- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Funded by:UKRI | EcoWatt2050UKRI| EcoWatt2050Authors: Alejandro Gallego; Rory O'Hara Murray;A high spatial resolution three-dimensional (3D) hydrodynamic ocean model of the Orkney Islands is used to investigate the tidal stream resource and physical environmental impact in the Pentland Firth, a high-resource area where the first arrays of tidal stream turbines are likely to be deployed in Scotland. Tidal stream turbines are represented in the model using a momentum sink in order to (1) find an upper bound estimate of the available resource, (2) explore alternative, more realistic scenarios, and (3) estimate their effect on the physical environment. The maximum extractable power scenario (M2 + S2 cycle mean of 5.3 GW) requires a high density of turbines deployed through the channels cross section and has a major impact on the physical environment. More realistic scenarios, with the placement of the turbines constrained by practical factors, resulted in considerably less extractable power but the physical environmental impact was disproportionately reduced. It was also found that a variable thrust coefficient can be used to optimise the performance of tidal arrays. Our work highlights the usefulness of 3D hydrodynamic models for tidal stream resource assessment and impact studies, and illustrates how the design of tidal stream arrays can affect the levels of sustainably harnessed tidal power.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2016.10.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu63 citations 63 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2016.10.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Authors: De Dominicis, M.; O'Hara Murray, R.; Wolf, J.;Abstract The tidal stream energy sector is now at the stage of deploying the world's first pre-commercial arrays of multiple turbines. It is time to study the environmental effects of much larger full-size arrays, to scale and site them appropriately. A theoretical array of tidal stream turbines was designed for the Pentland Firth (UK), a strait between Scotland and the Orkney Islands, which has very fast tidal currents. The practical power resource of a large array spanning the Pentland Firth was estimated to be 1.64 GW on average. The ocean response to this amount of energy extraction was simulated by an unstructured grid three-dimensional FVCOM (Finite Volume Community Ocean Model) and analysed on both short-term and seasonal timescales. Tidal elevation mainly increases upstream of the tidal array, while a decrease is observed downstream, along the UK east coast. Tidal and residual flows are also affected: they can slow down due to the turbines action or speed up due to flow diversion and blockage processes, on both a local and regional scale. The strongest signal in tidal velocities is an overall reduction, which can in turn decrease the energy of tidal mixing and perturb the seasonal stratification on the NW European Shelf.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.07.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 63 citations 63 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.07.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Rory B. O'Hara Murray; Alejandro Gallego;Abstract The Orkney Islands and surrounding waters (known as the Pentland Firth and Orkney Waters Strategic Area, PFOW) contain a significant portion of Scotland's tidal and wave energy resource. This paper forms part of a wider study modelling tidal and wave processes, and planned renewable energy extraction, in PFOW using 3D hydrodynamic and spectral wave numerical models. Such hydrodynamic models require a number of spatial data, i.e. high resolution bathymetry, model boundary conditions and measurements for model validation, which are hard to obtain in extreme environments such as PFOW. This paper examines the characteristics and selection criteria of the data used for the development of the models. Most of these data are freely available, and could form part of an open source marine renewable energy hydrodynamic modelling toolbox. In order to include the planned tidal and wave energy developments in the hydrodynamic models of the wider study, realistic tidal and wave device array scenarios are required. However, there is still considerable uncertainty regarding the type of devices that will be deployed and device array layouts. Here, we describe the process undertaken, in consultation with industry, to develop a small number of generic device types and array scenarios for the PFOW, based on insight provided by documentation submitted by developers as part of the Scottish marine licensing process. For tidal developments, an algorithm was developed to determine the site specific array configuration, taking into account the number of turbines, water depth, tidal current direction and the spatial distribution of mean kinetic energy. The wave development sites did not require such detailed site specific placement of devices, and the generic layouts could simply be constructed in most cases without the need for detailed site specific resource characterisation. It is anticipated that the renewable energy industry will be able to adopt our data selection criteria to ensure models developed for environmental impact assessments satisfy the quality requirements of the regulator. Similarly, the methodologies developed for characterising generic device types and array layouts will be useful to academia and government researchers, who do not necessarily have access to detailed device and site specific information.
Ocean & Coastal Mana... arrow_drop_down Ocean & Coastal ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2017.03.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Ocean & Coastal Mana... arrow_drop_down Ocean & Coastal ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2017.03.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Gallego, A.; Side, J.; Baston, S.; Waldman, S.; Bell, M.; James, M.; Davies, I.; O'Hara Murray, R.; Heath, M.; Sabatino, A.; McKee, D.; McCaig, C.; Karunarathna, H.; Fairley, I.; Chatzirodou, A.; Venugopal, V.; Nemalidinne, R.; Yung, T. Z.; Vögler, A.; MacIver, R.; Burrows, M.;We describe a modelling project to estimate the potential effects of wave & tidal stream renewables on the marine environment. • Realistic generic devices to be used by those without access to the technical details available to developers are described. • Results show largely local sea bed effects at the level of the currently proposed renewables developments in our study area. • Large scale 3D modelling is critical to quantify the direct, indirect and cumulative effects of renewable energy extraction. • This is critical to comply with planning & environmental impact assessment regulations and achieve Good Environmental Status.
CORE arrow_drop_down University of Hull: Repository@HullArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Ocean & Coastal ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2016.11.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down University of Hull: Repository@HullArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Ocean & Coastal ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2016.11.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Funded by:UKRI | EcoWatt2050, UKRI | Hydrodynamic modelling fo...UKRI| EcoWatt2050 ,UKRI| Hydrodynamic modelling for sustainable aquaculture : Placement with Marine Scotland ScienceSandy Kerr; Simon Mark Waldman; Simon Mark Waldman; David K. Woolf; Stephanie Weir; R. O'Hara Murray;Abstract Tidal stream energy technology has progressed to a point where commercial exploitation of this sustainable resource is practical, but tidal physics dictates interactions between tidal farms that raise political, legal and managerial challenges that are yet to be met. Fully optimising the design of a turbine array requires its developer to know about other farms that will be built nearby in the future. Consequently future developments, even those in adjacent channels, have the potential to impact on project efficiency. Here we review the relevant physics, consider the implications for marine policy, and discuss potential solutions. Possible management paths range from minimal regulation to prioritise a free market, to strongly interventionist approaches that prioritise efficient resource use. An attractive exemplar of the latter is unitization, an approach to resource allocation widely used in the oil and gas industry. We argue that an interventionist approach is necessary if the greatest possible energy yield is to be produced for a given level of environmental impact.
University of Hull: ... arrow_drop_down University of Hull: Repository@HullArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpol.2019.103611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Hull: ... arrow_drop_down University of Hull: Repository@HullArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpol.2019.103611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 United KingdomPublisher:Elsevier BV Authors: Waldman, S.; Yamaguchi, S.; O'Hara Murray, R.; Woolf, D.;Abstract The Goto Islands in Nagasaki Prefecture, Japan, contain three parallel channels that are suitable for tidal energy development and are the planned location for a tidal energy test centre. Energy extraction is added to a 3D numerical hydrodynamic model of the region, using a sub-grid momentum sink approach, to predict the effects of tidal development. The available resource with first-generation turbines is estimated at 50–107 MW peak output. Spreading turbine thrust across the whole cross-section to prevent bypass flow results in a 64% increase in peak power in one channel, highlighting the importance of 3D over 2D modelling. The energy available for extraction in each strait appears to be independent of the level of extraction in other straits. This contrasts with theoretical and numerical studies of other multi-channel systems. The weak interactions found in this study can be traced to the hydraulic effects of energy extraction not extending to neighbouring channels due to their geometry.
University of Hull: ... arrow_drop_down University of Hull: Repository@HullArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Marine EnergyArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijome.2017.09.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Hull: ... arrow_drop_down University of Hull: Repository@HullArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Marine EnergyArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijome.2017.09.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:American Geophysical Union (AGU) Authors: De Dominicis, Michela; Wolf, Judith; O'Hara Murray, Rory;doi: 10.1029/2018jc013832
AbstractThe environmental implications of tidal stream energy extraction need to be evaluated against the potential climate change impacts on the marine environment. Here we study how hypothetical very large tidal stream arrays and a business as usual future climate scenario can change the hydrodynamics of a seasonally stratified shelf sea. The Scottish Shelf Model, an unstructured grid three‐dimensional ocean model, has been used to reproduce the present and the future state of the NW European continental shelf. Four scenarios have been modeled: present conditions and projected future climate in 2050, each with and without very large scale tidal stream arrays in Scottish Waters (UK). It is found that where tidal range is reduced a few centimeters by tidal stream energy extraction, it can help to counter extreme water levels associated with future sea level rise. Tidal velocities, and consequently tidal mixing, are also reduced overall by the action of the tidal turbine arrays. A key finding is that climate change and tidal energy extraction both act in the same direction, in terms of increasing stratification due to warming and reduced mixing; however, the effect of climate change is an order of magnitude larger.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research OceansArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018jc013832&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research OceansArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018jc013832&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Funded by:UKRI | EcoWatt2050UKRI| EcoWatt2050Authors: Alejandro Gallego; Rory O'Hara Murray;A high spatial resolution three-dimensional (3D) hydrodynamic ocean model of the Orkney Islands is used to investigate the tidal stream resource and physical environmental impact in the Pentland Firth, a high-resource area where the first arrays of tidal stream turbines are likely to be deployed in Scotland. Tidal stream turbines are represented in the model using a momentum sink in order to (1) find an upper bound estimate of the available resource, (2) explore alternative, more realistic scenarios, and (3) estimate their effect on the physical environment. The maximum extractable power scenario (M2 + S2 cycle mean of 5.3 GW) requires a high density of turbines deployed through the channels cross section and has a major impact on the physical environment. More realistic scenarios, with the placement of the turbines constrained by practical factors, resulted in considerably less extractable power but the physical environmental impact was disproportionately reduced. It was also found that a variable thrust coefficient can be used to optimise the performance of tidal arrays. Our work highlights the usefulness of 3D hydrodynamic models for tidal stream resource assessment and impact studies, and illustrates how the design of tidal stream arrays can affect the levels of sustainably harnessed tidal power.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2016.10.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu63 citations 63 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2016.10.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Authors: De Dominicis, M.; O'Hara Murray, R.; Wolf, J.;Abstract The tidal stream energy sector is now at the stage of deploying the world's first pre-commercial arrays of multiple turbines. It is time to study the environmental effects of much larger full-size arrays, to scale and site them appropriately. A theoretical array of tidal stream turbines was designed for the Pentland Firth (UK), a strait between Scotland and the Orkney Islands, which has very fast tidal currents. The practical power resource of a large array spanning the Pentland Firth was estimated to be 1.64 GW on average. The ocean response to this amount of energy extraction was simulated by an unstructured grid three-dimensional FVCOM (Finite Volume Community Ocean Model) and analysed on both short-term and seasonal timescales. Tidal elevation mainly increases upstream of the tidal array, while a decrease is observed downstream, along the UK east coast. Tidal and residual flows are also affected: they can slow down due to the turbines action or speed up due to flow diversion and blockage processes, on both a local and regional scale. The strongest signal in tidal velocities is an overall reduction, which can in turn decrease the energy of tidal mixing and perturb the seasonal stratification on the NW European Shelf.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.07.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 63 citations 63 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.07.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Rory B. O'Hara Murray; Alejandro Gallego;Abstract The Orkney Islands and surrounding waters (known as the Pentland Firth and Orkney Waters Strategic Area, PFOW) contain a significant portion of Scotland's tidal and wave energy resource. This paper forms part of a wider study modelling tidal and wave processes, and planned renewable energy extraction, in PFOW using 3D hydrodynamic and spectral wave numerical models. Such hydrodynamic models require a number of spatial data, i.e. high resolution bathymetry, model boundary conditions and measurements for model validation, which are hard to obtain in extreme environments such as PFOW. This paper examines the characteristics and selection criteria of the data used for the development of the models. Most of these data are freely available, and could form part of an open source marine renewable energy hydrodynamic modelling toolbox. In order to include the planned tidal and wave energy developments in the hydrodynamic models of the wider study, realistic tidal and wave device array scenarios are required. However, there is still considerable uncertainty regarding the type of devices that will be deployed and device array layouts. Here, we describe the process undertaken, in consultation with industry, to develop a small number of generic device types and array scenarios for the PFOW, based on insight provided by documentation submitted by developers as part of the Scottish marine licensing process. For tidal developments, an algorithm was developed to determine the site specific array configuration, taking into account the number of turbines, water depth, tidal current direction and the spatial distribution of mean kinetic energy. The wave development sites did not require such detailed site specific placement of devices, and the generic layouts could simply be constructed in most cases without the need for detailed site specific resource characterisation. It is anticipated that the renewable energy industry will be able to adopt our data selection criteria to ensure models developed for environmental impact assessments satisfy the quality requirements of the regulator. Similarly, the methodologies developed for characterising generic device types and array layouts will be useful to academia and government researchers, who do not necessarily have access to detailed device and site specific information.
Ocean & Coastal Mana... arrow_drop_down Ocean & Coastal ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2017.03.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Ocean & Coastal Mana... arrow_drop_down Ocean & Coastal ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2017.03.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Gallego, A.; Side, J.; Baston, S.; Waldman, S.; Bell, M.; James, M.; Davies, I.; O'Hara Murray, R.; Heath, M.; Sabatino, A.; McKee, D.; McCaig, C.; Karunarathna, H.; Fairley, I.; Chatzirodou, A.; Venugopal, V.; Nemalidinne, R.; Yung, T. Z.; Vögler, A.; MacIver, R.; Burrows, M.;We describe a modelling project to estimate the potential effects of wave & tidal stream renewables on the marine environment. • Realistic generic devices to be used by those without access to the technical details available to developers are described. • Results show largely local sea bed effects at the level of the currently proposed renewables developments in our study area. • Large scale 3D modelling is critical to quantify the direct, indirect and cumulative effects of renewable energy extraction. • This is critical to comply with planning & environmental impact assessment regulations and achieve Good Environmental Status.
CORE arrow_drop_down University of Hull: Repository@HullArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Ocean & Coastal ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2016.11.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down University of Hull: Repository@HullArticle . 2016License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Ocean & Coastal ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2016.11.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Funded by:UKRI | EcoWatt2050, UKRI | Hydrodynamic modelling fo...UKRI| EcoWatt2050 ,UKRI| Hydrodynamic modelling for sustainable aquaculture : Placement with Marine Scotland ScienceSandy Kerr; Simon Mark Waldman; Simon Mark Waldman; David K. Woolf; Stephanie Weir; R. O'Hara Murray;Abstract Tidal stream energy technology has progressed to a point where commercial exploitation of this sustainable resource is practical, but tidal physics dictates interactions between tidal farms that raise political, legal and managerial challenges that are yet to be met. Fully optimising the design of a turbine array requires its developer to know about other farms that will be built nearby in the future. Consequently future developments, even those in adjacent channels, have the potential to impact on project efficiency. Here we review the relevant physics, consider the implications for marine policy, and discuss potential solutions. Possible management paths range from minimal regulation to prioritise a free market, to strongly interventionist approaches that prioritise efficient resource use. An attractive exemplar of the latter is unitization, an approach to resource allocation widely used in the oil and gas industry. We argue that an interventionist approach is necessary if the greatest possible energy yield is to be produced for a given level of environmental impact.
University of Hull: ... arrow_drop_down University of Hull: Repository@HullArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpol.2019.103611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Hull: ... arrow_drop_down University of Hull: Repository@HullArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpol.2019.103611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 United KingdomPublisher:Elsevier BV Authors: Waldman, S.; Yamaguchi, S.; O'Hara Murray, R.; Woolf, D.;Abstract The Goto Islands in Nagasaki Prefecture, Japan, contain three parallel channels that are suitable for tidal energy development and are the planned location for a tidal energy test centre. Energy extraction is added to a 3D numerical hydrodynamic model of the region, using a sub-grid momentum sink approach, to predict the effects of tidal development. The available resource with first-generation turbines is estimated at 50–107 MW peak output. Spreading turbine thrust across the whole cross-section to prevent bypass flow results in a 64% increase in peak power in one channel, highlighting the importance of 3D over 2D modelling. The energy available for extraction in each strait appears to be independent of the level of extraction in other straits. This contrasts with theoretical and numerical studies of other multi-channel systems. The weak interactions found in this study can be traced to the hydraulic effects of energy extraction not extending to neighbouring channels due to their geometry.
University of Hull: ... arrow_drop_down University of Hull: Repository@HullArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Marine EnergyArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijome.2017.09.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Hull: ... arrow_drop_down University of Hull: Repository@HullArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Marine EnergyArticle . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijome.2017.09.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:American Geophysical Union (AGU) Authors: De Dominicis, Michela; Wolf, Judith; O'Hara Murray, Rory;doi: 10.1029/2018jc013832
AbstractThe environmental implications of tidal stream energy extraction need to be evaluated against the potential climate change impacts on the marine environment. Here we study how hypothetical very large tidal stream arrays and a business as usual future climate scenario can change the hydrodynamics of a seasonally stratified shelf sea. The Scottish Shelf Model, an unstructured grid three‐dimensional ocean model, has been used to reproduce the present and the future state of the NW European continental shelf. Four scenarios have been modeled: present conditions and projected future climate in 2050, each with and without very large scale tidal stream arrays in Scottish Waters (UK). It is found that where tidal range is reduced a few centimeters by tidal stream energy extraction, it can help to counter extreme water levels associated with future sea level rise. Tidal velocities, and consequently tidal mixing, are also reduced overall by the action of the tidal turbine arrays. A key finding is that climate change and tidal energy extraction both act in the same direction, in terms of increasing stratification due to warming and reduced mixing; however, the effect of climate change is an order of magnitude larger.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research OceansArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018jc013832&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research OceansArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018jc013832&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu