Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Limnology and Oceano...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Limnology and Oceanography
Article . 2012 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Oceanographic forcing of nutrient uptake and release over a fringing coral reef

Authors: Ryan J. Lowe; Anya M. Waite; James L. Falter; Alex S. J. Wyatt; Alex S. J. Wyatt; Stuart Humphries;

Oceanographic forcing of nutrient uptake and release over a fringing coral reef

Abstract

Nitrate and nitrite (NOx) and phosphate (PO4) dynamics over Ningaloo Reef, Western Australia, are shown to depend on oceanographic forcing of coupled mass transfer limited (MTL) gross uptake and gross release from remineralized oceanic particulate organic matter (POM). Estimates of gross release rates increased significantly with increasing POM uptake and were of the same order as gross uptake rates. Gross uptake rates increased significantly with increasing oceanic concentrations and wave energy dissipation, were 35–80% higher over the reef crest (7–9 mmol NOx m−2 d−1 and 4–5 mmol PO4 m−2 d−1), and were significantly correlated with independent estimates of POM‐mediated gross NOx uptake, supporting both MTL uptake and the strong role of oceanic POM supply. The relative supply of NOx and POM was linked to the seasonal dynamics of a regional current system. In late spring, upwelling associated with seasonally strong equator‐ward winds led to increased NOx concentrations (0.71 ± 0.2 µmol L−1), POM < NOx and the reef was a net nutrient sink (5390 mmol NOx m−1 d−1 and 270 mmol PO4 m−1 d−1). In contrast, during the autumn, NOx was low (0.16 ± 0.06 µmol L−1), but POM > NOx and the reef was a net nutrient source (−7060 mmol NOx m−1 d−1 and −730 mmol PO4 m−1 d−1). The autumn enhancement of oceanic POM supply to the reef can be attributed to a regional phytoplankton bloom associated with acceleration of the oligotrophic Leeuwin Current, which may result in a significant supply of dissolved nutrients to downstream communities.

Countries
China (People's Republic of), China (People's Republic of), United Kingdom, China (People's Republic of)
Keywords

Ningaloo Reef, 550, nutrient uptake, C161 - Marine biology, fringing reef, algal bloom, 551, C161 Marine Biology, wind direction, nitrate, Leeuwin Current, mass transfer, nitrite, Indian Ocean, particulate organic matter, phosphate, algae, seasonal variation, Australia, dissipation, Western Australia, Anthozoa, correlation, phytoplankton, wave energy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 10%
Top 10%
Top 10%
Green