sources: Bielefeld Academic Search Engine (BASE)Flinders Academic Commons (FAC - Flinders University)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/2328/37095Data sources: Bielefeld Academic Search Engine (BASE)Electronic Publication Information CenterArticle . 2016Data sources: Electronic Publication Information CenterThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/sdata.2016.43&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu