- home
- Advanced Search
Filters
Year range
-chevron_right GOCountry
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015 Denmark, Spain, United Kingdom, United KingdomPublisher:Wiley Razgour, Orly; Salicini, Irene; Ibáñez, Carlos; Randi, Ettore; Juste, Javier;pmid: 26346923
AbstractThe contemporary distribution and genetic composition of biodiversity bear a signature of species’ evolutionary histories and the effects of past climatic oscillations. For many European species, the Mediterranean peninsulas of Iberia, Italy and the Balkans acted as glacial refugia and the source of range recolonization, and as a result, they contain disproportionately high levels of diversity. As these areas are particularly threatened by future climate change, it is important to understand how past climatic changes affected their biodiversity. We use an integrated approach, combining markers with different evolutionary rates and combining phylogenetic analysis with approximate Bayesian computation and species distribution modelling across temporal scales. We relate phylogeographic processes to patterns of genetic variation in Myotis escalerai, a bat species endemic to the Iberian Peninsula. We found a distinct population structure at the mitochondrial level with a strong geographic signature, indicating lineage divergence into separate glacial refugia within the Iberian refugium. However, microsatellite markers suggest higher levels of gene flow resulting in more limited structure at recent time frames. The evolutionary history of M. escalerai was shaped by the effects of climatic oscillations and changes in forest cover and composition, while its future is threatened by climatically induced range contractions and the role of ecological barriers due to competition interactions in restricting its distribution. This study warns that Mediterranean peninsulas, which provided refuge for European biodiversity during past glaciation events, may become a trap for limited dispersal and ecologically limited endemic species under future climate change, resulting in loss of entire lineages.
Molecular Ecology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAMolecular EcologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/mec.13379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 16visibility views 16 download downloads 165 Powered bymore_vert Molecular Ecology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAMolecular EcologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/mec.13379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Wiley J. Riley; M.R.K. Zeale; O. Razgour; J. Turpin; G. Jones;AbstractGlobally, the impacts of anthropogenic climate change can displace species into more favourable climates. Semi‐arid desert specialists, such as the sandhill dunnart, Sminthopsis psammophila, are typically susceptible to rainfall deficits, wildfires and extreme temperatures caused by anthropogenic climate change. We first used maximum entropy (MaxEnt) species distribution models (SDMs) to predict the current distribution of S. psammophila. Between 2016 and 2018, we ground validated the model’s predictions throughout Western Australia, confirming S. psammophila in 18 locations in which it was predicted to occur. The predicted distribution of S. psammophila appears mostly constrained to within its known range. However, S. psammophila was verified 150 km north of its range in Western Australia and connectivity between the South Australian populations was correctly predicted. In 2019, we used updated occurrence data to project SDMs for S. psammophila during the mid‐Holocene, present day and under two future representative concentration pathways (RCPs) of RCP 4.5 (an optimistic emissions scenario) and RCP 8.5 (“business as usual”) for 2050 and 2070. By 2050 (RCP 8.5), almost all Western Australian Great Victoria Desert (WAGVD) habitat is predicted to be unsuitable for S. psammophila. By 2070 (RCP 8.5), the climates of the WAGVD and Yellabinna Regional Reserve populations are predicted to become unsuitable, and the species’ geographical range is predicted to contract in Australia by 80%. However, the 2070 (RCP 4.5) scenario predicts that this contraction could be halved. As a sandy desert specialist, the distribution of S. psammophila is geographically limited at its southern bounds due to the cessation of suitable spinifex (Triodia spp.) habitats, and so further extension of the range southwards is not possible. Sympatric desert species may be similarly affected, and we suggest that SDMs will be a useful tool in helping to predict the effects of climate change on their distributions.
Animal Conservation arrow_drop_down University of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/acv.12696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Animal Conservation arrow_drop_down University of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/acv.12696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Wiley Funded by:UKRI | Developing an integrated ...UKRI| Developing an integrated framework for investigating biodiversity responses to global environmental changeAuthors: Orly Razgour; Mohammed Kasso; Helena Santos; Javier Juste;AbstractWhile climate change is recognized as a major future threat to biodiversity, most species are currently threatened by extensive human‐induced habitat loss, fragmentation and degradation. Tropical high‐altitude alpine and montane forest ecosystems and their biodiversity are particularly sensitive to temperature increases under climate change, but they are also subject to accelerated pressures from land conversion and degradation due to a growing human population. We studied the combined effects of anthropogenic land‐use change, past and future climate changes and mountain range isolation on the endemic Ethiopian Highlands long‐eared bat, Plecotus balensis, an understudied bat that is restricted to the remnant natural high‐altitude Afroalpine and Afromontane habitats. We integrated ecological niche modelling, landscape genetics and model‐based inference to assess the genetic, geographic and demographic impacts of past and recent environmental changes. We show that mountain range isolation and historic climates shaped population structure and patterns of genetic variation, but recent anthropogenic land‐use change and habitat degradation are associated with a severe population decline and loss of genetic diversity. Models predict that the suitable niche of this bat has been progressively shrinking since the last glaciation period. This study highlights threats to Afroalpine and Afromontane biodiversity, squeezed to higher altitudes under climate change while losing genetic diversity and suffering population declines due to anthropogenic land‐use change. We conclude that the conservation of tropical montane biodiversity requires a holistic approach, using genetic, ecological and geographic information to understand the effects of environmental changes across temporal scales and simultaneously addressing the impacts of multiple threats.
CORE arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/1893/32137Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/eva.13161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold more_vert CORE arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/1893/32137Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/eva.13161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2013Embargo end date: 14 Oct 2024 Spain, United KingdomPublisher:Wiley Publicly fundedFunded by:EC | EnvMetaGenEC| EnvMetaGenRazgour, Orly; Juste, Javier; Ibáñez, Carlos; Kiefer, Andreas; Rebelo, Hugo; Puechmaille, Sébastien J.; Arlettaz, Raphaël; Burke, Terry; Dawson, Deborah A.; Beaumont, Mark; Jones, Gareth; Wiens, John;pmid: 23890483
pmc: PMC4015367
AbstractWith rates of climate change exceeding the rate at which many species are able to shift their range or adapt, it is important to understand how future changes are likely to affect biodiversity at all levels of organisation. Understanding past responses and extent of niche conservatism in climatic tolerance can help predict future consequences. We use an integrated approach to determine the genetic consequences of past and future climate changes on a bat species, Plecotus austriacus. Glacial refugia predicted by palaeo‐modelling match those identified from analyses of extant genetic diversity and model‐based inference of demographic history. Former refugial populations currently contain disproportionately high genetic diversity, but niche conservatism, shifts in suitable areas and barriers to migration mean that these hotspots of genetic diversity are under threat from future climate change. Evidence of population decline despite recent northward migration highlights the need to conserve leading‐edge populations for spearheading future range shifts.
Ecology Letters arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Bristol: Bristol ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.12158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 94 citations 94 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecology Letters arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Bristol: Bristol ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.12158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United Kingdom, United Kingdom, France, Denmark, United Kingdom, SpainPublisher:Proceedings of the National Academy of Sciences Funded by:UKRI | Developing an integrated ...UKRI| Developing an integrated framework for investigating biodiversity responses to global environmental changeOrly Razgour; Orly Razgour; Antton Alberdi; John B. Taggart; Carlos F. Ibáñez; Brenna R. Forester; Stéphanie Manel; Javier Juste; Roberto Novella-Fernandez; Sébastien J. Puechmaille; Sébastien J. Puechmaille; Michaël Bekaert;Local adaptations can determine the potential of populations to respond to environmental changes, yet adaptive genetic variation is commonly ignored in models forecasting species vulnerability and biogeographical shifts under future climate change. Here we integrate genomic and ecological modeling approaches to identify genetic adaptations associated with climate in two cryptic forest bats. We then incorporate this information directly into forecasts of range changes under future climate change and assessment of population persistence through the spread of climate-adaptive genetic variation (evolutionary rescue potential). Considering climate-adaptive potential reduced range loss projections, suggesting that failure to account for intraspecific variability can result in overestimation of future losses. On the other hand, range overlap between species was projected to increase, indicating that interspecific competition is likely to play an important role in limiting species’ future ranges. We show that although evolutionary rescue is possible, it depends on a population’s adaptive capacity and connectivity. Hence, we stress the importance of incorporating genomic data and landscape connectivity in climate change vulnerability assessments and conservation management.
CORE arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2019Full-Text: https://hal.umontpellier.fr/hal-03131178Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/1893/29616Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1820663116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 322 citations 322 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 22visibility views 22 download downloads 91 Powered bymore_vert CORE arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2019Full-Text: https://hal.umontpellier.fr/hal-03131178Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/1893/29616Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1820663116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Elsevier BV Authors: Razgour, Orly;(Uploaded by Plazi for the Bat Literature Project) Understanding how biodiversity will respond to future climate change is a major conservation and societal challenge. Climate change is predicted to force many species to shift their ranges in pursuit of suitable conditions. This study aims to use landscape genetics, the study of the effects of environmental heterogeneity on the spatial distribution of genetic variation, as a predictive tool to assess how species will shift their ranges to track climatic changes and inform conservation measures that will facilitate movement. The approach is based on three steps: 1) using species distribution models (SDMs) to predict suitable ranges under future climate change, 2) using the landscape genetics framework to identify landscape variables that impede or facilitate movement, and 3) extrapolating the effect of landscape connectivity on range shifts in response to future climate change. I show how this approach can be implemented using the publicly available genetic dataset of the grey longeared bat, Plecotus austriacus, in the Iberian Peninsula. Forest cover gradient was the main landscape variable affecting genetic connectivity between colonies. Forest availability is likely to limit future range shifts in response to climate change, primarily over the central plateau, but important range shift pathways have been identified along the eastern and western coasts. I provide outputs that can be directly used by conservation managers and review the viability of the approach. Using landscape genetics as a predictive tool in combination with SDMs enables the identification of potential pathways, whose loss can affect the ability of species to shift their range into future climatically suitable areas, and the appropriate conservation management measures to increase landscape connectivity and facilitate movement.
University of Stirli... arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2015License: CC BY NC NDFull-Text: http://hdl.handle.net/1893/21974Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoinf.2015.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
download 304download downloads 304 Powered bymore_vert University of Stirli... arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2015License: CC BY NC NDFull-Text: http://hdl.handle.net/1893/21974Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoinf.2015.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Spain, United Kingdom, DenmarkPublisher:Wiley Funded by:UKRI | Developing an integrated ...UKRI| Developing an integrated framework for investigating biodiversity responses to global environmental changeCarlos F. Ibáñez; Stéphanie Manel; John B. Taggart; Gareth Jones; Kirsty J. Park; Javier Juste; Hugo Rebelo; Hugo Rebelo; Orly Razgour; Orly Razgour; Orly Razgour; Antton Alberdi;pmid: 28649779
pmc: PMC6849758
AbstractClimate change is a major threat to global biodiversity that will produce a range of new selection pressures. Understanding species responses to climate change requires an interdisciplinary perspective, combining ecological, molecular and environmental approaches. We propose an applied integrated framework to identify populations under threat from climate change based on their extent of exposure, inherent sensitivity due to adaptive and neutral genetic variation and range shift potential. We consider intraspecific vulnerability and population‐level responses, an important but often neglected conservation research priority. We demonstrate how this framework can be applied to vertebrates with limited dispersal abilities using empirical data for the bat Plecotus austriacus. We use ecological niche modelling and environmental dissimilarity analysis to locate areas at high risk of exposure to future changes. Combining outlier tests with genotype–environment association analysis, we identify potential climate‐adaptive SNPs in our genomic data set and differences in the frequency of adaptive and neutral variation between populations. We assess landscape connectivity and show that changing environmental suitability may limit the future movement of individuals, thus affecting both the ability of populations to shift their distribution to climatically suitable areas and the probability of evolutionary rescue through the spread of adaptive genetic variation among populations. Therefore, a better understanding of movement ecology and landscape connectivity is needed for predicting population persistence under climate change. Our study highlights the importance of incorporating genomic data to determine sensitivity, adaptive potential and range shift potential, instead of relying solely on exposure to guide species vulnerability assessments and conservation planning.
CORE arrow_drop_down COREArticle . 2018License: CC BYFull-Text: http://dspace.stir.ac.uk/bitstream/1893/25785/1/Razgour_et_al-2018-Molecular_Ecology_Resources.pdfData sources: COREHyper Article en LigneArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02625213/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02625213/documentUniversity of Stirling: Stirling Digital Research RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/1893/25785Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1755-0998.12694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 67 citations 67 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 21visibility views 21 download downloads 213 Powered bymore_vert CORE arrow_drop_down COREArticle . 2018License: CC BYFull-Text: http://dspace.stir.ac.uk/bitstream/1893/25785/1/Razgour_et_al-2018-Molecular_Ecology_Resources.pdfData sources: COREHyper Article en LigneArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02625213/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02625213/documentUniversity of Stirling: Stirling Digital Research RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/1893/25785Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1755-0998.12694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Francesca Festa; Leonardo Ancillotto; Luca Santini; Michela Pacifici; Ricardo Rocha; Nia Toshkova; Francisco Amorim; Ana Benítez‐López; Adi Domer; Daniela Hamidović; Stephanie Kramer‐Schadt; Fiona Mathews; Viktoriia Radchuk; Hugo Rebelo; Ireneusz Ruczynski; Estelle Solem; Asaf Tsoar; Danilo Russo; Orly Razgour;ABSTRACTUnderstanding how species respond to climate change is key to informing vulnerability assessments and designing effective conservation strategies, yet research efforts on wildlife responses to climate change fail to deliver a representative overview due to inherent biases. Bats are a species‐rich, globally distributed group of organisms that are thought to be particularly sensitive to the effects of climate change because of their high surface‐to‐volume ratios and low reproductive rates. We systematically reviewed the literature on bat responses to climate change to provide an overview of the current state of knowledge, identify research gaps and biases and highlight future research needs. We found that studies are geographically biased towards Europe, North America and Australia, and temperate and Mediterranean biomes, thus missing a substantial proportion of bat diversity and thermal responses. Less than half of the published studies provide concrete evidence for bat responses to climate change. For over a third of studied bat species, response evidence is only based on predictive species distribution models. Consequently, the most frequently reported responses involve range shifts (57% of species) and changes in patterns of species diversity (26%). Bats showed a variety of responses, including both positive (e.g. range expansion and population increase) and negative responses (range contraction and population decrease), although responses to extreme events were always negative or neutral. Spatial responses varied in their outcome and across families, with almost all taxonomic groups featuring both range expansions and contractions, while demographic responses were strongly biased towards negative outcomes, particularly among Pteropodidae and Molossidae. The commonly used correlative modelling approaches can be applied to many species, but do not provide mechanistic insight into behavioural, physiological, phenological or genetic responses. There was a paucity of experimental studies (26%), and only a small proportion of the 396 bat species covered in the examined studies were studied using long‐term and/or experimental approaches (11%), even though they are more informative about the effects of climate change. We emphasise the need for more empirical studies to unravel the multifaceted nature of bats' responses to climate change and the need for standardised study designs that will enable synthesis and meta‐analysis of the literature. Finally, we stress the importance of overcoming geographic and taxonomic disparities through strengthening research capacity in the Global South to provide a more comprehensive view of terrestrial biodiversity responses to climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/brv.12893&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 50 citations 50 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/brv.12893&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015 Denmark, Spain, United Kingdom, United KingdomPublisher:Wiley Razgour, Orly; Salicini, Irene; Ibáñez, Carlos; Randi, Ettore; Juste, Javier;pmid: 26346923
AbstractThe contemporary distribution and genetic composition of biodiversity bear a signature of species’ evolutionary histories and the effects of past climatic oscillations. For many European species, the Mediterranean peninsulas of Iberia, Italy and the Balkans acted as glacial refugia and the source of range recolonization, and as a result, they contain disproportionately high levels of diversity. As these areas are particularly threatened by future climate change, it is important to understand how past climatic changes affected their biodiversity. We use an integrated approach, combining markers with different evolutionary rates and combining phylogenetic analysis with approximate Bayesian computation and species distribution modelling across temporal scales. We relate phylogeographic processes to patterns of genetic variation in Myotis escalerai, a bat species endemic to the Iberian Peninsula. We found a distinct population structure at the mitochondrial level with a strong geographic signature, indicating lineage divergence into separate glacial refugia within the Iberian refugium. However, microsatellite markers suggest higher levels of gene flow resulting in more limited structure at recent time frames. The evolutionary history of M. escalerai was shaped by the effects of climatic oscillations and changes in forest cover and composition, while its future is threatened by climatically induced range contractions and the role of ecological barriers due to competition interactions in restricting its distribution. This study warns that Mediterranean peninsulas, which provided refuge for European biodiversity during past glaciation events, may become a trap for limited dispersal and ecologically limited endemic species under future climate change, resulting in loss of entire lineages.
Molecular Ecology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAMolecular EcologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/mec.13379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 16visibility views 16 download downloads 165 Powered bymore_vert Molecular Ecology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAMolecular EcologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/mec.13379&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Wiley J. Riley; M.R.K. Zeale; O. Razgour; J. Turpin; G. Jones;AbstractGlobally, the impacts of anthropogenic climate change can displace species into more favourable climates. Semi‐arid desert specialists, such as the sandhill dunnart, Sminthopsis psammophila, are typically susceptible to rainfall deficits, wildfires and extreme temperatures caused by anthropogenic climate change. We first used maximum entropy (MaxEnt) species distribution models (SDMs) to predict the current distribution of S. psammophila. Between 2016 and 2018, we ground validated the model’s predictions throughout Western Australia, confirming S. psammophila in 18 locations in which it was predicted to occur. The predicted distribution of S. psammophila appears mostly constrained to within its known range. However, S. psammophila was verified 150 km north of its range in Western Australia and connectivity between the South Australian populations was correctly predicted. In 2019, we used updated occurrence data to project SDMs for S. psammophila during the mid‐Holocene, present day and under two future representative concentration pathways (RCPs) of RCP 4.5 (an optimistic emissions scenario) and RCP 8.5 (“business as usual”) for 2050 and 2070. By 2050 (RCP 8.5), almost all Western Australian Great Victoria Desert (WAGVD) habitat is predicted to be unsuitable for S. psammophila. By 2070 (RCP 8.5), the climates of the WAGVD and Yellabinna Regional Reserve populations are predicted to become unsuitable, and the species’ geographical range is predicted to contract in Australia by 80%. However, the 2070 (RCP 4.5) scenario predicts that this contraction could be halved. As a sandy desert specialist, the distribution of S. psammophila is geographically limited at its southern bounds due to the cessation of suitable spinifex (Triodia spp.) habitats, and so further extension of the range southwards is not possible. Sympatric desert species may be similarly affected, and we suggest that SDMs will be a useful tool in helping to predict the effects of climate change on their distributions.
Animal Conservation arrow_drop_down University of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/acv.12696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Animal Conservation arrow_drop_down University of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/acv.12696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Wiley Funded by:UKRI | Developing an integrated ...UKRI| Developing an integrated framework for investigating biodiversity responses to global environmental changeAuthors: Orly Razgour; Mohammed Kasso; Helena Santos; Javier Juste;AbstractWhile climate change is recognized as a major future threat to biodiversity, most species are currently threatened by extensive human‐induced habitat loss, fragmentation and degradation. Tropical high‐altitude alpine and montane forest ecosystems and their biodiversity are particularly sensitive to temperature increases under climate change, but they are also subject to accelerated pressures from land conversion and degradation due to a growing human population. We studied the combined effects of anthropogenic land‐use change, past and future climate changes and mountain range isolation on the endemic Ethiopian Highlands long‐eared bat, Plecotus balensis, an understudied bat that is restricted to the remnant natural high‐altitude Afroalpine and Afromontane habitats. We integrated ecological niche modelling, landscape genetics and model‐based inference to assess the genetic, geographic and demographic impacts of past and recent environmental changes. We show that mountain range isolation and historic climates shaped population structure and patterns of genetic variation, but recent anthropogenic land‐use change and habitat degradation are associated with a severe population decline and loss of genetic diversity. Models predict that the suitable niche of this bat has been progressively shrinking since the last glaciation period. This study highlights threats to Afroalpine and Afromontane biodiversity, squeezed to higher altitudes under climate change while losing genetic diversity and suffering population declines due to anthropogenic land‐use change. We conclude that the conservation of tropical montane biodiversity requires a holistic approach, using genetic, ecological and geographic information to understand the effects of environmental changes across temporal scales and simultaneously addressing the impacts of multiple threats.
CORE arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/1893/32137Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/eva.13161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold more_vert CORE arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/1893/32137Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/eva.13161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2013Embargo end date: 14 Oct 2024 Spain, United KingdomPublisher:Wiley Publicly fundedFunded by:EC | EnvMetaGenEC| EnvMetaGenRazgour, Orly; Juste, Javier; Ibáñez, Carlos; Kiefer, Andreas; Rebelo, Hugo; Puechmaille, Sébastien J.; Arlettaz, Raphaël; Burke, Terry; Dawson, Deborah A.; Beaumont, Mark; Jones, Gareth; Wiens, John;pmid: 23890483
pmc: PMC4015367
AbstractWith rates of climate change exceeding the rate at which many species are able to shift their range or adapt, it is important to understand how future changes are likely to affect biodiversity at all levels of organisation. Understanding past responses and extent of niche conservatism in climatic tolerance can help predict future consequences. We use an integrated approach to determine the genetic consequences of past and future climate changes on a bat species, Plecotus austriacus. Glacial refugia predicted by palaeo‐modelling match those identified from analyses of extant genetic diversity and model‐based inference of demographic history. Former refugial populations currently contain disproportionately high genetic diversity, but niche conservatism, shifts in suitable areas and barriers to migration mean that these hotspots of genetic diversity are under threat from future climate change. Evidence of population decline despite recent northward migration highlights the need to conserve leading‐edge populations for spearheading future range shifts.
Ecology Letters arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Bristol: Bristol ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.12158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 94 citations 94 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecology Letters arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2013 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Bristol: Bristol ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.12158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United Kingdom, United Kingdom, France, Denmark, United Kingdom, SpainPublisher:Proceedings of the National Academy of Sciences Funded by:UKRI | Developing an integrated ...UKRI| Developing an integrated framework for investigating biodiversity responses to global environmental changeOrly Razgour; Orly Razgour; Antton Alberdi; John B. Taggart; Carlos F. Ibáñez; Brenna R. Forester; Stéphanie Manel; Javier Juste; Roberto Novella-Fernandez; Sébastien J. Puechmaille; Sébastien J. Puechmaille; Michaël Bekaert;Local adaptations can determine the potential of populations to respond to environmental changes, yet adaptive genetic variation is commonly ignored in models forecasting species vulnerability and biogeographical shifts under future climate change. Here we integrate genomic and ecological modeling approaches to identify genetic adaptations associated with climate in two cryptic forest bats. We then incorporate this information directly into forecasts of range changes under future climate change and assessment of population persistence through the spread of climate-adaptive genetic variation (evolutionary rescue potential). Considering climate-adaptive potential reduced range loss projections, suggesting that failure to account for intraspecific variability can result in overestimation of future losses. On the other hand, range overlap between species was projected to increase, indicating that interspecific competition is likely to play an important role in limiting species’ future ranges. We show that although evolutionary rescue is possible, it depends on a population’s adaptive capacity and connectivity. Hence, we stress the importance of incorporating genomic data and landscape connectivity in climate change vulnerability assessments and conservation management.
CORE arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2019Full-Text: https://hal.umontpellier.fr/hal-03131178Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/1893/29616Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1820663116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 322 citations 322 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 22visibility views 22 download downloads 91 Powered bymore_vert CORE arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2019Full-Text: https://hal.umontpellier.fr/hal-03131178Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/1893/29616Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1820663116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Elsevier BV Authors: Razgour, Orly;(Uploaded by Plazi for the Bat Literature Project) Understanding how biodiversity will respond to future climate change is a major conservation and societal challenge. Climate change is predicted to force many species to shift their ranges in pursuit of suitable conditions. This study aims to use landscape genetics, the study of the effects of environmental heterogeneity on the spatial distribution of genetic variation, as a predictive tool to assess how species will shift their ranges to track climatic changes and inform conservation measures that will facilitate movement. The approach is based on three steps: 1) using species distribution models (SDMs) to predict suitable ranges under future climate change, 2) using the landscape genetics framework to identify landscape variables that impede or facilitate movement, and 3) extrapolating the effect of landscape connectivity on range shifts in response to future climate change. I show how this approach can be implemented using the publicly available genetic dataset of the grey longeared bat, Plecotus austriacus, in the Iberian Peninsula. Forest cover gradient was the main landscape variable affecting genetic connectivity between colonies. Forest availability is likely to limit future range shifts in response to climate change, primarily over the central plateau, but important range shift pathways have been identified along the eastern and western coasts. I provide outputs that can be directly used by conservation managers and review the viability of the approach. Using landscape genetics as a predictive tool in combination with SDMs enables the identification of potential pathways, whose loss can affect the ability of species to shift their range into future climatically suitable areas, and the appropriate conservation management measures to increase landscape connectivity and facilitate movement.
University of Stirli... arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2015License: CC BY NC NDFull-Text: http://hdl.handle.net/1893/21974Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoinf.2015.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
download 304download downloads 304 Powered bymore_vert University of Stirli... arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2015License: CC BY NC NDFull-Text: http://hdl.handle.net/1893/21974Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoinf.2015.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Spain, United Kingdom, DenmarkPublisher:Wiley Funded by:UKRI | Developing an integrated ...UKRI| Developing an integrated framework for investigating biodiversity responses to global environmental changeCarlos F. Ibáñez; Stéphanie Manel; John B. Taggart; Gareth Jones; Kirsty J. Park; Javier Juste; Hugo Rebelo; Hugo Rebelo; Orly Razgour; Orly Razgour; Orly Razgour; Antton Alberdi;pmid: 28649779
pmc: PMC6849758
AbstractClimate change is a major threat to global biodiversity that will produce a range of new selection pressures. Understanding species responses to climate change requires an interdisciplinary perspective, combining ecological, molecular and environmental approaches. We propose an applied integrated framework to identify populations under threat from climate change based on their extent of exposure, inherent sensitivity due to adaptive and neutral genetic variation and range shift potential. We consider intraspecific vulnerability and population‐level responses, an important but often neglected conservation research priority. We demonstrate how this framework can be applied to vertebrates with limited dispersal abilities using empirical data for the bat Plecotus austriacus. We use ecological niche modelling and environmental dissimilarity analysis to locate areas at high risk of exposure to future changes. Combining outlier tests with genotype–environment association analysis, we identify potential climate‐adaptive SNPs in our genomic data set and differences in the frequency of adaptive and neutral variation between populations. We assess landscape connectivity and show that changing environmental suitability may limit the future movement of individuals, thus affecting both the ability of populations to shift their distribution to climatically suitable areas and the probability of evolutionary rescue through the spread of adaptive genetic variation among populations. Therefore, a better understanding of movement ecology and landscape connectivity is needed for predicting population persistence under climate change. Our study highlights the importance of incorporating genomic data to determine sensitivity, adaptive potential and range shift potential, instead of relying solely on exposure to guide species vulnerability assessments and conservation planning.
CORE arrow_drop_down COREArticle . 2018License: CC BYFull-Text: http://dspace.stir.ac.uk/bitstream/1893/25785/1/Razgour_et_al-2018-Molecular_Ecology_Resources.pdfData sources: COREHyper Article en LigneArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02625213/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02625213/documentUniversity of Stirling: Stirling Digital Research RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/1893/25785Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1755-0998.12694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 67 citations 67 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 21visibility views 21 download downloads 213 Powered bymore_vert CORE arrow_drop_down COREArticle . 2018License: CC BYFull-Text: http://dspace.stir.ac.uk/bitstream/1893/25785/1/Razgour_et_al-2018-Molecular_Ecology_Resources.pdfData sources: COREHyper Article en LigneArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02625213/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02625213/documentUniversity of Stirling: Stirling Digital Research RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/1893/25785Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1755-0998.12694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Francesca Festa; Leonardo Ancillotto; Luca Santini; Michela Pacifici; Ricardo Rocha; Nia Toshkova; Francisco Amorim; Ana Benítez‐López; Adi Domer; Daniela Hamidović; Stephanie Kramer‐Schadt; Fiona Mathews; Viktoriia Radchuk; Hugo Rebelo; Ireneusz Ruczynski; Estelle Solem; Asaf Tsoar; Danilo Russo; Orly Razgour;ABSTRACTUnderstanding how species respond to climate change is key to informing vulnerability assessments and designing effective conservation strategies, yet research efforts on wildlife responses to climate change fail to deliver a representative overview due to inherent biases. Bats are a species‐rich, globally distributed group of organisms that are thought to be particularly sensitive to the effects of climate change because of their high surface‐to‐volume ratios and low reproductive rates. We systematically reviewed the literature on bat responses to climate change to provide an overview of the current state of knowledge, identify research gaps and biases and highlight future research needs. We found that studies are geographically biased towards Europe, North America and Australia, and temperate and Mediterranean biomes, thus missing a substantial proportion of bat diversity and thermal responses. Less than half of the published studies provide concrete evidence for bat responses to climate change. For over a third of studied bat species, response evidence is only based on predictive species distribution models. Consequently, the most frequently reported responses involve range shifts (57% of species) and changes in patterns of species diversity (26%). Bats showed a variety of responses, including both positive (e.g. range expansion and population increase) and negative responses (range contraction and population decrease), although responses to extreme events were always negative or neutral. Spatial responses varied in their outcome and across families, with almost all taxonomic groups featuring both range expansions and contractions, while demographic responses were strongly biased towards negative outcomes, particularly among Pteropodidae and Molossidae. The commonly used correlative modelling approaches can be applied to many species, but do not provide mechanistic insight into behavioural, physiological, phenological or genetic responses. There was a paucity of experimental studies (26%), and only a small proportion of the 396 bat species covered in the examined studies were studied using long‐term and/or experimental approaches (11%), even though they are more informative about the effects of climate change. We emphasise the need for more empirical studies to unravel the multifaceted nature of bats' responses to climate change and the need for standardised study designs that will enable synthesis and meta‐analysis of the literature. Finally, we stress the importance of overcoming geographic and taxonomic disparities through strengthening research capacity in the Global South to provide a more comprehensive view of terrestrial biodiversity responses to climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/brv.12893&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 50 citations 50 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/brv.12893&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu